Acid-base systems II

Polyprotic acids

Carbonic acid

$$H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$$
 $pK_{a1}=6.3$
 $pK_{a2}=10.3$
 $pK_{a2}=10.3$

(at 25°C)

 $pK_{a2}=10.3$

(at 25°C)

Phosphoric acid

$$H_3PO_4 = H^+ + H_2PO_4^- = 2H^+ + HPO_4^{2-} = 3H^+ + PO_4^{3-}$$

 $pK_{a1}=2.1$ $pK_{a2}=7.2$ $pK_{a2}=12.7$ (at 25°C)

Let's work with a <u>diprotic</u> acid, H₂A:

Species involved (5):

$$H^+$$
, OH^- , H_2A , HA^- , A^{2-}

Equilibrium constants:

$$K_w = [H^+][OH^-]$$
 $K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$ $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$

Mass balance:

$$C_T = [H_2A] + [HA^-] + [A^{2-}]$$

Charge balance:

From equilibrium constants & mass balance, we get

$$[H_2A] = C_T \times \left(\frac{K_{a1}K_{a2}}{[H^+]^2} + \frac{K_{a1}}{[H^+]} + 1\right)^{-1}$$

$$[HA^{-}] = C_T \times \left(\frac{[H^{+}]}{K_{a1}} + 1 + \frac{K_{a2}}{[H^{+}]}\right)^{-1}$$

$$[A^{2-}] = C_T \times \left(1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}}\right)^{-1}$$

$$[H_2A] = C_T \times \left(\frac{K_{a1}K_{a2}}{[H^+]^2} + \frac{K_{a1}}{[H^+]} + 1\right)^{-1}$$

$$pH < pK_{a1}$$
: $[H_2A]$

$$[H_2A] \cong C_T \implies p[H_2A] \cong pC_T \quad slope: 0$$

$$pK_{a1} < pH < pK_{a2}$$
: $[H_2A] \cong C_T \left(\frac{K_{a1}}{[H^+]}\right)^{-1}$

$$\Rightarrow$$
 $p[H_2A] \cong pC_T - pK_{a1} + pH$ slope: 1

$$pK_{a2} < pH:$$
 $[H_2A] \cong C_T \left(\frac{K_{a1}K_{a2}}{[H^+]^2}\right)^{-1}$

$$\Rightarrow p[H_2A] \cong pC_T - pK_{a1} - pK_{a2} + 2pH$$

slope: 2

$$[HA^{-}] = C_T \times \left(\frac{[H^{+}]}{K_{a1}} + 1 + \frac{K_{a2}}{[H^{+}]}\right)^{-1}$$

pHa1:
$$p[HA^-] \cong pC_T + pK_{a1} + pH$$
 slope: -1

$$pK_{a1} < pH < pK_{a2}$$
: $p[HA^-] \cong pC_T$ slope: 0

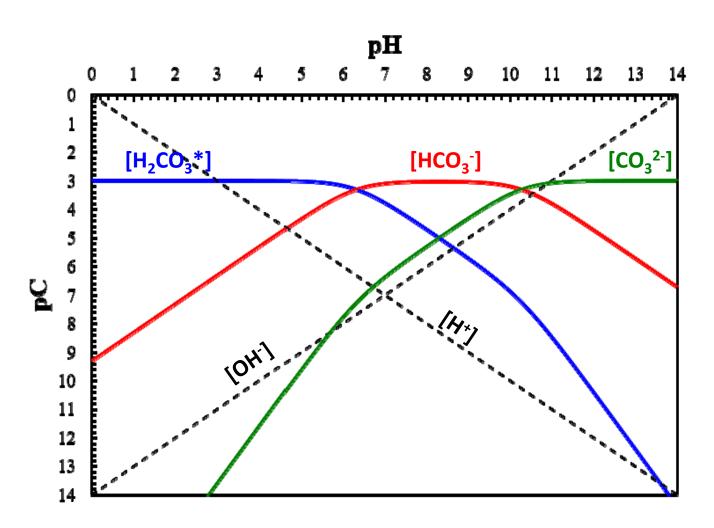
$$pK_{a2} < pH$$
: $p[HA^-] \cong pC_T - pK_{a2} + pH$ slope: 1

$$[A^{2-}] = C_T \times \left(1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}}\right)^{-1}$$

pHa1:
$$p[A^{2-}] \cong pC_T + pK_{a1} + pK_{a2} - 2pH$$
 slope: -2

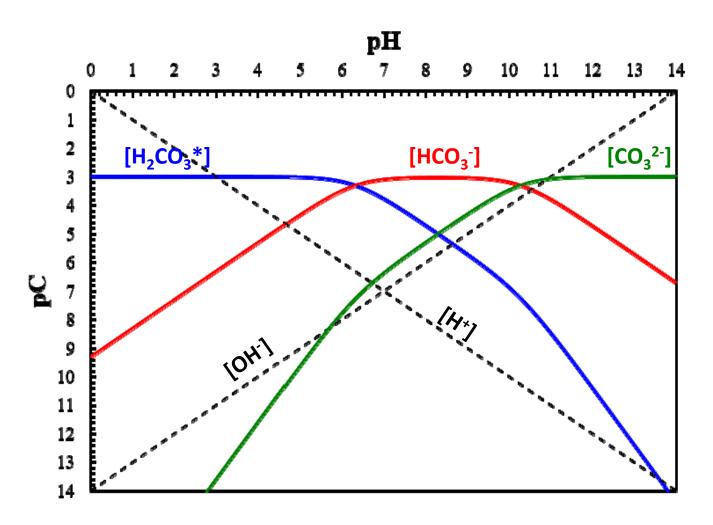
$$pK_{a1} < pH < pK_{a2}$$
: $p[HA^-] \cong pC_T + pK_{a2} - pH$ slope: -1

$$pK_{a2} < pH$$
: $p[HA^-] \cong pC_T$ slope: 0



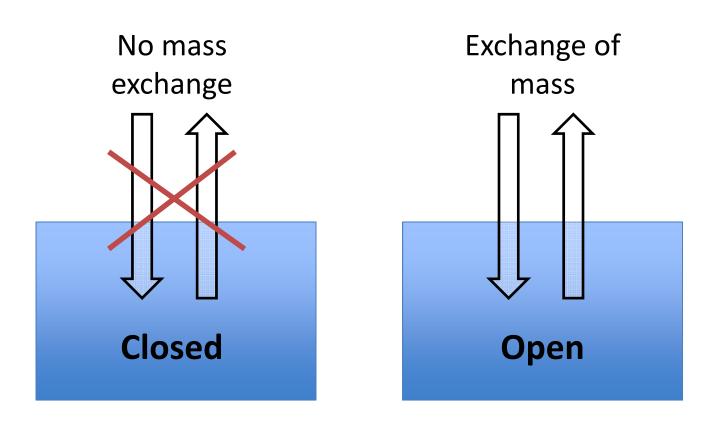
$$H_2CO_3$$
,
 $C_T = 10^{-3} M$
 $pK_{a1} = 6.3$
 $pK_{a2} = 10.3$

Charge balance:

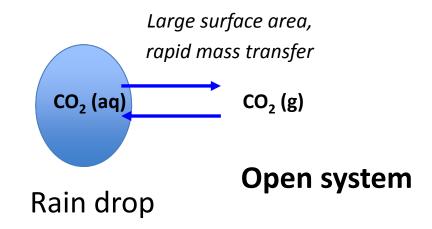


pH of... 10⁻³ M NaHCO₃? 10⁻³ M Na₂CO₃?

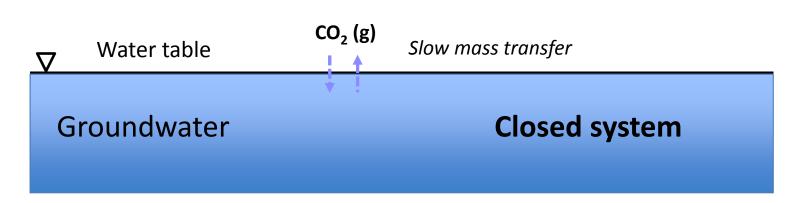
Open vs. Closed system



Open & Closed systems in natural waters

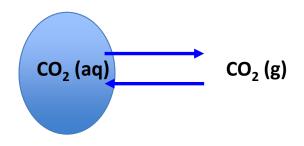


Ground surface



Open & Closed systems for carbonates

- Closed system: C_T = constant (we have a solution already!)
- Open system (ex: rain drop)



Equilibrium between gas & aqueous phase:

"Henry's Law"

$$[H_2CO_3^*] = K_H P_{CO_2}$$

Atmosphere: nearly infinite source of CO₂
 constant P_{CO₂}

 K_H = Henry's law constant (M/atm) P_{CO_2} = partial pressure of CO_2 (atm)

Open system for carbonates

pH-pC diagram for an open system

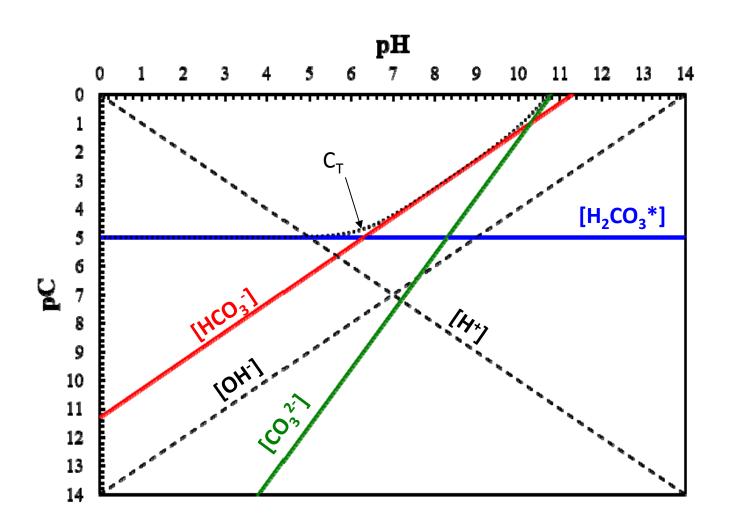
Equilibrium constants:

$$K_w = [H^+][OH^-]$$
 $K_{a1} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$ $K_{a2} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$

Mass balance:

$$C_T = [H_2CO_3] + [HCO_3^{-}] + [CO_3^{2-}]$$

Open system for carbonates



Carbonate buffer

- So, rainwater pH ≈ 5.6 in uncontaminated areas
- Carbonate species (H₂CO₃ HCO₃ CO₃²-)
 - Most of the time, exist in the highest concentration among weak acids in natural waters
 - → Controls the pH (others adjust to that pH)
- Freshwater pH range: 6-8; seawater pH range: 7.5-8.5
 - Much more complicated than we calculate in the class
 - Other equilibriums involved: dissolution of carbonate minerals (ex: CaCO₃)
 - P_{CO2} may not be 10^{-3.5} atm (atmospheric partial pressure) because of biological activities (photosynthesis, respiration)
 - Equilibrium may not be established