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In This Lecture

 Convolutional Neural Network
 Main idea
 Efficiency
 Parameter learning
 Major architectures
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Convolutional Networks

 Scale up neural networks to process very large 
images/video sequences
 Sparse connections
 Parameter sharing

 Automatically generalize across spatial 
translations of inputs

 Applicable to any input that is laid out on a grid 
(1-D, 2-D, 3-D, …)
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Key Idea

 Replace matrix multiplication in neural nets with 
convolution

 Everything else stays the same (with minor changes)
 Maximum likelihood
 Back-propagation
 Etc.
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Convolution

 Suppose we are tracking the location of a spaceship 
with a laser sensor which provides a single output 
x(t), the position of the spaceship at time t

 Suppose the sensor is noisy, and we want to average 
together several measurements with a weighting 
function w(a) where a is the age of a measurement
 𝑠𝑠 𝑡𝑡 = ∫ 𝑥𝑥 𝑎𝑎 𝑤𝑤 𝑡𝑡 − 𝑎𝑎 𝑑𝑑𝑑𝑑
 w needs to be a valid probability density function
 Convolution operation is denoted with an asterisk: s(t) = 

(x*w)(t)
 x is called input, w is called kernel, and the output is called 

feature map
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Convolution

 Discrete convolution (x and w defined only on integers)
 𝑠𝑠 𝑡𝑡 = 𝑥𝑥 ∗ 𝑤𝑤 𝑡𝑡 = ∑−∞∞ 𝑥𝑥 𝑎𝑎 𝑤𝑤(𝑡𝑡 − 𝑎𝑎)
 In ML applications the kernel contains a finite number of array elements

 2-D convolution (I: 2-D image, K: 2-D kernel)
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐼𝐼 ∗ 𝐾𝐾 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑚𝑚,𝑛𝑛 𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

 Convolution is commutative
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛 𝐾𝐾(𝑚𝑚,𝑛𝑛)

 Many neural network libraries implement a related function 
called cross-correlation
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛 𝐾𝐾(𝑚𝑚,𝑛𝑛)
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Matrix Product

 C = AB
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Matrix Transpose

 (AT)i,j = Aj,I

 (AB)T = BTAT
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2D Convolution
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Main Ideas in Convolution

 Three main ideas in convolution
 Sparse interactions
 Parameter sharing
 Equivariant representation
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Sparse Interactions

 Also called sparse connectivity or sparse weights
 In a typical neural network, every output unit interacts 

with every input unit
 Convolutional networks have sparse interactions, by 

making the kernel smaller than the input
 Efficiency of sparse interactions

 Typical layer of neural network with m inputs and n outputs: 
mn parameters and O(mn) running time

 Limiting the number of connections for each output to k: kn
parameters and O(kn) running time
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Sparse Connectivity
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Sparse Connectivity
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Growing Receptive Fields
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Parameter Sharing

 Use the same parameter for more than one function in a model
 Parameter sharing = tied weights
 Requires only O(k) parameters although the running time is O(kn)
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Edge Detection by Convolution
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Efficiency of Convolution

 Input size: 320 by 280
 Kernel size: 2 by 1
 Output size: 319 by 280
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Equivariant Representation

 Convolution function is equivariant to translation
 This means that shifting the input and applying convolution is 

equivalent to applying convolution to the input and shifting it
 If we move the object in the input, its representation will 

move the same amount in the output
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Convolutional Network Components



U Kang 20

Pooling

 A pooling function replaces the output of the net at a 
certain location with a summary statistic of the nearby 
outputs
 Max pooling: reports the maximum output within a rectangular 

neighborhood
 Average pooling
 L2 norm of a rectangular neighborhood
 Weighted average on the distance from the central pixel

 Pooling helps make the representation become 
approximately invariant to small translation of the input
 This can be useful if we care more about whether some feature 

is present than exactly where it is
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Max Pooling and Invariance to 
Translation
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Cross-Channel Pooling and Invariance to 
Learned Transformations

 A pooling unit that pools over multiple features that are learned with 
separate parameters can learn to be invariant to transformations of the input
 E.g., invariant to rotation



U Kang 23

Pooling with Downsampling

 Use fewer pooling units than detector units
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Example Classification Architectures
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Convolution and Pooling as an Infinitely 
Strong Prior

 Prior probability distribution on parameters: encodes our beliefs 
about what models are reasonable, before we have seen any data

 Priors can be considered weak or strong
 Weak prior: a prior with high entropy
 Strong prior: a prior with low entropy

 Convolutional net can be viewed as a fully connected net but with 
an infinitely strong prior over its weights
 The weights for one hidden unit must be identical to the weights of its 

neighbor, but shifted in space
 The weights must be zero, except for in the small, spatially contiguous 

receptive field assigned to that hidden unit

 Pooling is an infinitely strong prior that each unit should be 
invariant to small translations
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Convolution with Stride

Stride of two
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Zero Padding Controls Size

 Zero padding allows us to make an arbitrary deep convolutional network
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Locally Connected Layer

 Similar to convolution, but every connection has its own weight
 Also called unshared convolution
 Useful when we know that each feature should be a function of a 

small part of space, but there is no reason to think that the same 
feature should occur across all of space
 E.g., if we want to tell if an image is a picture of a face, we only need to 

look for the mouth in the bottom half of the image
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Kinds of Connectivity
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Partial Connectivity Between Channels

 Further restrict connectivity
 E.g., constrain each output channel 𝑖𝑖 to 

be a function of only a subset of the input 
channels 𝑙𝑙

 This allows the network to have fewer 
parameters in order to reduce memory 
consumption and increase statistical 
efficiency

 This also reduces the amount of 
computation needed to perform forward 
and back-propagation
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Tiled Convolution

 A compromise between a convolutional layer and a locally 
connected layer
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Interaction of Convolution and Max-
Pooling

 Both locally connected layers and tiled convolutional layers have an 
interesting interaction with max-pooling: the detector units of these layers 
are driven by different filters

 If these filters learn to detect different transformed versions of the same 
underlying features, then the max-pooled units become invariant to the 
learned transformation
 E.g., rotation

 Standard convolutional layers are hard-coded to be invariant specifically to 
translation
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Backpropagation in CNN

 Backpropagation in CNN is similar to that of typical neural network; the only 
difference comes from the parameter sharing

 Let 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝐽𝐽
𝜕𝜕𝑠𝑠𝑖𝑖

 No parameter sharing (e.g. local connection)


𝜕𝜕𝐽𝐽
𝜕𝜕𝑎𝑎

= 𝑥𝑥1𝑔𝑔1, 𝜕𝜕𝐽𝐽
𝜕𝜕𝑏𝑏

= 𝑥𝑥2𝑔𝑔1, …, 𝜕𝜕𝐽𝐽
𝜕𝜕𝑖𝑖

= 𝑥𝑥5𝑔𝑔5

 Parameter sharing (e.g. CNN)


𝜕𝜕𝐽𝐽
𝜕𝜕𝑎𝑎

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑔𝑔𝑖𝑖, 
𝜕𝜕𝐽𝐽
𝜕𝜕𝑏𝑏

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖+1𝑔𝑔𝑖𝑖

Local
connection

CNN
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Recurrent Pixel Labeling

 Convolutional networks can be used to output a high-
dimensional, structured object

 E.g., pixel-wise labeling of images
 Output a tensor S where Si,j,k is the probability that pixel (j,k) belongs to 

class i
 One strategy is to produce an initial guess of the image labels, then refine 

this initial guess using the interactions between neighboring pixels

Recurrent convolutional
network for pixel labeling
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Data Types for CNN

 Single channel
 1-D: audio waveform: amplitude of the waveform over time

 2-D (spectrogram): audio data preprocessed with a Fourier transform
 Different rows corresponding to different frequencies
 Different columns corresponding to different points in time

 3-D: volumetric data: CT scan image
Time

Fr
eq

ue
nc

y
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Data Types for CNN

 Multi-channel
 1-D: skeleton animation data

 At each point in time, the pose of the character is described by a specification of the 
angles of each of the joints in the character’s skeleton. Each channel in the data 
represents the angle about one axis of one joint

 2-D: color image data
 3-D: color video data
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Major Architectures

 Spatial Transducer Net: input size scales with output size, all 
layers are convolutional

 All Convolutional Net: no pooling layers, just use strided
convolution to shrink representation size
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Major Architectures

Slide: Kaiming He
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Alexnet

 8 layers
 1st layer: filters 224 x 224 x 3 input image with 96 kernels of size 

11 x 11 x 3 with a stride of 4 pixels  (+max pooling)
 2nd layer: filters the input with 256 kernels of 5 x 5 x 48  (+max 

pooling)
 3rd layer: filters the input with 384 kernels of size 3 x 3 x 256
 …
 6, 7, 8th layers: fully connected layers
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Revolution of Depth

Slide: Kaiming He
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Revolution of Depth

Slide: Kaiming He
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 Shortcut connection

ResNet
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What you need to know

 Convolutional Neural Network
 Main idea: 

 Replace matrix multiplication in neural nets with convolution
 Pooling

 Efficiency: from sparse interaction and parameter 
sharing

 Major architectures
 AlexNet, GoogleNet, ResNet



U Kang 44

Questions?
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