Nucleophilic reactions

Nucleophiles

• Nucleophiles: species that like nucleus

- Can donate a pair of electrons to form a new covalent bond
- Electron-rich (e.g., negatively charged ions)
- Large abundance of nucleophiles in the environment (water itself is a nucleophile)

• Nucleophilic substitution

- Nucleophiles may form a bond with the electron-deficient atom in an organic molecule
- As a consequence of a new bond formation, another bond has to be broken

 $Nu: +R - L \implies R - Nu + L:$

- S_N2 & S_N1 mechanisms

Nucleophiles

- Important nucleophiles in the environment
 - High abundance of water (and OH⁻ for high pH)
 - Water is usually the most significant among the environmental nucleophiles
- Hydrolysis
 - A reaction in which a water molecule (or OHion) substitutes for another atom or group of atoms present in an organic molecule

Table 13.1 Examples of ImportantEnvironmenal Nucleophiles

^{*a*} Ph = C₆H₅ (phenyl) ^{*b*} R = CH₃, C₂H₅

Nucleophilic reactions

• Examples of environmentally relevant chemical reactions involving nucleophiles and/or bases

Reactants	Products				
Nucleophilic Su	bstitutions at	Saturated Carbon Atoms			
CH ₃ Br + H ₂ O		$CH_3OH + H^+ Br^-$			
Methyl bromide		Methanol			
CH₃CI + HS⁻		CH₃SH + CI [−]			
Methyl chloride		Methane thiol (Methyl mercaptan)			
$CH_{3}O - P(OCH_{3})_{2} + H_{2}O$		О II CH ₃ OH + ⁻ O—Р(ОСН ₃) ₂ + H ⁺			
Trimethylphosphate		Methanol Dimethylphosphate			

Reactants	Products
	β -Elimination
CI2HC-CHCI2 + HO	$ Cl_2C=CHCI + CI^- + H_2O$
1,1,2,2-Tetrachloroethane	Trichloroethene
	Ester Hydrolysis
Ethyl acetate (Acetic acid ethylester)	Acetate Ethanol
$(C_2H_5O)_2P = O = O = NO_2 + HO^-$	$(C_2H_5O)_2P = O^- + HO = N_1$
Parathion	O,O-Diethyl- thiophosphoric acid
C	Carbamate Hydrolysis
$H_3CNH - C - O + H_2O$	\longrightarrow CH ₃ NH ₂ + CO ₂ + HO
Carbofuran	Methylamine 2,3-Dihydro-3,3- dimethyl-7-benzo- furanol

• S_N2 mechanism

• S_N2 mechanism

- Substitution, nucleophilic, bimolecular
- The standard free energy of activation $\Delta^{\dagger}G^{0}$ (which controls the reaction rate) depends strongly on both <u>the capability of the nucleophile to initiate a</u> <u>substitution reaction</u> and <u>the willingness of the organic molecule to undergo</u> <u>that reaction</u>
- Follows a second-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu^-][R_1R_2R_3C - L]$$

 $k = 2^{nd}$ order rate constant (L/mole-s)

• S_N1 mechanism

extent of reaction (reaction coordinate)

• S_N1 mechanism

- Substitution, nucleophilic, unimolecular
- The reaction rate depends solely on <u>how easily the leaving group dissociates</u> from the parent molecule
- The structure of the activated complex is assumed to be similar to the carboncation complex
- $\Delta^{\dagger}G^{0}$ depends on the stability of the cation
- Follows a first-order kinetic rate law:

$$\frac{d[R_1 R_2 R_3 C - L]}{dt} = -k[R_1 R_2 R_3 C - L]$$

 $k = 1^{st}$ order rate constant (s⁻¹)

S_N2: Relative nucleophilicity

- Study of nucleophilic substitution of methyl halides for various nucleophiles:
 - Methyl halides (CH₃X) have similar relative reactivity toward different nucleophiles
 - Swain & Scott (1953):

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br}$$

 k_{Nu} = 2nd-order rate const. for a nucleophile of interest k_{H_2O} = 2nd order rate const. for H₂O

 n_{Nu,CH_3Br} = a measure of the nucleophilicity of the nucleophile of interest

s = sensitivity of the organic molecule to nucleophilic attack

 n_{Nu,CH_3Br} ---?

- Set CH₃Br as a reference compound to measure the nucleophilicity
- Set H₂O as a reference nucleophile
- By observing a nucleophilic substitution reaction between CH₃Br and Nu, n_{Nu,CH₃Br} can be determined:

$$n_{Nu,CH_{3}Br} = log \left[\frac{(k_{Nu})_{CH_{3}Br}}{(k_{H_{2}O})_{CH_{3}Br}} \right] * so, \ n_{H_{2}O,CH_{3}Br} = 0$$

• We saw:

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) \approx log\left[\frac{(k_{Nu})_{CH_3Br}}{(k_{H_2O})_{CH_3Br}}\right] = n_{Nu,CH_3Br}$$

• But there is some error, so use "s" for modification

* *s* is not substantially different from 1

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile	n _{Nu,CH3Br} a
ClO ₄	<0
H_2O	0
NO ₃	1.0
F ⁻	2.0
SO4 ²⁻	2.5
CH ₃ COO ⁻	2.7
Cl-	3.0
HCO ₃ ,HPO ₄ ²⁻	3.8
Br	3.9
OH-	4.2
I-	5.0
CN", HS	5.1
$S_2O_3^{2-}$	6.1 ^b
PhS ⁻	6.8 ^b
S ₄ ²⁻	7.2 ^b

^{*a*} Data from Hine (1962). ^{*b*} Data from Haag and Mill (1988a).

S_N2: competition of nucleophiles

• Competition with hydrolysis:

Reaction rate of Nu depends on k & [Nu]

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu][R_1R_2R_3C - L]$$

- H_2O is abundant ([H_2O] \uparrow), so a nucleophile should compete with hydrolysis
- Define [Nu]_{50%} as the nucleophile concentration that satisfies:

 $[Nu]_{50\%}k_{Nu} = [H_2O]k_{H_2O}$ 1st order rate of Nu reaction 1st order rate of hydrolysis

assuming s=1, $k_{Nu} = k_{H_20} \times 10^{n_{Nu,CH_3Br}}$

$$[Nu]_{50\%} = 55.3 \times 10^{-n_{Nu,CH_3Br}}$$

55.3 = molar concentration of water (M)

S_N2: competition of nucleophiles

- Use [Nu]_{50%} to determine whether a nucleophile is significant
- Freshwater vs. saline water
 - − Freshwater [Cl⁻] \sim 10⁻⁴ M \rightarrow Cl⁻ not a significant nucleophile
 - Seawater [Cl⁻] ~ 0.5 M → Cl⁻ a significant nucleophile
- pH sensitivity of hydrolysis reaction
 - − Low & neutral pH \rightarrow OH⁻ not a significant nucleophile
 - High pH (e.g., pH>11) → OH⁻ a significant nucleophile

Table 13.5 CalculatedConcentration of NucleophileRequired to Compete with Waterin an $S_N 2$ Reaction with AlkylHalides Assuming an s Value of 1

Nucleophile	$[Nu]_{50\%}^{a}(M)$
NO3	~6
F ⁻	$\sim 6 \times 10^{-1}$
SO4 ²⁻	$\sim 2 \times 10^{-1}$
Cl	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I_	~6 × 10 ⁻⁴
HS ⁻	$\sim 4 \times 10^{-4}$
CN ⁻	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	~4 × 10 ⁻⁵
S4 ²⁻	$\sim 4 \times 10^{-6}$

^{*a*} Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

S_N2: Relative nucleophilicity

Q: Estimate the half-life (in days) of CH_3Br present at low concentration (i.e., < 0.01mM) in a homogeneous aqueous solution (pH=7.0, T=25°C) containing 100 mM Cl⁻, 2 mM NO₃⁻, 1 mM HCO₃⁻, and 0.1 mM CN⁻. In pure water at pH 7.0 and 25°C, the half-life of CH_3Br is about 20 days.

S_N1 & S_N2: Leaving groups

•

• Reaction rates for methyl halides: $CH_3Br \sim CH_3I > CH_3CI > CH_3F$

S_N1 & S_N2: Effect of EDGs & resonance

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH^{*a*}

	Type of Carbon	$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)		
Compound	to Which L is Attached	L = F	Cl	Br	I	tution Reactions	
R-CH2-L	primary	≈30 yr ^{<i>b</i>}	340 d ^b	20–40 d °	50–110 d ^d	S _N 2	
н₃с сн-∟ н₃с	secondary		38 d	2 d	3 d	S _N 2 S _N 1	
СН ₃ Н ₃ СL СН ₃	tertiary	50 d	23 s			S _N 1	
CH2=CH-CH2-L	allyl		69 d	0.5 d	2 d	$S_N 2 \dots S_N 1$	
CH2-L	benzyl		15 h	0.4 h		$S_N 2 S_N 1$	

^{*a*} Data taken from Robertson (1969) and Mabey and Mill (1978). ^{*b*} R = H. ^{*c*} R = H, C₁ to C₅-*n*-alkyl. ^{*d*} R = H, CH₃.

Hydrolysis of carboxylic & carbonic acid derivatives

- Carboxylic acid derivatives
- Carbonic acid derivatives

- Unsaturated, electron-deficient C
- Reacts predominantly with H₂O & OH⁻ (hydrolysis)
- General reaction mechanism

Hydrolysis of Esters

- Three mechanisms:
 - 1) acid-catalyzed
 - 2) neutral
 - 3) base-catalyzed
- Importance of each reaction depends on the structure of the reactant

Ester hydrolysis: acid-catalyzed

- Ester carbon is protonated

 → enhanced depletion of
 electrons near the carbon
 → ester carbon gets more
 susceptible to H₂O attack
- Reaction (2) is rate limiting
- Reaction rate depends on:
 - k_A'
 - K_a of the protonated ester
 - [H⁺]

Ester hydrolysis: base-catalyzed

• (1) only or both (1) & (2) can be rate-limiting

- Rate depends on [OH⁻] and in addition:
 - If only (1) is rate-limiting: — Depends on the formation of $R_1 - c_2 - o_3 - R_2$

If both (1) & (2) are rate-limiting: – Depends on the formation of $R_1 - c - o - R_2$ & the property of the leaving group

 $R_1 - C = \begin{pmatrix} 0 \\ -R_2 \end{pmatrix} + HO^2 = \begin{pmatrix} k_{B1} \text{ (slow)} \\ k_{B2} \text{ (fast)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ R_1 - C - O - R_2 \end{pmatrix}$

 $R_{1} - C - O - R_{2} \qquad \frac{k_{B3} (fast...slow)}{k_{B4} (slow)} \qquad R_{1} - C O + O - R_{2} \qquad (2)$ $R_{1} - C O + O - R_{2} \qquad \frac{(fast)}{(fast)} \qquad R_{1} - C O + HO - R_{2} \qquad (3)$

(1)

Ester hydrolysis: neutral

- Similar to base-catalyzed
- The property of the leaving group is more important for H₂O (weaker nucleophile) than OH⁻

Ester hydrolysis kinetics

• k_h : pseudo-first-order hydrolysis rate constant (s⁻¹), f(pH)

$$k_{h} = k_{A}[H^{+}] + k_{H_{2}O}[H_{2}O] + k_{B}[OH^{-}]$$
$$= k_{A}[H^{+}] + k_{N} + k_{B}[OH^{-}]$$

• Hydrolysis half-life (at certain pH)

$$t_{1/2 (hydroysis)} = \frac{\ln 2}{k_h}$$

Ester hydrolysis kinetics

I_{IJ} = the pH value at which the rates for I and J reactions are the same I, J: A (acid-catalyzed); N (neutral); B (base-catalyzed)

Ester hydrolysis kinetics

Q: Following pseudo-first order hydrolysis rate constants, k_h , were determined by a laboratory kinetic experiment for DNPA at 25°C. Determine the rate constants for the neutral (k_N) and base-catalyzed (k_B) hydrolysis of DNPA. Determine the I_{NB}.

рН	3.0	4.0	5.0	8.5
k _h (s⁻¹)	4.3 x 10 ⁻⁵	4.5 x 10 ⁻⁵	4.4 x 10 ⁻⁵	5.1 x 10 ⁻⁴