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In This Lecture

 Convolutional Neural Network
 Main idea
 Efficiency
 Parameter learning
 Major architectures
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Convolutional Networks

 Scale up neural networks to process very large 
images/video sequences
 Sparse connections
 Parameter sharing

 Automatically generalize across spatial 
translations of inputs

 Applicable to any input that is laid out on a grid 
(1-D, 2-D, 3-D, …)
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Key Idea

 Replace matrix multiplication in neural nets with 
convolution

 Everything else stays the same (with minor changes)
 Maximum likelihood
 Back-propagation
 Etc.
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Convolution

 Suppose we are tracking the location of a spaceship 
with a laser sensor which provides a single output 
x(t), the position of the spaceship at time t

 Suppose the sensor is noisy, and we want to average 
together several measurements with a weighting 
function w(a) where a is the age of a measurement
 𝑠𝑠 𝑡𝑡 = ∫ 𝑥𝑥 𝑎𝑎 𝑤𝑤 𝑡𝑡 − 𝑎𝑎 𝑑𝑑𝑎𝑎
 w needs to be a valid probability density function
 Convolution operation is denoted with an asterisk: s(t) = 

(x*w)(t)
 x is called input, w is called kernel, and the output is called 

feature map



U Kang 6

Convolution

 Discrete convolution (x and w defined only on integers)
 𝑠𝑠 𝑡𝑡 = 𝑥𝑥 ∗ 𝑤𝑤 𝑡𝑡 = ∑−∞∞ 𝑥𝑥 𝑎𝑎 𝑤𝑤(𝑡𝑡 − 𝑎𝑎)
 In ML applications the kernel contains a finite number of array elements

 2-D convolution (I: 2-D image, K: 2-D kernel)
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐼𝐼 ∗ 𝐾𝐾 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑚𝑚,𝑛𝑛 𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

 Convolution is commutative
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛 𝐾𝐾(𝑚𝑚,𝑛𝑛)

 Many neural network libraries implement a related function 
called cross-correlation
 𝑆𝑆 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = ∑𝑚𝑚∑𝑛𝑛 𝐼𝐼 𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛 𝐾𝐾(𝑚𝑚,𝑛𝑛)
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Matrix Product

 C = AB



U Kang 8

Matrix Transpose

 (AT)i,j = Aj,I

 (AB)T = BTAT
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2D Convolution
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Main Ideas in Convolution

 Three main ideas in convolution
 Sparse interactions
 Parameter sharing
 Equivariant representation
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Sparse Interactions

 Also called sparse connectivity or sparse weights
 In a typical neural network, every output unit interacts 

with every input unit
 Convolutional networks have sparse interactions, by 

making the kernel smaller than the input
 Efficiency of sparse interactions

 Typical layer of neural network with m inputs and n outputs: 
mn parameters and O(mn) running time

 Limiting the number of connections for each output to k: kn
parameters and O(kn) running time
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Sparse Connectivity
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Sparse Connectivity
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Growing Receptive Fields
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Parameter Sharing

 Use the same parameter for more than one function in a model
 Parameter sharing = tied weights
 Requires only O(k) parameters although the running time is O(kn)
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Edge Detection by Convolution



U Kang 17

Efficiency of Convolution

 Input size: 320 by 280
 Kernel size: 2 by 1
 Output size: 319 by 280
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Equivariant Representation

 Convolution function is equivariant to translation
 This means that shifting the input and applying convolution is 

equivalent to applying convolution to the input and shifting it
 If we move the object in the input, its representation will 

move the same amount in the output
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Convolutional Network Components
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Pooling

 A pooling function replaces the output of the net at a 
certain location with a summary statistic of the nearby 
outputs
 Max pooling: reports the maximum output within a rectangular 

neighborhood
 Average pooling
 L2 norm of a rectangular neighborhood
 Weighted average on the distance from the central pixel

 Pooling helps make the representation become 
approximately invariant to small translation of the input
 This can be useful if we care more about whether some feature 

is present than exactly where it is
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Max Pooling and Invariance to 
Translation
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Cross-Channel Pooling and Invariance to 
Learned Transformations

 A pooling unit that pools over multiple features that are learned with 
separate parameters can learn to be invariant to transformations of the input
 E.g., invariant to rotation
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Pooling with Downsampling

 Use fewer pooling units than detector units
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Example Classification Architectures
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Convolution and Pooling as an Infinitely 
Strong Prior

 Prior probability distribution on parameters: encodes our beliefs 
about what models are reasonable, before we have seen any data

 Priors can be considered weak or strong
 Weak prior: a prior with high entropy
 Strong prior: a prior with low entropy

 Convolutional net can be viewed as a fully connected net but with 
an infinitely strong prior over its weights
 The weights for one hidden unit must be identical to the weights of its 

neighbor, but shifted in space
 The weights must be zero, except for in the small, spatially contiguous 

receptive field assigned to that hidden unit

 Pooling is an infinitely strong prior that each unit should be 
invariant to small translations
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Convolution with Stride

Stride of two
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Zero Padding Controls Size

 Zero padding allows us to make an arbitrary deep convolutional network
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Locally Connected Layer

 Similar to convolution, but every connection has its own weight
 Also called unshared convolution
 Useful when we know that each feature should be a function of a 

small part of space, but there is no reason to think that the same 
feature should occur across all of space
 E.g., if we want to tell if an image is a picture of a face, we only need to 

look for the mouth in the bottom half of the image
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Kinds of Connectivity
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Partial Connectivity Between Channels

 Further restrict connectivity
 E.g., constrain each output channel 𝑖𝑖 to 

be a function of only a subset of the input 
channels 𝑙𝑙

 This allows the network to have fewer 
parameters in order to reduce memory 
consumption and increase statistical 
efficiency

 This also reduces the amount of 
computation needed to perform forward 
and back-propagation
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Tiled Convolution

 A compromise between a convolutional layer and a locally 
connected layer
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Interaction of Convolution and Max-
Pooling

 Both locally connected layers and tiled convolutional layers have an 
interesting interaction with max-pooling: the detector units of these layers 
are driven by different filters

 If these filters learn to detect different transformed versions of the same 
underlying features, then the max-pooled units become invariant to the 
learned transformation
 E.g., rotation

 Standard convolutional layers are hard-coded to be invariant specifically to 
translation
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Backpropagation in CNN

 Backpropagation in CNN is similar to that of typical neural network; the only 
difference comes from the parameter sharing

 Let 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝐽𝐽
𝜕𝜕𝑠𝑠𝑖𝑖

 No parameter sharing (e.g. local connection)


𝜕𝜕𝐽𝐽
𝜕𝜕𝑎𝑎

= 𝑥𝑥1𝑔𝑔1, 𝜕𝜕𝐽𝐽
𝜕𝜕𝑏𝑏

= 𝑥𝑥2𝑔𝑔1, …, 𝜕𝜕𝐽𝐽
𝜕𝜕𝑖𝑖

= 𝑥𝑥5𝑔𝑔5

 Parameter sharing (e.g. CNN)


𝜕𝜕𝐽𝐽
𝜕𝜕𝑎𝑎

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑔𝑔𝑖𝑖, 
𝜕𝜕𝐽𝐽
𝜕𝜕𝑏𝑏

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖+1𝑔𝑔𝑖𝑖

Local
connection

CNN
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Recurrent Pixel Labeling

 Convolutional networks can be used to output a high-
dimensional, structured object

 E.g., pixel-wise labeling of images
 Output a tensor S where Si,j,k is the probability that pixel (j,k) belongs to 

class i
 One strategy is to produce an initial guess of the image labels, then refine 

this initial guess using the interactions between neighboring pixels

Recurrent convolutional
network for pixel labeling
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Data Types for CNN

 Single channel
 1-D: audio waveform: amplitude of the waveform over time

 2-D (spectrogram): audio data preprocessed with a Fourier transform
 Different rows corresponding to different frequencies
 Different columns corresponding to different points in time

 3-D: volumetric data: CT scan image
Time

Fr
eq

ue
nc

y
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Data Types for CNN

 Multi-channel
 1-D: skeleton animation data

 At each point in time, the pose of the character is described by a specification of the 
angles of each of the joints in the character’s skeleton. Each channel in the data 
represents the angle about one axis of one joint

 2-D: color image data
 3-D: color video data
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Major Architectures

 Spatial Transducer Net: input size scales with output size, all 
layers are convolutional

 All Convolutional Net: no pooling layers, just use strided
convolution to shrink representation size
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Major Architectures

Slide: Kaiming He
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Alexnet

 8 layers
 1st layer: filters 224 x 224 x 3 input image with 96 kernels of size 

11 x 11 x 3 with a stride of 4 pixels  (+max pooling)
 2nd layer: filters the input with 256 kernels of 5 x 5 x 48  (+max 

pooling)
 3rd layer: filters the input with 384 kernels of size 3 x 3 x 256
 …
 6, 7, 8th layers: fully connected layers
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Revolution of Depth

Slide: Kaiming He
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Revolution of Depth

Slide: Kaiming He
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 Shortcut connection

ResNet
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What you need to know

 Convolutional Neural Network
 Main idea: 

 Replace matrix multiplication in neural nets with convolution
 Pooling

 Efficiency: from sparse interaction and parameter 
sharing

 Major architectures
 AlexNet, GoogleNet, ResNet
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Questions?
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