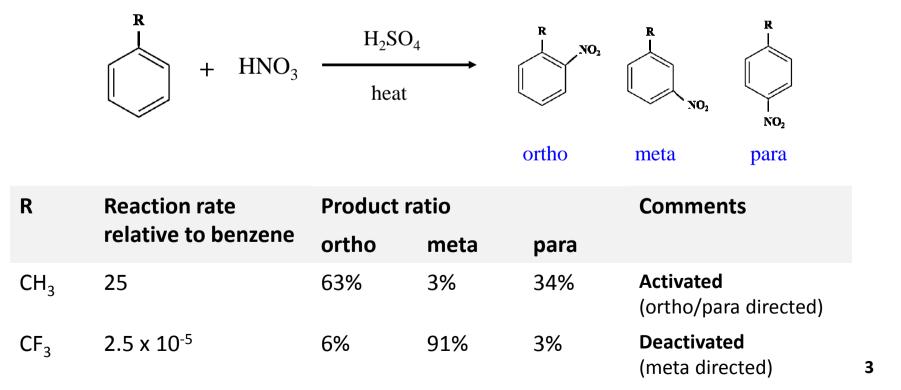
Organic chemistry background III

Hydrogen donors and acceptors

• Hydrogen (bond) donors

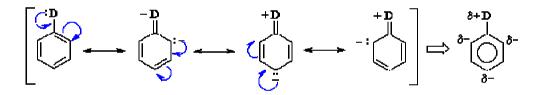
An ion or molecule which possesses a hydrogen atom attached to a relatively electronegative atom such that the hydrogen can participate in a hydrogen bond

• Hydrogen (bond) acceptors

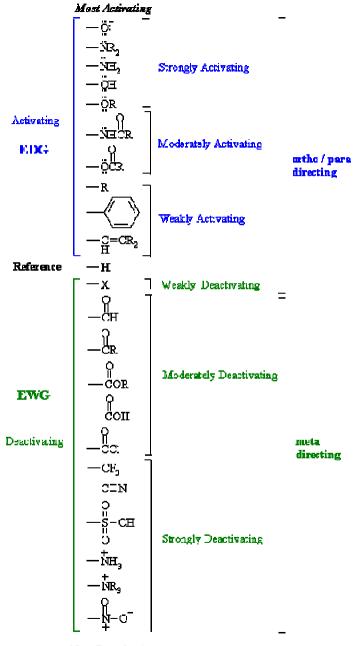

An electronegative ion or molecule which possesses a lone electron pair in order to form a hydrogen bond

Electron donating and withdrawing groups

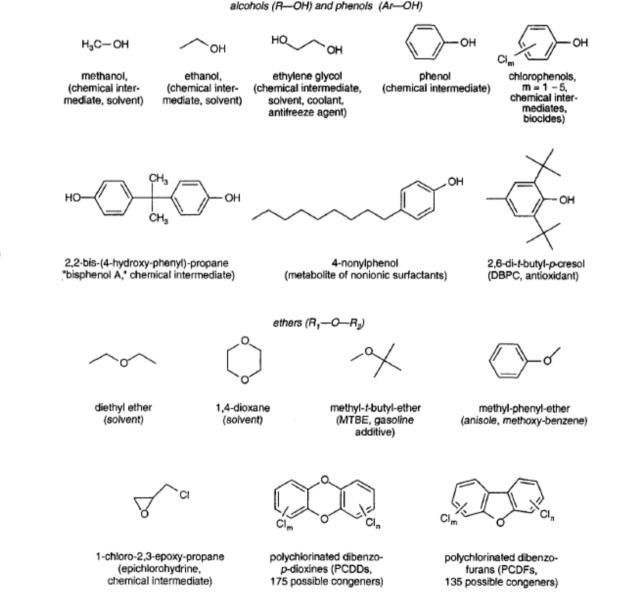
• A functional group attached to a carbon atom in an organic molecule may affect the reactivity of the molecule


ex) Nitration of a substituted benzene

Electron donating and withdrawing groups


• Electron donating groups

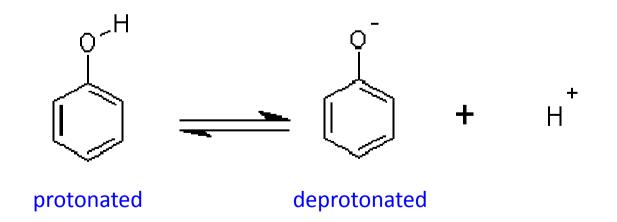
- Increase the electron density of the aromatic ring
- Make the molecule more nucleophilic (activated)
- The molecule tends to react with electrophiles at ortho- & para-sites


Electron withdrawing groups

- Decrease the electron density of the aromatic ring
- Make the molecule less nucleophilic (deactivated)
- The molecule tends to react with electrophiles at meta-sites

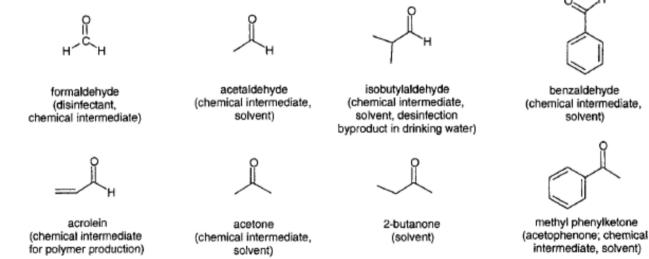
Most Deactbrating

- Alcohols, phenols and ethers
 - Alcohols: R-OH(R: alkyl group)
 - Phenols: R-OH(R: aromatic group)
 - Ethers: R_1 -O- R_2



• Alcohols, phenols and ethers

- Oxygen atoms participate in hydrogen bonds: significant changes in physicochemical properties of the molecule
- R-OH: may act as both H-donor and H-acceptor
- R_1 -O- R_2 : acts only as an H-acceptor
- Dissociation of a R-OH group
 - R-OH group may dissociate in water (renders H^+) \rightarrow act as a weak acid
 - Especially for phenols
 - Greater dissociation tendency for phenols substituted with electronwithdrawing substituents

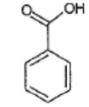

Dissociation of phenols

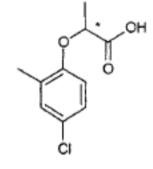
Compound	рК _а	Dominant species at pH=7.0
phenol	9.95	protonated (>99.9%)
2,4-dichlorophenol	7.90	protonated (~89%)
pentachlorophenol	4.90	deprotonated (>99.9%)

Aldehyde and keto groups

- C=O bonds
- Aldehyde: C-CHO; keto: R₁-CO-R₂
- H-acceptors
- Quite reactive

- Carboxylic groups
 - R-COOH

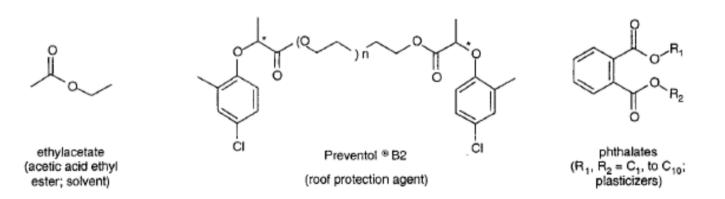

- $\begin{array}{c} & O^{-} \\ R \longrightarrow R \longrightarrow 0 \\ O \end{array} \xrightarrow{O} R \longrightarrow 0 \\ O \end{array} \begin{array}{c} O \\ R \longrightarrow 0 \\ O \end{array} \end{array}$
- May dissociate in aqueous solution (pK_a in the range of 0-6)
- Both strong H-donors and acceptors


он С

acetic acid

trichloroacetic acid (herbicide, atmospheric breakdown product of chlorinated solvents)

benzoic acid (food preservative, additive, chemical intermediate)



(R,S)-2-(4-chloro-2-methyl phenyl) - propionic acid ((R,S)-mecoprop; herbicide)

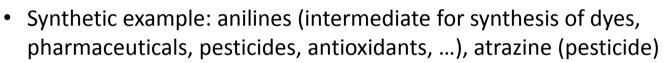
• Ester groups

- R_1 -COO- R_2 ; -OH of a carboxylic acid is replaced by a -OR group
- Act only as a H-acceptor (smaller impact on a compound's water solubility)

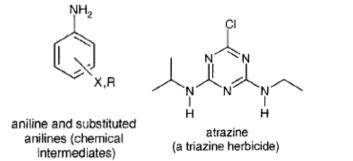
ex) phthalates: often used as plasticizers

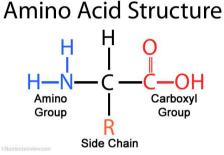
Nitrogen-containing functional groups

Table 2.5 Some Important Nitrogen-Containing Functional Groups Present in Anthropogenic Organic	
Compounds	


Group	Name (oxidation state of nitrogen)	Group	Name (oxidation state of nitrogen)
R ₂ + R ₁ NR ₃ R ₄	ammonium (-III)	R ₁ -NH-NH-R ₂	hydrazo (-II)
	amino ^a (-III) (amine)	N=N ^{-R2}	azo (-I)
	carboxylic acid amide ^a (-III)	R-N H	hydroxyl-amine (-I)
R-C=N	cyano, nitrilo (-III)	R-N ⁰	nitroso (+I)
R ₁ N R ₃ I I R ₂ R ₄	urea (-III)	R−N ⁺ ,0 ⁻	nitro (+III)
$R_1 \sim 0 R_3$ $R_1 \sim 0 R_3$ R_2	carbamate (-III)	R−0−N ⁺ ,0 [−]	nitrato (+V) (nitrate)

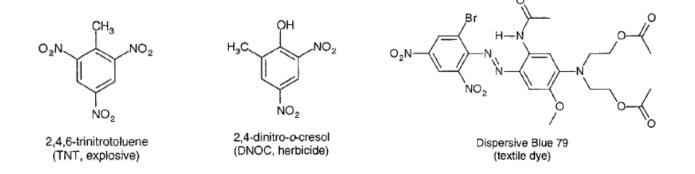
^{*a*}Primary if $R_2 = R_3 = H$; secondary if $R_2 = H$ and $R_3 \neq H$; tertiary if $R_2 \neq H$ and $R_3 \neq H$.


Nitrogen-containing functional groups


• Amine groups

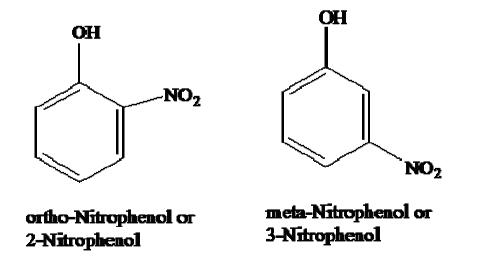
- Types: primary/secondary/tertiary
- Natural/synthetic compounds
 - Natural example: amino acids

- Acts as both H-acceptors and donors
 - H-acceptors: to a lesser extent
 - H-donors: only for primary and secondary amines
- Slightly basic: acquire a proton in an aqueous solution to form a cationic ammonium species

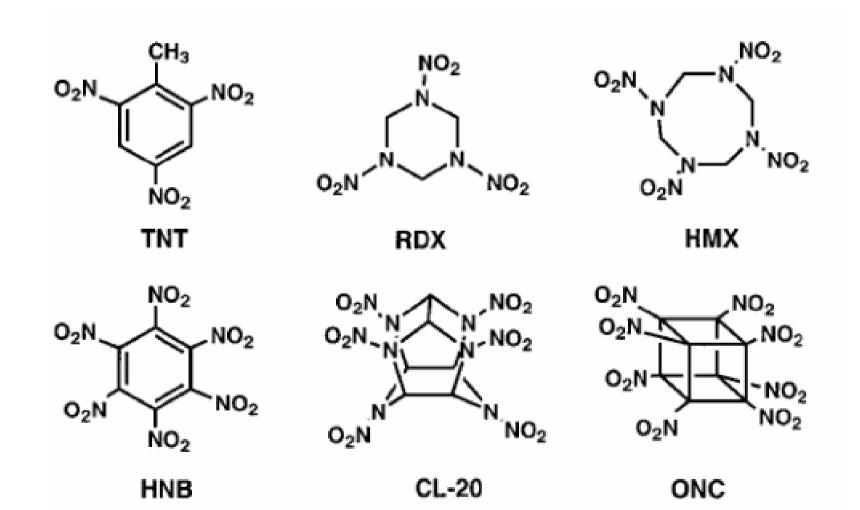


13

Nitrogen-containing functional groups


• Nitro groups

- Widely used in the chemical industry
 - Explosives (ex: TNT), agrochemicals (ex: DNOC), dyes (ex: Dispersive Blue 79)
- Strong electron-withdrawing characteristics
 - Significantly affect the electron distribution in a molecule
 - Significantly affect the chemical properties of the compound
- Explosives: multiple nitro groups in the molecules
 - Nitro group as built-in oxidant
 - Very fast oxidation of the molecule



Dissociation of nitrophenols

Compound	рК _а
phenol	9.95
2-nitrophenol (ortho)	7.17
3-nitrophenol (meta)	8.28

Examples of explosives containing nitro groups

Sulfur-containing functional groups

Group	Name (oxidation state of sulfur)	Group	Name (oxidation state of sulfur)
R-SH	thiol, mercaptan (-II)	R-S-OH	sulfonic acid (+IV)
$R_1 - S - R_2$	thioether, sulfide (-II)	R ₁ -S-O-R ₂	sulfonic acid ester (+IV)
R ₁ R ₂	thiocarbonyl (-II)	R ₁ -S-N O R ₁ -S-N II O R ₃	sulfonic acid amide, sulfonamide (+IV)
R1-S-S-R2	disulfide (-I)	$R_1 - O - S - O - R_2$	sulfuric acid ester, sulfate (+VI)
B1 B2	sulfoxide (0)		
0 R1-S-R2 0	sulfone (+II)		

Table 2.6 Some Important Sulfur-Containing Functional groups Present in Anthropogenic Organic Compounds