Redox reactions

Oxidation/reduction reactions

• Electron transfer reactions

- Redox couples & half reactions
 - One component is reduced (accepts electron(s))
 - One component is oxidized (donates electron(s))

- Most natural organic compounds are (primarily) electron donors

Oxidation/reduction reactions

• Most important biotic reactions

- Primary energy source
 - Cell maintenance
 - Cell growth

ex) glucose oxidation mediated by microorganisms

$$\frac{1}{4}CO_2 + H^+ + e^- \to \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O$$
(A)
$$\frac{1}{4}O_2 + H^+ + e^- \to \frac{1}{2}H_2O$$
(B)

24 x [(B)-(A)] $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

Oxidation/reduction reactions

• Photochemical reactions

- Will discuss later

• Redox reactions also occur abiotically in the dark

- May involve mediators/catalysts
- Although the reaction itself is abotic, biological molecules can be involved

• Nitrobenzene reduction

- Nitrobenzene ($C_6H_5NO_2$) may be reduced in a stepwise manner to be transformed into aniline ($C_6H_5NH_2$) in the environment

* Ar denotes C_6H_5 -

Let's consider the first step with hydrogen sulfide (H₂S) as an oxidizing compound (reductant)

Reduction half-rxn: $ArNO_2 + 2e^- + 2H^+$ \longrightarrow $ArNO + H_2O$ Oxidation half-rxn: $H_2S(aq) = HS^-(aq) + H^+$ \longrightarrow $S(s) + 2e^- + 2H^+$ Overall rxn: $ArNO_2 + H_2S(aq)$ \longrightarrow $ArNO + S(s) + H_2O$

Natural organic matter (NOM) acts as e⁻ transfer mediators

• So ultimately electrons flow from H₂S to ArNO₂

 By e⁻ transfer by NOM, the activation energy for the rate-limiting step is reduced → reaction proceeds faster

Pd-catalyzed hydrodehalogenation

- Pd dissociates H₂ molecules
- Rapid reduction of TCE at the surface of Pd

Reduction of organics by biomolecules

Redox reactions – multiple pathways

• Aerobic microbial transformation of toluene

Five different aerobic biodegradation pathways for toluene, each initiated through the activity of a mono- or dioxygenase together with molecular oxygen. (Mikesell et al., 1993)

Redox reactions – multiple pathways

 Anaerobic PCE reaction pathways with zero valent iron (Fe⁰) (abiotic)

Hypothesized reaction sequence for reduction of chlorinated ethenes and related compounds by Fe⁰. Adapted from Arnold and Roberts (2000).

Redox reactions – multiple pathways

• Methanogenic TCA transformations: abiotic-biotic combination

- Thermodynamics of a redox reaction tell us if the reaction will proceed
 - If $\Delta G_r < 0$, exergonic, the reaction will proceed
 - If $\Delta G_r > 0$, endergonic, the reaction is not likely to proceed
- It is useful to prepare a list of free energy change of half reactions
 - You can pick up a pair of reduction/oxidation half reactions from the list, and then combine $\Delta G_{r (reduction)} \& \Delta G_{r (oxidation)}$ to obtain $\Delta G_{r (overall)}$
- How do we determine ΔG_r of half reactions by experiments?

 Consider a reversible reaction to convert 1,4-benzoquinone (BQ) to hydroquinone (HQ):

- Use reduction potentials for evaluating the free energy of the half reaction
 - Perform the reaction at the surface of an inert electrode (ex: platinum, graphite)
 - At the other side, another inert electrode is immersed in an aqueous solution maintained at pH 0 (i.e., $\{H^+\} = 1$) and bubbled with molecular hydrogen $(p_{H_2} = 1 \text{ bar})$ – standard hydrogen electrode (SHE)

• Overall reaction:

 $BQ + H_2(g) + 2H^+ \rightleftharpoons HQ + 2H^+$

1 bar	pH=7	pH=0
(at SHE)	(prev.	(at SHE)

- With half reactions:
 - BQ \leftrightarrow HQ electrode: $BQ + 2H^+ + 2e^- \rightleftharpoons HQ$
 - SHE: $2H^+ + 2e^- \rightleftharpoons H_2(g)$

- Relationship between the electrical potential and the free energy
 - Assuming electrochemical equilibrium at the electrode surface, then the potential difference, ΔE , is directly related to the free energy change, $\Delta_r G$ of the reaction:

$$\Delta_r G = -nF\Delta E$$

n = number of electrons transferred

= 96.5 kJ/mol-V

F = Faraday constant, 96485 Coulomb/mol

- At the SHE
 - We assign a zero value of electrical potential, and thus, a zero value of a standard free energy change:

$$H^+ + e^- \rightleftharpoons \frac{1}{2} H_2(g)$$

 $\Delta E^0 = 0 V, \qquad \Delta_r G^0 = 0 kJ/mol$

- Then, the electrical potential change of the half reaction, $BQ + 2H^+ + 2e^- \rightleftharpoons HQ$, can be directly measured by the electrical potential change at the galvanic cell

• The electrical potential relative to SHE, E_H

$$E_H = -\frac{\Delta_r G}{nF}$$

- The *E_H* value for any conditions other than the "standard" state
 - The free energy change of a reaction ($\Delta_r G$) at any conditions is given as

 $\Delta_r G = \Delta_r G^0 + RT ln Q_r$

$$E_{H} = E_{H}^{0} - \frac{RT}{nF} lnQ_{r} = E_{H}^{0} - \frac{2.303RT}{nF} logQ_{r}$$

 E_{H}^{0} = standard redox potential or standard reduction potential (E_{H} at 25°C with unit (1) activities for all reaction components)

Q_r = *reaction quotient*

for reaction
$$aA + bB = cC + dD$$
,
 $Q_r = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$

Conditions for $E_H^0 \& E_H^0(W)$

- *E_H⁰*
 - All reaction components have unit activities
- E_H⁰ (W)
 - *E_H* under **typical natural water conditions**:
 - pH = 7
 - [Cl⁻] = 10⁻³ M; [Br⁻] = 10⁻⁵ M
 - Organic oxidant and reductant have unit activities

$\Delta_r G^0 \& \Delta_r G^0 (W) \text{ and } E_H^0 \& E_H^0 (W)$

Q: Consider the half reaction in an aqueous solution:

 $2NO_3^- + 12H^+ + 10e^- \rightleftharpoons N_2(g) + 6H_2O \quad \text{(denitrification)}$ $\Delta_r G^0 = -1200 \ kJ/mol$

Calculate the E_{H}^{0} , E_{H}^{0} (W), and $\Delta_{r}G^{0}$ (W) values of the reaction.

• The overall free energy change of a redox reaction:

Reduction: EA + $e^- \rightarrow$ reduced EA $\Delta_{red}G^0$ Oxidation: ED \rightarrow oxidized ED + $e^ \Delta_{oxi}G^0$

 $EA + ED \rightarrow reduced EA + oxidized ED \qquad \Delta_r G^0$ $\Delta_r G^0 = \Delta_{red} G^0 + \Delta_{oxi} G^0$

- Under the standard conditions:
 - Negative $\Delta_r G^0$: <u>favorable</u> reaction
 - Large $|\Delta_r G^0|$ (*with* $\Delta_r G^0 < 0$): strong <u>driving force</u> for the forward reaction, makes the backward reaction difficult
 - Note: this is thermodynamics, **NOT** kinetics!

Applying thermodynamics – simple example

ΔG⁰(W)/e⁻, kJ/mol

The equilibrium constant for this reversible reaction:

$$K = \frac{1}{{P_{O_2} {P_{H_2}}^2}}$$

Applying thermodynamics – simple example

Recall $\Delta_r G = \Delta_r G^0 + RTln(Q_r)$

at equilibrium, $\Delta_r G = 0$ and $Q_r = K$

$$\Delta_r G^0 = -RTln(K)$$

Therefore,
$$K = \frac{1}{P_{O_2} P_{H_2}^2} = e^{-(\Delta_r G^0 / RT)} \approx 10^{83}$$

The overall reaction will proceed to the right at any reasonable partial P of $H_2 \& O_2$

$E_H \& \Delta_r G$ of some important redox rxns

Table 14.2 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25 °C of Some Redox Couples that Are Important in Natural Redox Processes (The reactions are ordered in decreasing $E_{\rm H}^0$ (W) values.)^{*a*}

	Halfreaction		Water	Water @ pH=7 [∞]	
	Oxidized Species Reduced Species	$E_{\rm H}^0$ (V)	$\frac{E_{\rm H}^0({\rm W})}{({\rm V})}$	$\Delta_r G^0(W)/n^c$ (kJ·mol ⁻¹)	
(1a)	$O_2(g) + 4 H^+ + 4 e^- = 2 H_2O$	+1.23	+0.81	-78.3	
(1b)	$O_2(aq) + 4 H^+ + 4 e^- = 2 H_2O$	+1.19	+0.77	-74.3	
(2)	$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- = \text{N}_2(\text{g}) + 6 \text{ H}_2\text{O}$	+1.24	+0.74	-72.1	
(3)	$MnO_2(s) + HCO_3^- (10^{-3}) + 3 H^+ + 2 e^- = MnCO_3(s) + 2 H_2O$		$+0.53^{b}$	-50.7 ^b	
(4)	$NO_3^- + 2 H^+ + 2 e^- = NO_2^- + H_2O$	+0.85	+0.43	-41.6	
(5)	$NO_3^- + 10 H^+ + 8 e^- = NH_4^+ + 3 H_2O$	+0.88	+0.36	-35.0	
(6)	$FeOOH(s) + HCO_3^- (10^{-3} M) + 2 H^+ + e^- = FeCO_3(s) + 2 H_2O$		-0.05 ^b	+ 4.8 ^b	
(7)	CH_3COCOO^- (pyruvate) + 2 H ⁺ + 2 e ⁻ = $CH_3CHOHCOO^-$ (lactate)		-0.19	+17.8	
(8a)	$HCO_3^- + 9 H^+ + 8 e^- = CH_4(aq) + 3 H_2O$	+0.21	-0.20	+19.3	
(8b)	$CO_2(g) + 8 H^+ + 8 e^- = CH_4(g) + 2 H_2O$	+0.17	-0.24	+23.6	
(9)	$SO_4^{2-} + 9 H^+ + 8 e^- = HS^- + 4 H_2O$	+0.25	-0.22	+20.9	
(10)	$S(s) + 2 H^{+} + 2 e^{-} = H_2S(aq)$	+0.14	-0.27	+26.0	
(11a)	$2 H^+ + 2 e^- = H_2(aq)$	+0.08	-0.33	+31.8	
(11b)	$2 H^+ + 2 e^- = H_2(g)$	0.00	-0.41	+40.0	
(12)	$6 \text{ CO}_2(\text{g}) + 24 \text{ H}^+ + 24 \text{ e}^- = \text{C}_6\text{H}_{12}\text{O}_6(\text{glucose}) + 6 \text{ H}_2\text{O}$	-0.01	-0.43	+41.0	

^a Note that most of the electron transfer reactions involving these redox couples are biologically mediated.

Data from Thauer et al. (1977) and Stumm and Morgan (1995). ^b Note that these values correspond to $[HCO_3^-] = 10^{-3} M$.

 c *n* = number of electrons transferred.

Oxidation cascade

Oxidation cascade – why?

$$\Delta_{r}G^{0}(W)$$
(kJ/mol glucose

$$C_{6}H_{12}O_{6} + \underline{6O_{2}} \Rightarrow 6CO_{2} + 6H_{2}O -2863.2$$

$$C_{6}H_{12}O_{6} + \underline{4.8NO_{3}} + 4.8H^{+} \Rightarrow 6CO_{2} + 2.4N_{2} + 8.4H_{2}O -2714.4$$

$$C_{6}H_{12}O_{6} + \underline{24FeOOH(s)} + 24HCO_{3}^{-} + 24H^{+} -868.8$$

$$\Rightarrow 6CO_{2} + 24FeCO_{3} + 42H_{2}O$$

$$C_{6}H_{12}O_{6} + \underline{3SO_{4}}^{2-} + 3H^{+} \Rightarrow 6CO_{2} + 3HS^{-} + 6H_{2}O -482.4$$

$$C_{6}H_{12}O_{6} \Rightarrow 3CO_{2} + 3CH_{4} -417.6$$
e acceptor: CO₂

- More energy/substrate means that more of the substrate can be used to make new cells
- The electron acceptor that generates the most energy get used up first ²⁸

Halogenated aliphatic hydrocarbons

- Heavily used:
 - As solvents
 - As pesticides
 - For fire control
- Halogens affect:
 - Size
 - C oxidation state

1,2-DICHLOROETHANE

DBCP

CFC-113

н

Halogenated aliphatic hydrocarbons

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25°C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_{\rm H}$ (W) values.)^{*a*}

	H	Ialfreaction				
O	xidized Species		Reduced Species	$E_{ m H}^0$ (V)	E _H ⁰ (W) ^b (V)	$\Delta_{\mathrm{r}}G^{0}(\mathrm{W})/\mathrm{n}^{c}$ (kJ·mol ⁻¹)
(1)	CCl ₃ CCl ₃ + 2 e ⁻	=	$Cl_2C = CCl_2 + 2Cl^2$	+ 0.95	+ 1.13	- 109.0
(2)	CBr ₄ + H ⁺ + 2e ⁻	=	CHBr ₃ + Br	+ 0.89	+ 0.83	- 80.1
(3)	CCI ₄ + H+ + 2e-	=	CHCl ₃ + Cl-	+ 0.79	+ 0.67	- 64.7
(4)	CHBr ₃ + H+ + 2e-	=	CH ₂ Br ₂ + Br	+ 0.67	+ 0.61	- 58.9
(5)	Cl ₂ C=CCl ₂ + H+ + 2e-	-	Cl ₂ C=CHCl + Cl-	+ 0.70	+ 0.58	- 56.0
(6)	CHCl ₃ + H ⁺ + 2e ⁻	=	CH ₂ Cl ₂ + Cl	+ 0.68	+ 0.56	- 54.0
(7)	Cl ₆ + H+ + 2e-	=	CI ₅ + CI ⁻	+ 0.68	+ 0.56	- 54.0

^{*a*} Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^{*b*} [H⁺] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-5} . ^{*c*} *n* = number of electrons transferred.

Halogenated aliphatic hydrocarbons

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25°C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_{\rm H}$ (W) values.)^{*a*}

	Halfreact	tion				
	Oxidized Species		Reduced Species	$E_{\rm H}^0$ (V)	E _H ⁰ (W) ^b (V)	$\Delta_r G^0(W)/n$ (kJ·mol ⁻¹)
(8)	CI + H+ + 2e	=	+ CI-	+ 0.54	+ 0.42	- 40.5
(9)	NO ₂ + 6H* + 6e	=	NH2 + 2H20	+ 0.83	+ 0.42	- 40.5
(10)	0 + 2H* + 2e*	=	но-Он	+ 0.70	+ 0.28	- 27.0
(11)	0 Н ₃ С— S— CH ₃ + 2H+ + 2e ⁻	=	H ₃ C- S- CH ₃ + H ₂ O	+ 0.57	+ 0.16	- 15.4
(12)	N=N-+4H*+4e		2 NH2	+ 0.31	- 0.10	+ 9.7
(13)	O CH ₃ −S−CH ₃ + 2H ⁺ + 2e ⁻ O	, =	H ₃ C-S-CH ₃ + H ₂ O	+ 0.17	- 0.24	+ 23.2
(14)	R— S— S— R + 2H* + 2e (cystine)	=	2R-SH (cysteine)	+ 0.02	- 0.39	+ 37.6

^{*a*} Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^{*b*} [H⁺] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-5} . ^{*c*} *n* = number of electrons transferred.

Reductive dechlorination of C₂Cl₆

Eq. (1) of Table 14.3:	E _H ⁰ , V	∆_rGº , kJ/mol =-nFE _H ⁰
$C_2Cl_6 + 2e^- \rightarrow C_2Cl_4 + 2Cl^-$	0.95	-183.4
Couple with Eq. 11b of Table 14.2:		
$2H^+ + 2e^- \rightarrow H_2$	0	0
Overall reaction:		

$$C_2Cl_6 + H_2 \rightarrow C_2Cl_4 + 2H^+ + 2Cl^-$$

$$\Delta_r G^0 = -183.4 - 0 = -183.4 \, kJ/mol \, C_2Cl_6$$

$$\Delta_r G^0 = -RTlnK$$

$$K = e^{-\Delta_r G^0/RT} = 1.4 \times 10^{32} = \frac{[C_2Cl_4][H^+]^2[Cl^-]^2}{[C_2Cl_6]P_{H_2}}$$

Reductive dechlorination of C₂Cl₆

Using $[H^+] = 10^{-7} \text{ M} \& [Cl^-] = 10^{-3} \text{ M}$:

 $\frac{[C_2 C l_4]}{[C_2 C l_6]} = (1.4 \times 10^{52}) \times P_{H_2}$

- For any reasonable partial pressure of H₂, the amount of C₂Cl₆ remaining at equilibrium is infinitesimal → Thermodynamically the reaction goes all the way to the right
- This reaction mostly occurs biologically, so the presence of microorganisms capable of transforming C₂Cl₆ is required!
 - Organic compound is used as an e- acceptor in this case
 - Note C₂Cl₆ is an anthropogenic compounds → only a limited number of species can use it!