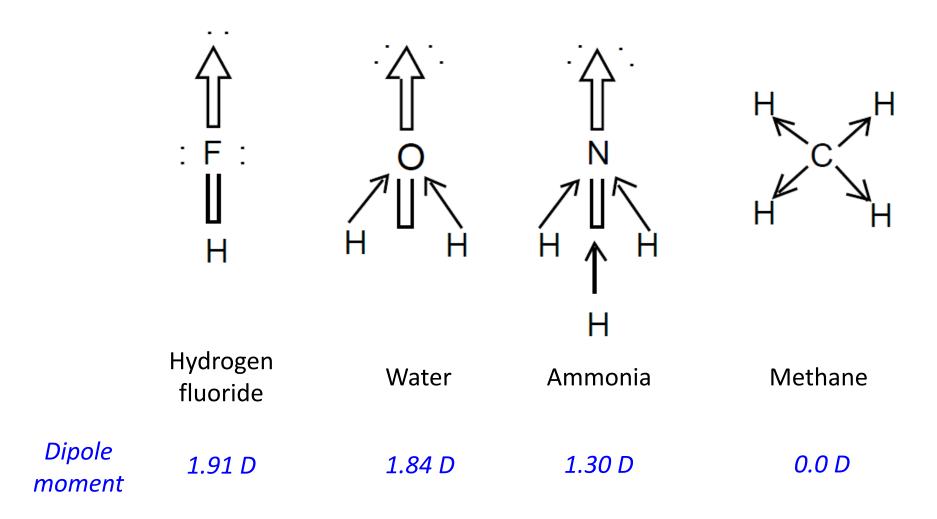
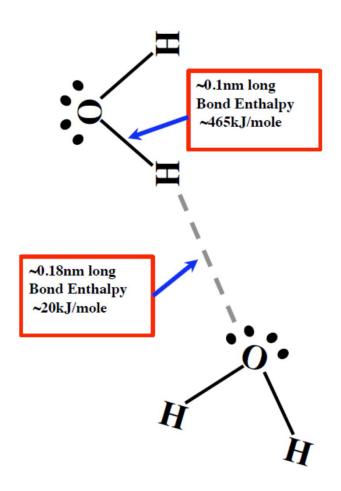

Basics of water quality

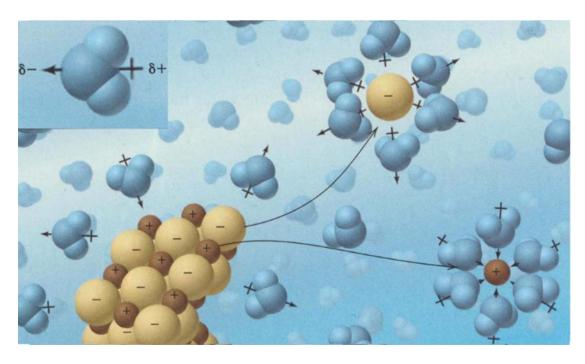
Structure of water: dipole


Dipole moment

A molecule has a dipole moment if the center of charge for the molecule's positive charges is **NOT** at the same spot as the center of charge for the molecule's negative charges

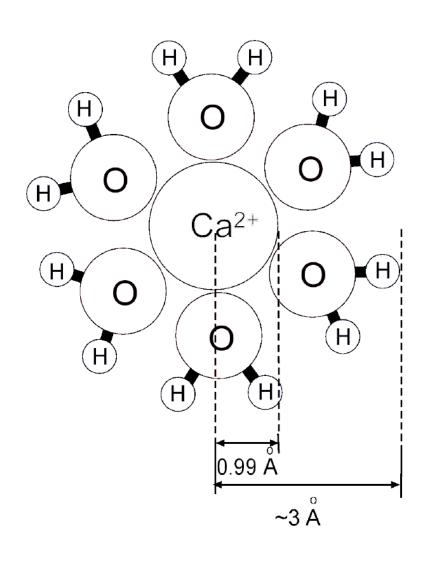

cf) O_2 – no dipole moment

- Highly polarized because of different electronegativity of O and H
- (-) charge on O, (+) charge on H



Hydrogen bonding

- Weaker than covalent bond, but stronger than normal dipole-dipole interactions
- Affect physical and chemical behavior of water in many ways


Property	H ₂ O	H ₂ S	CH ₄	CH₃OH
Molecular weight	18	34	16	32
Dipole moment (Debyes)	2.0	0.9	0.0	1.7
Boiling point (°C)	100	-60	-161	65
Enthalpy of vaporization (kJ/g)	2.30	0.55	0.88	1.10
Melting point (°C)	0	-85	-181	-94
Enthalpy of fusion (kJ/g)	0.33	0.07	0.06	0.10

Tendency of water molecules to orient themselves around ions.

Benjamin (2002) Water Chemistry, McGraw-Hill

- High solubility for ions and polarized molecules
 - ex) Na⁺Cl⁻, C₂H₅OH
- Low solubility for non-polarized molecules
 ex) high molecular weight hydrocarbons
- Hydrophilic vs. hydrophobic

- Metals are often dissolved in the form of hydrated ions
- Examples
 - $Na(H_2O)_4^+$
 - $Ca(H_2O)_6^{2+}$
 - $Fe(H_2O)_6^{3+}$
 - $AI(H_2O)_6^{3+}$

Concentration units

Molality (m)

$$m, mole/kg = \frac{moles\ of\ solute}{1.0\ kg\ of\ solvent}$$

Molarity (M)

$$M, mole/L = \frac{moles\ of\ solute}{1.0\ L\ of\ solution}$$

Mass concentration

$$g/m^{3} = \frac{mass\ of\ solute, g}{1.0\ m^{3}\ of\ solution}$$

$$1.0\ g/m^{3} = 1.0\ mg/L$$

$$2\ common\ mass\ concentration\ unit$$

Concentration units

Normality (N)

$$N, eq/L = \frac{equivalent\ of\ solute, eq}{1.0\ L\ of\ solution}$$

(meq/L more common)

Equivalent, eq = $z \times (moles \ of \ solute)$

For acids, z is the number of replaceable hydrogen atoms; for oxidation-reduction reactions, z is the change in valence

* Equivalent mass

$$equivalent \ mass, g/eq = \frac{atomic \ (molecular) mass, g}{z, eq}$$

Concentration units

Parts per million (ppm)

$$ppm = \frac{mass\ of\ solute, g}{10^6\ g\ of\ solution} = \frac{mass\ conc., g/m^3}{specific\ gravity\ of\ solution}$$

Also used are ppb & ppt for trace constituents

- Mass concentration as CaCO₃
 - Traditional unit for alkalinity and hardness

Note: $meq\ mass\ of\ CaCO_3=50\ mg/meq$

So, 1 mM Ca^{2+} solution equals to what mg/L as $CaCO_3$?

Other __as __

Nitrogen: mg/L as N Phosphorus: % as P_2O_5

Potassium: % as K₂O

- Mole fraction
 - The ratio of the number of moles of a given solute to the total number of moles of all components in solution

$$x_A = \frac{n_A}{n_A + n_B + n_C + \cdots n_N}$$

 For most aqueous solutions, the moles of water is so much larger than the moles of others, so the mole fraction can be approximated as:

$$x_A \cong \frac{n_A}{55.6}$$
 -- why 55.6??

Electroneutrality principle

$$\sum cations (in eq/L) = \sum anions (in eq/L)$$

Ionic strength

$$I = \frac{1}{2} \sum_{i} (C_i \times z_i^2)$$

$$C_i = \text{concentration of ionic species } i \text{ (M)}$$

$$z_i = \text{charge of ionic species } i$$

– Significance: in dilute solutions ($I \sim 10^{-3}$ M) the ions behave independently of each other, but as ion concentration increases, ion interactions become significant, decreasing the activity of the ions

- Activity and activity coefficients
 - { } vs. []

$$\{i\} = \gamma_i[i]$$

- $-\gamma_i \cong 1$ in dilute solutions (for most natural waters except for seawater)
- But otherwise γ_i can be significantly smaller than 1
- Güntelberg equation (for *l* < 0.1):</p>

$$\log \gamma_i = -\frac{0.5z_i^2 I^{0.5}}{1 + I^{0.5}}$$

- Equilibrium constant
 - For <u>reversible</u> reactions

$$aA + bB \rightleftharpoons cC + dD$$
 \Longrightarrow $K = \frac{\{C\}^c \{D\}^a}{\{A\}^a \{B\}^b}$

In dilute solutions

$$K \cong \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

- Solubility product
 - Equilibrium constant for dissolution-precipitation reactions

ex)
$$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

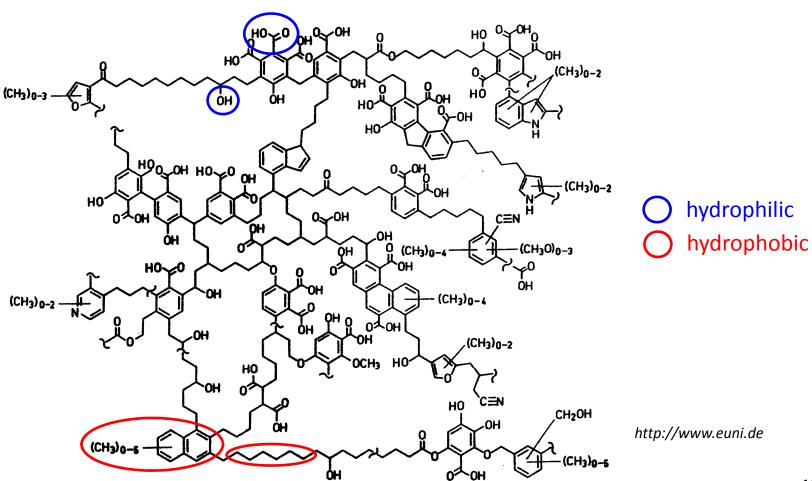
$$K_{sp} = \{Ca^{2+}\}\{CO_3^{2-}\}$$

$$\cong [Ca^{2+}][CO_3^{2-}] \quad \text{(dilute solutions)}$$

For pure solids, activity = 1

- Henry's law
 - At relatively low concentration of gaseous compound in air, the concentration (or mole fraction) dissolved in water is proportional to the concentration (or partial pressure, mole fraction) in air
 - So, Henry's law constant can have various different units
 - Unitless Henry's law constant

$$C_g/C_s = H_u$$


 C_g = concentration in gas phase (mg/L) C_s = saturation concentration in liquid (mg/L) H_u = unitless Henry's law constant

- Dissolved inorganics
 - Major in surface & ground water: Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻,
 HCO₃⁻, SO₄²⁻, SiO₂ (mostly ionic)
- Dissolved organic matter (DOM)
- Suspended matter
- Microorganisms
 - attached/suspended
 - pathogenic/benign

Organics in natural waters

- Simple sugars, amino acids, etc.
 - Conc. typically very low easily degraded
- Microbial polymers
 - Extracellular components in biofilms, flocs, aggregates
 - In some cases may have significant dissolved concentrations
- Humic substances
 - Typically the primary component of dissolved & particulate organic matter
 - Resistant to degradation
 - Molecular weights from ~500 to >100,0
 - Hydrophilic/hydrophobic regions
 - Coat minerals, photoactive, affinity to metals & organics

There's no humic "molecule"!

Organics in natural waters - anthropogenic

- >100,000 synthetic chemicals in daily use
 - Pesticides, solvents, dyes, personal care products, anti-fouling agents, additives
 - >300,000,000 tons produced annually
- Widely varying properties
 - Size, aqueous solubility, volatility, degradability, toxicity

Suspended matter

- Operationally defined as the material that retained on a 0.45 μm filter
- Colloids: $1 \text{ nm} 1 \mu\text{m}$ in size
- Includes mineral colloids, microorganisms and their debris, organic polymers
- Influences:
 - Contaminant transport
 - Light attenuation
 - Disinfection efficiency
 - Aquatic habitat