Reactor analysis

Types of reactions

Homogeneous reactions

- Reactants are distributed uniformly throughout the fluid
- Reaction rates are the same at any point within the fluid
- ex: reaction between water-dissolved constituents
- Reaction rates are usually a function of constituent concentration

Heterogeneous reactions

- Occur between one or more constituents that can be identified with specific sites
- ex: reactions occurring at a solid surface, reactions that requires a solid-phase catalyst
- Reaction rates are usually a function of surface area of a solid phase

Reaction rates

Reaction rate, r

$$r = \left. \pm \frac{dC}{dt} \right|_{reaction}$$

Types of rate expressions

$$r=\pm k$$
 (zero-order)
 $r=\pm kC$ (first-order)
 $r=\pm k(C-C_S)$ (first-order)
 $r=\pm kC^2$ (second-order)
 $r=\pm kC_AC_B$ (second-order)
 $r=\pm \frac{kC}{K+C}$ (saturation or mixed-order)
 $r=\pm \frac{kC}{(1+r_tt)^n}$ (first-order retarded)

Reaction rates

• Examples of common rate expressions for selected processes

Process	Rate expression	Comments
Bacterial conversion in natural systems	$r_c = -kC$	r_c = rate of conversion, $M/L^3/T$ k = first order reaction rate constant, $1/TC$ = concentration of organic material remaining, M/L^3
Bacterial growth in bioreactors	$\mu = \frac{\hat{\mu}S}{K + S}$	μ = specific growth rate, 1/T $\hat{\mu}$ = maximum specific growth rate, 1/T S = concentration of substrate, M/L^3
Chemical reactions	$r_c = \pm k_n C^n$	r_c = rate of conversion, $M/L^3/T$ k_n = reaction rate constant, $(M/L^3)^{n-1}/T$ C = concentration of constituent, M/L^3 n = reaction order
Natural decay	$r_d = -k_d N$	r_d = rate of decay, #/T k_d = first order reaction rate constant, 1/T N = amount of organisms remaining, #

Reaction rates

• Examples of common rate expressions for selected processes

Process	Rate expression	Comments	
Gas absorption	$r_{ab} = k_{ab} \frac{A}{V} (C_s - C)$	r_{ab} = rate of absorption, M/L³/T k_{ab} = coefficient of absorption, L/T r_{de} = rate of desorption, M/L³/T k_{de} = coefficient of desorption, L/T r_{v} = rate of volatilization, M/L³/T	
Gas desorption	$r_{de} = -k_{de} \frac{A}{V} (C - C_s)$	k_v = volatilization constant, 1/T C_s = saturation concentration of constituent in liquid, M/L ³ C = concentration of constituent in liquid, M/L ³ A = area, L ²	
Volatilization	$r_v = -k_v(C - C_s)$	V = volume, L ³	

- Conduct reaction kinetic studies in a batch reactor to measure concentration changes of the target constituent over time (more than 4-5 time points)
- If the reaction rate expression is known, plot the results according to the corresponding rate expression; if the reaction rate expression is unknown, plot the results for various rate expressions to find the most appropriate one
- Find the best-fit value of *k* from the plot

• Linear plots to determine reaction rate coefficients

Type of reaction	Integrated form	Linearized plot
zero-order $r = -k$	$C = C_0 - kt$	C vs. t
first-order $r = -kC$	$-ln(C/C_0) = kt$	$-\ln(C/C_0)$ vs. t
second-order $r = -kC^2$	$1/C = 1/C_0 + kt$	1/ <i>C</i> vs. <i>t</i>
saturation $r = -kC/(K+C)$	$K \cdot ln(C_0/C) + (C_0 - C) = kt$	$(1/t)\ln(C_0/C)$ vs. $(C_0-C)/t$

Q: Following set of data was obtained using a batch reactor kinetic study. Determine the order of reaction that most appropriately describe the reaction kinetics. Determine the reaction rate coefficient.

Time, d	Concentration, mM		
0	250		
1	70		
2	42		
3	30		
4	23		
5	18		
6	16		
7	13		
8	12		

C vs. t plot

Maybe 1st or 2nd order

Time, d	Concentration, mM	-In(C/C ₀)	1/C
0	250	0	0.004
1	70	0.553	0.014
2	42	0.775	0.024
3	30	0.921	0.033
4	23	1.036	0.044
5	18	1.143	0.056
6	16	1.194	0.063
7	13	1.284	0.077
8	12	1.319	0.083

Types of reactors

Batch reactor

- No flow entering/leaving the reactor
- The liquid contents are mixed completely

Continuous stirred-tank reactor (CSTR)

- Also known as completely-mixed flow reactor (CMFR)
- Flow enters and leaves the reactor at a constant rate
- The liquid contents are mixed completely

Types of reactors

Plug-flow reactor (PFR)

- Applies to reactors with high length-to-width ratio
- Ideal PRF assumes no mixing in the direction of flow and complete mixing in the direction perpendicular to the flow

CSTRs in series

- Multiple CSTRs are connected in series
- n=1: CSTR; $n=\infty$: PFR (n=number of CSTRs)

Types of reactors

Packed-bed reactors

- Filled with packing material (e.g., rock, slag, ceramic, plastics, etc.)
- Operated in either the downflow or upflow mode
- Continuous or intermittent dosing

Fluidized-bed reactors

- Similar to packed-bed reactors
- Flow is applied in upflow mode, and the packing material is expanded by relatively high flow velocity

Mass balance analysis

(Reaction kinetics) + (Mass balance) = (Reactor analysis)

- Applying mass balance
- 1) Draw a simplified schematic of the system and identify the control volume (CV). Make assumptions if necessary.
- 2) Write a mass balance equation: (rate of accumulation) = (rate of inflow) (rate of outflow) + (rate of generation)
- 3) Solve or rearrange the equation to a useful form.

Mass balance analysis

Steady-state simplification

- In most applications in water/wastewater treatment, we are concerned with long-term operation → assume steady state
- Steady-state: no accumulation in the CV (rate of accumulation = 0)

(rate of accumulation) = (rate of inflow) - (rate of outflow) + (rate of generation)

Ideal flow in CSTR & PFR – tracer response

Hydraulic retention time

```
	au = V/Q
	au = \text{hydraulic retention time [T];} \quad V = \text{volume of the reactor [L}^3]
	Q = \text{flowrate [L}^3/T]
```

• Conservative tracers: substances that do neither chemically transform nor partition from water; used to analyze the flow characteristics either in natural/engineered systems

Ideal CSTR – tracer response

i) Draw schematic, identify CV

Assumptions:

- C = 0 at t = 0
- Step input of tracer: at $t \ge 0$ in the influent with a concentration of C_0
- Complete mixing in the reactor
- No reaction (conservative tracer)

ii) Write mass balance eq.

(rate of accumulation)

= (rate of inflow) - (rate of outflow) + (rate of generation)

iii) Solve the eq.

Ideal CSTR – tracer response

Solution (step input):

$$\frac{C}{C_0} = 1 - e^{-t/\tau}$$

cf) solution (slug input):

$$\frac{C}{C_0} = e^{-t/\tau}$$

 C_0 = concentration at t=0 due to slug input of tracer

Ideal PFR – tracer response

Assume any type of tracer input in the influent, described as $C_0 = F(t)$

i) Draw schematic, identify CV

- ii) Write mass balance eq.
- iii) Solve the eq.

Ideal PFR – tracer response

For any $C_0 = C(x = 0, t) = F(t)$:

$$C_e = C(x = L, t) = F(t - \tau)$$

For a PFR, the inflow concentration profile of a tracer is observed exactly the same in the outflow with a time shift of τ

Non-ideal flow in CSTR & PFR

 In practice, the flow in CMR and PFR is seldom ideal – there are some extent of deviations from the ideal cases

Non-ideal flow in CSTR & PFR

- Factors leading to non-ideal flow (short-circuiting)
 - Temperature differences: temperature difference developed within a reactor → density currents occur → water does not flow at a full depth
 - Wind-driven circulation patterns: wind creates a circulation cell which acts as a dead space
 - Inadequate mixing: insufficient mixing of some portions of the reactor
 - Poor design: dead zones developed at the inlet and the outlet of the reactor
 - Axial dispersion in PFRs: mechanical dispersion and molecular diffusion in the direction of the flow

Reactor analysis - treatment processes

- Incorporate the reaction rate expression into the mass balance equation!
- Batch reactor with first-order reaction
 - i) Draw schematic, identify CV
 - ii) Write mass balance eq.

iii) Solve the eq.

Solution:

CSTR, 1st order reaction

i) Draw schematic, identify CV

- ii) Write mass balance eq.
- iii) Solve the eq.

General solution:

$$C/C_0 = \frac{1}{1+k\tau} (1 - e^{-(k+1/\tau)t}) + e^{-(k+1/\tau)t}$$

Steady-state solution:

CSTR in series, 1st order reaction

Steady-state solution:

PFR, 1st order reaction

Steady-state solution:

$$\frac{C_e}{C_0} = e^{-k\tau}$$

– Equivalent to the batch reactor solution (why??)

Treatment process modeling

Q: Compare the performance of i) a CSTR, ii) three CSTRs in series, and iii) a PFR having the same hydraulic detention time of 0.2 days when the first-order reaction rate coefficient, k, is 10 day⁻¹. Assume steady state.

CSTR vs. PFR

