Uniqueness of water

Water – a unique solvent

Property	H ₂ O	H ₂ S	CH ₄	CH ₃ OH
Molecular weight	18	34	16	32
Dipole moment (Debyes)	2.0	0.9	0.0	1.7
Boiling point (°C)	100	-60	-161	65
Enthalpy of vaporization (kJ/g)	2.30	0.55	0.88	1.10
Melting point (°C)	0	-85	-181	-94
Enthalpy of fusion (kJ/g)	0.33	0.07	0.06	0.10

A molecule has a dipole moment if the center of the molecule's positive charges is not at the same spot as the molecule's negative charges

O₂ – no dipole moment

NO – dipole moment

Electron density shifted to oxygen

Water – hydrogen bonding & dipole moment

Hydrogen bonding

Stable water clusters. (A) Methane clathrate consists of a dodecahedral water cage surrounding a methane molecule (green). The n = 21 protonated water cluster suggested by analogy has the H₃O⁺ ion (blue) taking up a position inside the clathrate cage (B) or on its surface (C), displacing a neutral water molecule (purple) to the cage interior. The hydrogen bonds are indicated by the dashed lines in yellow.

Zweir, 2004, Science, 21:1119

- H₂O structure promotes incorporation of hydrogen bonding, polar, ionic entities
- Non-hydrogen bonding, non-polar, non-ionic entities disrupt water's structure

Basics of basics of water chemistry

Ionic strength, activity, molarity

Ionic strength

 $I = \frac{1}{2} \sum_{i} (C_i \times z_i^2)$ $C_i = \text{concentration of ionic species } i (M)$ $z_i = \text{charge of ionic species } i$

- Significance: in dilute solutions ($I \sim < 10^{-3}$ M) the ions behave independently of each other, but as ion concentration increases, ion interactions become significant, <u>decreasing the activity</u> of the ions
- Activity vs. molarity ({ } vs. [])

 $\{i\}=\gamma_i[i]$

- $-\gamma_i \cong 1$ in dilute solutions (for most natural waters except for seawater, this would be acceptable for crude calculations)
- Güntelberg equation (for *I* < 0.1):

$$\log_{10} \gamma_i = -\frac{0.5 z_i^2 I^{0.5}}{1 + I^{0.5}}$$

Electroneutrality principle

$$\sum$$
 cations (in eq/L) = \sum anions (in eq/L)

* equivalent [eq] of an ion: (eq) = (mole) x (valence)

• May use the following condition to determine the accuracy of water ion content analysis

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

* ∑ values in meq/L

Aqueous chemistry parameters

- Units
 - Mass/vol
 - #/vol
 - Transferable electrons or protons/vol
 - Mole fraction

• Why different units?

- Engineers vs. chemists
- Specific needs of the problem

kg/m³, mg/L, ... mole/L, # of organisms/mL eq./L, meq./L mole/∑mole

Aqueous chemistry parameters

Aggregate parameters

- Characterize important properties of mixtures
 - __OD (oxygen demand)
 - TO___ (total organic carbons (C), halides (X))
 - Total hardness, Alkalinity, ...
 - Total PCBs, Total PCTs, ...
- Conduct one analysis instead of many

__per__as___

- mg/L as CaCO₃ (for alkalinity & hardness)
- mg/L as N
- % as P_2O_5 or K_2O

Measures of (oxidizable) organic matter

• BOD – Biochemical Oxygen Demand

- Measure of a water's biologically oxidizable constituents
 - Analyze [DO] in a water sample before & after controlled incubation
 - 5 day incubation is common

• COD – Chemical Oxygen Demand

- Measure of a water's chemically oxidizable constituents
 - 2-3 hour reaction time
 - Generates liquid hazardous wastes
- Does not oxidize organic N

• TOC, DOC – Total/Dissolved Organic Carbon

- Measure of a water's organic carbon content
 - Analyze mass/concentration of CO₂ produced after chemical oxidation of a sample
 - Sampling time a few minutes

BOD₅ vs COD vs TOC

Compound	Formula	MW	BOD ₅	COD	тос	COD/TOC	TOC/MW	COD/MW
Methane	CH ₄	16	??	64	12	5.3	0.75	4.0
MTBE	C ₅ H ₁₂ O	88	~0	240	60	4.0	0.68	2.7
Benzene	C ₆ H ₆	78	??	240	72	3.3	0.92	3.1
Glucose	$C_{6}H_{12}O_{6}$	192	~192	192	72	2.7	0.38	1.0

 $CH_4 + 2O_2 \iff CO_2 + 2H_2O$

 $C_5H_{12}O + 7.5O_2 \iff 5CO_2 + 6H_2O$

 $C_6H_6 + 7.5O_2 \iff 6CO_2 + 3H_2O$

 $C_6H_{12}O_6 + 6O_2 \iff 6CO_2 + 6H_2O$

[MTBE]

$$pH = -log_{10} \{H^+\} \approx -log_{10} [H^+]$$

- For most natural waters, 5 < pH < 9
 - Most aquatic life adapted for this range
- Self ionization constant of water, K_w

$$K_w = \{H^+\}\{OH^-\} = 10^{-14}$$

 $pK_w = pH + pOH = 14$ @ 25 °C

• Chemical speciation can be highly pH dependent $ROH \iff RO^- + H^+$ – If pH < pK_a, protonated (associated) $K_a \approx \frac{[RO^-][H^+]}{[ROH]}$ – If pH > pK_a, deprotonated (dissociated)