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In This Lecture

 Recurrent Neural Network
 Main idea
 Major architectures
 Problem of long-term dependencies and how to solve 

them (LSTM, etc.)
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RNN

 Recurrent neural network (RNN)
 A family of neural networks for processing sequential data
 Can scale to much longer sequences than other networks 

do
 Can process sequences of variable (or infinite) length

 To go from multi-layer networks to RNN
 Sharing parameters across different parts of a model

 Allows extending the model to examples of different length
 Important when a specific piece of information can occur at 

multiple positions within the sequence
 E.g., recognize year 2009 as the relevant piece of information in 

the two sentences “I went to Nepal in 2009” and “In 2009, I went 
to Nepal”
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Classical Dynamical System

 Consider the classical form of a dynamical 
system: 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 ; 𝜃𝜃)

 The system can be expressed with the unfolded 
computational graph
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Unfolding Computation Graphs

 Consider a dynamical system driven by an 
external signal 𝑥𝑥(𝑡𝑡)

 ℎ(𝑡𝑡) = 𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥(𝑡𝑡); 𝜃𝜃)

delay of a single 
time step

recurrent graph
or circuit diagram

unrolled graph
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Recurrent Hidden Units
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Recurrent through only the Output

 Less powerful than the previous model since the output 
cannot encode all the information in the hidden node

 But, it allows efficient training since each time step can be 
trained in isolation from the others (will be described soon)
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Sequence Input, Single Output

 Used to summarize a sequence and produce a 
fixed-size representation used as input for 
further processing
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Teacher Forcing

 An RNN, where recurrent connections are from the output at 
one time step to the hidden units at the next time step, can 
be trained efficiently with teacher forcing
 Enables parallel learning
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Forward/Back Propagation in RNN
 𝒂𝒂(𝑡𝑡) = 𝒃𝒃 + 𝑾𝑾𝒉𝒉(𝑡𝑡−1) + 𝑼𝑼𝒙𝒙(𝑡𝑡)

 𝒉𝒉(𝑡𝑡) = tanh(𝒂𝒂 𝑡𝑡 )
 𝒐𝒐(𝑡𝑡) = 𝒄𝒄 + 𝑽𝑽𝒉𝒉(𝑡𝑡)

 �𝒚𝒚(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒐𝒐 𝑡𝑡 )
 The total loss is the sum of the losses 

over all time steps:
 𝐿𝐿 𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏) , 𝒚𝒚(1), … ,𝒚𝒚(𝜏𝜏)

= ∑𝑡𝑡 𝐿𝐿(𝑡𝑡)

= −∑𝑡𝑡 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒚𝒚 𝑡𝑡 | 𝒙𝒙 1 , … , 𝒙𝒙 𝜏𝜏 )

 Use back propagation through time 
(BPTT) to compute gradient
 BPTT is essentially the same standard back-

propagation algorithm on the unfolded 
computational graph
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Modeling Sequences Conditioned on Context

 The RNN in the figure below models 𝑃𝑃(𝑥𝑥; 𝜃𝜃), where 𝑦𝑦’s are 
used only to evaluate the model

 We can also use RNN to model 𝑃𝑃(𝑦𝑦|𝑥𝑥), by using 𝑃𝑃(𝑦𝑦|𝑤𝑤)
where 𝑤𝑤 = 𝑓𝑓 𝑥𝑥;𝜃𝜃 is a function of 𝑥𝑥. 



U Kang 12

Modeling Sequences Conditioned on Context

 Modeling 𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑥𝑥) for a fixed 𝑥𝑥: make it an extra input of the 
RNN that generates the 𝑦𝑦 sequence

 How to provide an extra input to an RNN?
 Add the input as an extra input at each time step
 Add the input as the initial state ℎ(0), or
 both
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Vector to Sequence

 Adding an extra input x at each time step
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Hidden and Output Recurrence

 RNN may receive a sequence of vectors 𝑥𝑥(𝑡𝑡) as 
extra input
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Bidirectional RNN

 All of the RNN we have considered up to now have a “causal” 
structure
 I.e., the state at time t only captures information from the past, 

𝑥𝑥(1), … , 𝑥𝑥(𝑡𝑡−1), and the present input 𝑥𝑥(𝑡𝑡)

 However, in many applications we want to output prediction 
of 𝑦𝑦(𝑡𝑡) which may depend on the whole input sequence
 Speech recognition: the correct interpretation as a phoneme of the 

current sound may depend on the next few phonemes
 Handwriting recognition
 Bioinformatics

 Bidirectional RNNs were invented to address that need



U Kang 16

Bidirectional RNN
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Sequence to Sequence Architecture

 Training RNN to map an input sequence to an output 
sequence which is not necessarily of the same length
 Speech recognition
 Machine translation
 Question answering

 The simplest RNN architecture for mapping a variable-length 
sequence to another variable-length sequence is called 
sequence-to-sequence or encoder-decoder architecture
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Sequence to Sequence Architecture
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Sequence to Sequence Architecture

 Sequence-to-sequence or encoder-decoder architecture
 An encoder or reader or input RNN processes the input sequence 𝑋𝑋 =

(𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥), and emits the context C, usually as a simple function of its 
final hidden state

 A decoder or writer or output RNN is conditioned on that fixed-length 
vector to generate the output sequence 𝑌𝑌 = (𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 )

 Note that 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 can be different
 The two RNNs are trained jointly to maximize the average of 

log𝑃𝑃(𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 |𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥) over all the pairs of 𝑥𝑥 and 𝑦𝑦 sequences 
in the training set

 The last state ℎ𝑛𝑛𝑥𝑥 of the encoder RNN is typically used as a 
representation 𝐶𝐶 of the input sequence that is provided as input to the 
decoder RNN
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Deep RNNs

 Computation in most RNNs can be decomposed into three 
blocks of parameters and associated transformations
 From the input to the hidden state
 From the previous hidden state to the next hidden state
 From the hidden state to the output

 Deep RNN: introduce depth in each of these operations
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Deep RNNs

 (a) two hidden states
 (b) separate MLP for each of the three blocks
 (c) skip connection
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Recursive Network
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Challenge of Long-Term Dependencies

 Recurrent networks involve the composition of the same 
function multiple times, once per time step

 The function composition resembles matrix multiplication: 
ℎ(𝑡𝑡) = 𝑊𝑊𝑇𝑇ℎ(𝑡𝑡−1) = ⋯ = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ(0)

 If 𝑊𝑊 is decomposed into 𝑄𝑄Λ𝑄𝑄𝑇𝑇 by an eigendecomposition, then 
ℎ(𝑡𝑡) = 𝑄𝑄Λ𝑡𝑡𝑄𝑄𝑇𝑇ℎ(0)

 This means the eigenvalues with magnitude less than one to 
decay to 0 and eigenvalues with magnitude greater than one to 
explode

 This leads to vanishing or exploding gradient problem
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Strategies for Long-term Dependencies

 Design a model that operates at multiple time scales, so that 
some parts of the model operate at fine-grained time scales and 
can handle small details, while other parts operate at coarse 
time scales and transfer information from the distant past to the 
present more efficiently
 Skip connections across time
 “Leaky units” that integrate signals with different time constants
 Removal of some of the connections used to model fine-grained time 

scales
 Gated RNNs

 Long Short-Term Memory (LSTM)
 Gated Recurrent Unit (GRU)
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Skip Connections through Time

 One way to obtain coarse time scales is to add direct connections 
from variables in the distant past to variables in the present
 The idea is similar to that of ResNet

 Gradients may vanish or explode exponentially with respect to 
the number t of time steps

 Introducing recurrent connections with a time-delay of d makes 
gradient diminish exponentially as a function of t/d rather than t

 Since there are both delayed and single step connections, 
gradients may still explode exponentially in t

 This allows the learning algorithm to capture longer 
dependencies although not all long-term dependencies may be 
represented well in this way
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Leaky Units

 When we accumulate a running average 𝜇𝜇(𝑡𝑡) of some value 𝑣𝑣(𝑡𝑡)

by applying the update 𝜇𝜇(𝑡𝑡) ← 𝛼𝛼𝜇𝜇(𝑡𝑡−1) + (1 − 𝛼𝛼)𝑣𝑣(𝑡𝑡), the 𝛼𝛼
parameter is an example of a linear self-connection from 𝜇𝜇(𝑡𝑡−1)

to 𝜇𝜇(𝑡𝑡)

 When 𝛼𝛼 is near 1, the running average remembers information about the 
past for a long time

 When 𝛼𝛼 is near 0, information about the past is rapidly discarded

 Leaky units: hidden units with linear self-connections
 This approach allows to control the degree of using past information by 

adjusting 𝛼𝛼
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Removing Connections

 Removing length-one connections and replacing them 
with longer connections
 This is different from skip connections that add edges; units 

receiving such new connections may learn to operate on a 
long time scale but may also choose to focus on their other 
short-term connections
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Gated RNNs

 Like leaky units, gated RNNS are based on the idea of creating 
paths through time that have derivatives that neither vanish nor 
explode
 Leaky units did this with manually chosen connection weights; Gated RNNs 

allow the connection weights to change at each time step

 Leaky units allow the network to accumulate information over 
time. However, once that information has been used, it might be 
useful to forget the old state
 Gated RNNs learn to decide when to clear the old state
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Long Short-Term Memory (LSTM)

 An LSTM recurrent network “cell” that replaces a hidden unit 
in a typical RNN

An LSTM cell

Each cell (e.g. ℎ(𝑡𝑡)) in RNN
receives input x and 
its previous state ℎ(𝑡𝑡−1)

to make an output
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LSTM

 Initial LSTM (1997): introducing self-
loops to produce paths where the 
gradient can flow for long durations

 (2000) Making the weight on this 
self-loop gated (controlled by 
another hidden unit)

 LSTM is a core module for many 
applications
 Handwriting recognition
 Speech recognition
 Handwriting generation
 Machine translation
 Image captioning
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LSTM
 Self-loop weight is controlled by a forget 

gate unit 𝑓𝑓𝑖𝑖
(𝑡𝑡) for time step t and cell i

 𝑓𝑓𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑓𝑓 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑓𝑓 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑓𝑓ℎ𝑗𝑗

𝑡𝑡−1 )

 The internal state 𝑠𝑠𝑖𝑖
(𝑡𝑡) is updated with a 

conditional self-loop weight 𝑓𝑓𝑖𝑖
(𝑡𝑡)

 𝑠𝑠𝑖𝑖
(𝑡𝑡) = 𝑓𝑓𝑖𝑖

(𝑡𝑡)𝑠𝑠𝑖𝑖
(𝑡𝑡−1) + 𝑔𝑔𝑖𝑖

𝑡𝑡 𝜎𝜎(𝑏𝑏𝑖𝑖 +
∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 ℎ𝑗𝑗
𝑡𝑡−1 )

 The external input gate unit 𝑔𝑔𝑖𝑖
(𝑡𝑡) is 

computed similarly to the forget gate

 𝑔𝑔𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑔𝑔 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑔𝑔 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑔𝑔ℎ𝑗𝑗

𝑡𝑡−1 )

 The output ℎ𝑖𝑖
(𝑡𝑡) of the LSTM cell can also 

be shut off, via the output gate 𝑞𝑞𝑖𝑖
(𝑡𝑡)

 ℎ𝑖𝑖
(𝑡𝑡) = tanh(𝑠𝑠𝑖𝑖

(𝑡𝑡))𝑞𝑞𝑖𝑖
(𝑡𝑡)

 𝑞𝑞𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑜𝑜 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑜𝑜 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑜𝑜 ℎ𝑗𝑗

𝑡𝑡−1 )
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Gated Recurrent Unit (GRU)

 Similar to LSTM; the main difference is that in GRU a single gating 
unit simultaneously controls the forgetting factor and the 
decision to update the state unit
 ℎ𝑖𝑖

(𝑡𝑡) = 𝑢𝑢𝑖𝑖
(𝑡𝑡−1)ℎ𝑖𝑖

(𝑡𝑡−1) + (1 − 𝑢𝑢𝑖𝑖
𝑡𝑡−1 )𝜎𝜎(𝑏𝑏𝑖𝑖 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 𝑟𝑟𝑗𝑗
𝑡𝑡−1 ℎ𝑗𝑗

𝑡𝑡−1 )

 𝑢𝑢 stands for “update” gate and 𝑟𝑟 for “reset” gate

 𝑢𝑢𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑢𝑢 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑢𝑢 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑢𝑢 ℎ𝑗𝑗

𝑡𝑡 )

 𝑟𝑟𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑟𝑟 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑟𝑟 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑟𝑟 ℎ𝑗𝑗

𝑡𝑡 )

 GRU is less complex (computationally efficient) than LSTM while 
providing similar accuracy
 GRU uses 2 gates, while LSTM uses 3 gates
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GRU
output

x

update gate

x
1 -

x

reset gate

x: sequence of input

previous hidden state
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Optimization for Long-Term Dependencies

 Gradients of parameters in RNN can be very large due to long-
term dependencies

 When the parameter gradient is very large, a gradient descent 
parameter update could throw the parameters very far, into a 
region where the objective function is larger, undoing much of 
the work that hand been done to reach the current solution

 Gradient clipping: a simple solution that avoids very large 
gradient
 2 versions

 Clip the gradient element wise, just before the parameter update
 Clip the norm | 𝑔𝑔 | of the gradient 𝑔𝑔, just before the parameter update

 If 𝑔𝑔 > 𝑣𝑣, then 𝑔𝑔 ← 𝑔𝑔𝑔𝑔
| 𝑔𝑔 | v: norm threshold
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Gradient Clipping
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Networks with Explicit Memory
 Different types of knowledge

 Implicit: sub-conscious, and difficult to verbalize: e.g., how to walk, 
how a dog looks different from a cat

 Explicit: declarative, and relatively straightforward to put into words. 
E.g., a cat is a kind of animal 

 Neural networks excel at storing implicit knowledge. 
However, they struggle to memorize facts
 The reason is because neural networks lack the working memory

 Memory networks: include a set of memory cells that can be 
accessed via an addressing mechanism

 Neural Turing machine: learns to read from and write 
arbitrary content to memory cells without explicit supervision 
about which actions to undertake, and allowed end-to-end 
training without this supervision signal
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Networks with Explicit Memory
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What you need to know

 Recurrent Neural Network
 Main idea: parameter sharing over time
 Major architectures: 
 Problem of long-term dependencies: vanishing or 

exploding gradient
 Model that operates at a multiple time scale: LSTM
 Optimization: gradient clipping
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Questions?
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