Ecosystem

Ecosystem

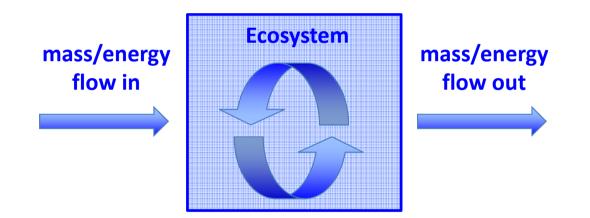
- Terminologies related to ecosystems
- Human influence on ecosystems
- Energy and mass flow
- Bioaccumulation
- Nutrient cycle
- Population dynamics
- Lake ecosystem

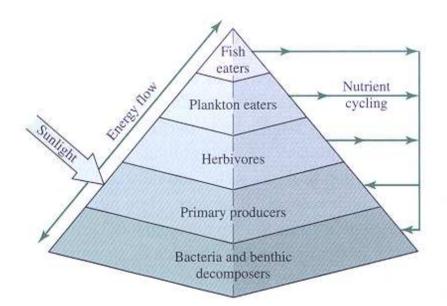
Some terminologies

- Ecosystems: communities of organisms that interact with one another and with their physical environment
- Habitats: the place where a population of organisms lives
- **Population**: a group of organisms of the same species living in the same place at the same time

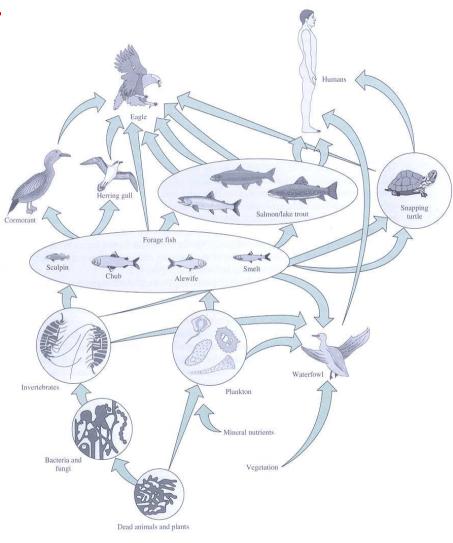
Human influence on ecosystems

- Destruction of environment (habitat)
 - deforestration, dam construction, road construction, etc.
- Changes in species population
 - can result in local and global extinction
 - release of toxic chemicals (ex: DDT, petroleum compounds, heavy metals)
 - shifting living conditions: acid rain, global warming, eutrophication, etc.
 - introduction of nonnative (exotic) species
 - excessive hunting


DDT and Silent Spring



1874: DDT first synthesized by O. Zeidler


- 1939: P. H. Müller discovered the insect killing ability and won Nobel Prize (1948)
- 1940s: Widely used as an insecticide (especially for lice-Typhus and mosquito-malaria)
- 1962: Rachel Carson published "Silent Spring" described how DDT accumulates in organisms and affect wildlife
- 1960s: Environmental scientists published researches to support R. Carson's argument (egg shell thinning by DDT)1972: DDT banned in the U.S.

- Important feature of an ecosystem:
 - Flow of matter into, out of, and within the system

<Ecological pyramid example>

<Food web example>

- Primary producers
 - Major source of energy for an ecosystem: sunlight
 - Major source of carbon (essential element for organic matter) for an ecosystem: CO₂
 - Primary producers can use sunlight and CO₂ (or HCO₃⁻) to produce organic matter that contains energy in a chemical form:

<Photosynthesis>

 $6CO_2 + 6H_2O + \text{sunlight} (2800 \text{ kJ}) \xrightarrow{\text{chlorophyll}} C_6H_{12}O_6 + 6O_2$

 Organisms that obtain carbon from inorganic sources and use sunlight as an energy source is called "photoautotrophic"

- Classification of organisms based on energy / carbon source
 - Based on energy source
 - Phototrophs: light
 - Chemotrophs: organic or inorganic compounds
 - Chemolithotrophs: inorganic
 - Chemoorganotrophs: organic
 - Based on carbon source
 - Autotrophs: inorganic C (CO₂ or HCO₃⁻)
 - Heterotrophs: organic C

Q: classification of (primary, secondary, tertiary, ...) consumers?

A: chemoorganotrophs, heterotrophs

- Respiration
 - A process of oxidizing organic compounds so that the chemical energy stored can be released
 - The energy released is used to derive other reactions (ex: cell metabolism and growth)

<Aerobic respiration>

 $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + energy$

- Requires an oxidizing agent to oxidize an organic compound by the redox reaction: called "electron acceptors"
- Some organisms can use electron acceptors other than O₂

- Other electron acceptors: nitrate (NO₃⁻), nitrite (NO₂⁻), sulfate (SO₄²⁻), ferric ion (Fe³⁺), CO₂, organic compounds
- Classification of organisms based on living in the presence/absence of O₂
 - : Aerobes / Anaerobes
 - Obligate aerobes: can survive only in the presence of O_2
 - Facultative (an)aerobes: can use O₂ and other electron acceptor(s)
 - Aerotolerant anaerobes: cannot use O_2 , but can survive in the presence of O_2
 - Obligate anaerobes: cannot survive in the presence of O_2

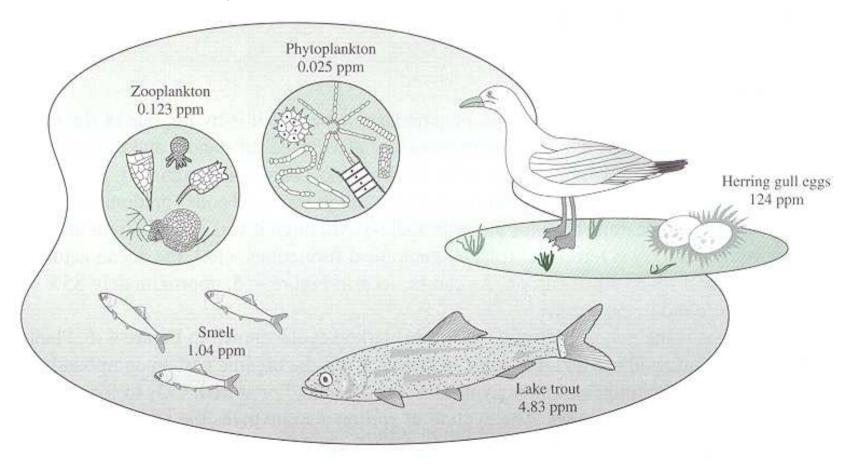
Q: classification of human?

A: obligate aerobe

Bioaccumulation

• Some chemicals have significantly higher affinity to some part of organisms than to the environment (water, air, soil, etc.)

ex) hydrophobic compounds have very high affinity to lipids than to water


- If chemical gain > loss for an organism, then the chemical may be accumulated within the body
- The chemical accumulation may occur more significantly for higher trophic level organisms

Terminologies related to bioaccumulation

- **Bioaccumulation**: total uptake of chemicals by an organism from either water or food
- Biomagnification: a process that results in accumulation of a chemical in an organism at higher levels than are found in its own food
- **Bioconcentration**: the uptake of chemicals from the dissolved phase

Biomagnification in aquatic food web

<PCBs in Great Lakes aquatic food web>

Reading assignment

• Textbook Ch5 p. 190-199