Stoichiometry of Biochemical Reactions I

Today's lecture

- Biochemical reaction stoichiometry
- Cell yield
- Half reactions

Oxidation-reduction (redox) reactions

- Involves changes in the oxidation state
- If there are oxidizing species, there should be reducing species as well
 - Total # of electrons are conserved
 - Oxidizing species e⁻ donor / Reducing species –
 e⁻ acceptor
- Essential for life many important biological processes involve redox reactions
 - Involves large free energy change (ΔG)

Biological benefit of redox reactions

Examples:

photosynthesis of glucose:

$$6CO_2 + 6H_2O + sunlight \rightarrow C_6H_{12}O_6 + 6O_2$$

 $\Delta G^0 = +2880 \text{ kJ/mol } C_6 H_{12} O_6$

Sunlight energy is converted to chemical energy (storable)

respiration using glucose:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

 $\Delta G^0 = -2880 \text{ kJ/mol C}_6 H_{12} O_6$

Chemical energy is released to be used to do something

Stoichiometry

- "An aspect of chemistry concerned with mole relationships among reactants and products"
- Simply put, balancing chemical reactions
- Based on mass conservation
 - Conservation of elements
 - Conservation of electrons (for redox reactions)

What can we do with stoichiometry?

A balanced biochemical reaction example

(ethanol fermentation of glucose at f_s =0.22)

$$0.0417C_6H_{12}O_6 + 0.011NH_4^+ + 0.011HCO_3^-$$

$$\rightarrow$$
 0.011C₅H₇O₂N + 0.065C₂H₅OH + 0.076CO₂ + 0.044H₂O [Bacterial cells]

Available information:

Using 1 g (or 1 mole) of glucose,

- How much ethanol can be produced?
- How much nutrients (NH₄-N) are required?
- How much biomass is produced?
- How much alkalinity is consumed?

Cell formula

- Most common: C₅H₇O₂N
- What is the theoretical COD-per-weight value for a bacterial cell (i.e., g COD / g cells)?
 - Once you get trained with the stoichiometry, you will be able to write the balanced reaction as:

$$C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$$

Then you get: 1.42 g COD/g cells

You will find this value useful in the future!

Substrate partitioning

Cell yield

True yield, Y
 Y = (g cells produced) / (g substrate utilized)

• Conversion of f_s^0 to Y:

$$Y = f_s^{\ 0} \frac{(M_c \ g \ cells/mole \ cells)}{(n_e \ e^- \ eq \ cells/mole \ cells)(8 \ g \ COD/e^- \ eq \ donor)}$$

For
$$C_5H_7O_2N$$
, $M_c = 113$ g/mole; $n_e = 20 e^-$ eq/mole (see Table 2.3) then: $Y(in \ g \ cells/g \ COD) = 0.706 f_s^{\ 0}$

Microbial growth rate

$$\frac{dX_a}{dt} = Y \left(\frac{-dS}{dt}\right) - bX_a$$
growth decay

 X_q = active biomass concentration [M/L³]

S = substrate concentration [M/L³]

Y = true yield [M/M]

b = decay rate [1/T]

Decay

- Generally assumed to be proportional to the amount of cells
- A gross factor for anything that leads to decrease in cell biomass
- Decay = endogenous respiration (+ predation)
 - Endogenous respiration: use of cell matter for maintenance of cell functions (motility, repair, resynthesis, osmotic regulation, transport, compensate heat loss, ...)

Net yield

• Net yield, Y_n $Y_n = (g net cell growth) / (g substrate utilized)$

$$= \frac{dX_a / dt}{-dS / dt}$$

$$= Y - b \frac{X_a}{-dS / dt}$$

Net yield

Log (exponential) growth:

Stationary phase:

Death phase:

Bacterial growth curve for pure culture

Net yield

• Electron partitioning considering net yield, Y_n :

$$f_s^0 \rightarrow f_s$$
 $(f_s < f_s^0)$
 $f_e^0 \rightarrow f_e$ $(f_e > f_e^0)$

still,
$$f_s + f_e = 1$$

Energy reactions

Microorganisms need energy for growth and maintenance

 ΔG^0 (in kJ/mole glucose)

Aerobic oxidation:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 -2,880

Denitrification:

$$5C_6H_{12}O_6 + 24NO_3^- 24H^+ \rightarrow 30CO_2 + 42H_2O + 12N_2$$
 -2,720

Sulfate reduction:

$$2C_6H_{12}O_6 + 6SO_4^{2-} \rightarrow 12CO_2 + 12H_2O + 3H_2S + 3HS^{-}$$
 -492

Methanogenesis:

$$C_6H_{12}O_6 \rightarrow 3CO_2 + 3H_2O$$
 -428
 $(C_6H_{12}O_6 + 3CO_2 \rightarrow 6CO_2 + 3H_2O)$

Ethanol fermentation:

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$$
 -244 15

Half reactions

- For complex biochemical redox reactions, it is easier to use half reaction approach
- The oxidation reaction for an electron donor and the reduction reaction for an electron acceptor can be splitted
- Usually written as a reduction reaction (see [Table 2.2] & [Table 2.3])

Half reactions

- **Step 1** Write oxidized form on the left and reduced form on the right
- **Step 2** Add other species involved in the reaction
- **Step 3** Balance the reaction for all elements except for oxygen and hydrogen
- Step 4 Balance oxygen using water
- Step 5 Balance hydrogen using H⁺
- Step 6 Balance charge using e
- **Step 7** Convert the equation to the e-equivalent form