
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Sequence Modeling: Recurrent and
Recursive Nets

U Kang
Seoul National University

U Kang 2

In This Lecture

 Recurrent Neural Network
 Main idea
 Major architectures
 Problem of long-term dependencies and how to solve

them (LSTM, etc.)

U Kang 3

RNN

 Recurrent neural network (RNN)
 A family of neural networks for processing sequential data
 Can scale to much longer sequences than other networks

do
 Can process sequences of variable (or infinite) length

 To go from multi-layer networks to RNN
 Sharing parameters across different parts of a model

 Allows extending the model to examples of different length
 Important when a specific piece of information can occur at

multiple positions within the sequence
 E.g., recognize year 2009 as the relevant piece of information in

the two sentences “I went to Nepal in 2009” and “In 2009, I went
to Nepal”

U Kang 4

Classical Dynamical System

 Consider the classical form of a dynamical
system: 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 ; 𝜃𝜃)

 The system can be expressed with the unfolded
computational graph

U Kang 5

Unfolding Computation Graphs

 Consider a dynamical system driven by an
external signal 𝑥𝑥(𝑡𝑡)

 ℎ(𝑡𝑡) = 𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥(𝑡𝑡); 𝜃𝜃)

delay of a single
time step

recurrent graph
or circuit diagram

unrolled graph

U Kang 6

Recurrent Hidden Units

U Kang 7

Recurrent through only the Output

 Less powerful than the previous model since the output
cannot encode all the information in the hidden node

 But, it allows efficient training since each time step can be
trained in isolation from the others (will be described soon)

U Kang 8

Sequence Input, Single Output

 Used to summarize a sequence and produce a
fixed-size representation used as input for
further processing

U Kang 9

Teacher Forcing

 An RNN, where recurrent connections are from the output at
one time step to the hidden units at the next time step, can
be trained efficiently with teacher forcing
 Enables parallel learning

U Kang 10

Forward/Back Propagation in RNN
 𝒂𝒂(𝑡𝑡) = 𝒃𝒃 + 𝑾𝑾𝒉𝒉(𝑡𝑡−1) + 𝑼𝑼𝒙𝒙(𝑡𝑡)

 𝒉𝒉(𝑡𝑡) = tanh(𝒂𝒂 𝑡𝑡)
 𝒐𝒐(𝑡𝑡) = 𝒄𝒄 + 𝑽𝑽𝒉𝒉(𝑡𝑡)

 �𝒚𝒚(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒐𝒐 𝑡𝑡)
 The total loss is the sum of the losses

over all time steps:
 𝐿𝐿 𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏) , 𝒚𝒚(1), … ,𝒚𝒚(𝜏𝜏)

= ∑𝑡𝑡 𝐿𝐿(𝑡𝑡)

= −∑𝑡𝑡 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒚𝒚 𝑡𝑡 | 𝒙𝒙 1 , … , 𝒙𝒙 𝜏𝜏)

 Use back propagation through time
(BPTT) to compute gradient
 BPTT is essentially the same standard back-

propagation algorithm on the unfolded
computational graph

U Kang 11

Modeling Sequences Conditioned on Context

 The RNN in the figure below models 𝑃𝑃(𝑥𝑥; 𝜃𝜃), where 𝑦𝑦’s are
used only to evaluate the model

 We can also use RNN to model 𝑃𝑃(𝑦𝑦|𝑥𝑥), by using 𝑃𝑃(𝑦𝑦|𝑤𝑤)
where 𝑤𝑤 = 𝑓𝑓 𝑥𝑥;𝜃𝜃 is a function of 𝑥𝑥.

U Kang 12

Modeling Sequences Conditioned on Context

 Modeling 𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑥𝑥) for a fixed 𝑥𝑥: make it an extra input of the
RNN that generates the 𝑦𝑦 sequence

 How to provide an extra input to an RNN?
 Add the input as an extra input at each time step
 Add the input as the initial state ℎ(0), or
 both

U Kang 13

Vector to Sequence

 Adding an extra input x at each time step

U Kang 14

Hidden and Output Recurrence

 RNN may receive a sequence of vectors 𝑥𝑥(𝑡𝑡) as
extra input

U Kang 15

Bidirectional RNN

 All of the RNN we have considered up to now have a “causal”
structure
 I.e., the state at time t only captures information from the past,

𝑥𝑥(1), … , 𝑥𝑥(𝑡𝑡−1), and the present input 𝑥𝑥(𝑡𝑡)

 However, in many applications we want to output prediction
of 𝑦𝑦(𝑡𝑡) which may depend on the whole input sequence
 Speech recognition: the correct interpretation as a phoneme of the

current sound may depend on the next few phonemes
 Handwriting recognition
 Bioinformatics

 Bidirectional RNNs were invented to address that need

U Kang 16

Bidirectional RNN

U Kang 17

Sequence to Sequence Architecture

 Training RNN to map an input sequence to an output
sequence which is not necessarily of the same length
 Speech recognition
 Machine translation
 Question answering

 The simplest RNN architecture for mapping a variable-length
sequence to another variable-length sequence is called
sequence-to-sequence or encoder-decoder architecture

U Kang 18

Sequence to Sequence Architecture

U Kang 19

Sequence to Sequence Architecture

 Sequence-to-sequence or encoder-decoder architecture
 An encoder or reader or input RNN processes the input sequence 𝑋𝑋 =

(𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥), and emits the context C, usually as a simple function of its
final hidden state

 A decoder or writer or output RNN is conditioned on that fixed-length
vector to generate the output sequence 𝑌𝑌 = (𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦)

 Note that 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 can be different
 The two RNNs are trained jointly to maximize the average of

log𝑃𝑃(𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 |𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥) over all the pairs of 𝑥𝑥 and 𝑦𝑦 sequences
in the training set

 The last state ℎ𝑛𝑛𝑥𝑥 of the encoder RNN is typically used as a
representation 𝐶𝐶 of the input sequence that is provided as input to the
decoder RNN

U Kang 20

Deep RNNs

 Computation in most RNNs can be decomposed into three
blocks of parameters and associated transformations
 From the input to the hidden state
 From the previous hidden state to the next hidden state
 From the hidden state to the output

 Deep RNN: introduce depth in each of these operations

U Kang 21

Deep RNNs

 (a) two hidden states
 (b) separate MLP for each of the three blocks
 (c) skip connection

U Kang 22

Recursive Network

U Kang 23

Challenge of Long-Term Dependencies

 Recurrent networks involve the composition of the same
function multiple times, once per time step

 The function composition resembles matrix multiplication:
ℎ(𝑡𝑡) = 𝑊𝑊𝑇𝑇ℎ(𝑡𝑡−1) = ⋯ = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ(0)

 If 𝑊𝑊 is decomposed into 𝑄𝑄Λ𝑄𝑄𝑇𝑇 by an eigendecomposition, then
ℎ(𝑡𝑡) = 𝑄𝑄Λ𝑡𝑡𝑄𝑄𝑇𝑇ℎ(0)

 This means the eigenvalues with magnitude less than one to
decay to 0 and eigenvalues with magnitude greater than one to
explode

 This leads to vanishing or exploding gradient problem

U Kang 24

Strategies for Long-term Dependencies

 Design a model that operates at multiple time scales, so that
some parts of the model operate at fine-grained time scales and
can handle small details, while other parts operate at coarse
time scales and transfer information from the distant past to the
present more efficiently
 Skip connections across time
 “Leaky units” that integrate signals with different time constants
 Removal of some of the connections used to model fine-grained time

scales
 Gated RNNs

 Long Short-Term Memory (LSTM)
 Gated Recurrent Unit (GRU)

U Kang 25

Skip Connections through Time

 One way to obtain coarse time scales is to add direct connections
from variables in the distant past to variables in the present
 The idea is similar to that of ResNet

 Gradients may vanish or explode exponentially with respect to
the number t of time steps

 Introducing recurrent connections with a time-delay of d makes
gradient diminish exponentially as a function of t/d rather than t

 Since there are both delayed and single step connections,
gradients may still explode exponentially in t

 This allows the learning algorithm to capture longer
dependencies although not all long-term dependencies may be
represented well in this way

U Kang 26

Leaky Units

 When we accumulate a running average 𝜇𝜇(𝑡𝑡) of some value 𝑣𝑣(𝑡𝑡)

by applying the update 𝜇𝜇(𝑡𝑡) ← 𝛼𝛼𝜇𝜇(𝑡𝑡−1) + (1 − 𝛼𝛼)𝑣𝑣(𝑡𝑡), the 𝛼𝛼
parameter is an example of a linear self-connection from 𝜇𝜇(𝑡𝑡−1)

to 𝜇𝜇(𝑡𝑡)

 When 𝛼𝛼 is near 1, the running average remembers information about the
past for a long time

 When 𝛼𝛼 is near 0, information about the past is rapidly discarded

 Leaky units: hidden units with linear self-connections
 This approach allows to control the degree of using past information by

adjusting 𝛼𝛼

U Kang 27

Removing Connections

 Removing length-one connections and replacing them
with longer connections
 This is different from skip connections that add edges; units

receiving such new connections may learn to operate on a
long time scale but may also choose to focus on their other
short-term connections

U Kang 28

Gated RNNs

 Like leaky units, gated RNNS are based on the idea of creating
paths through time that have derivatives that neither vanish nor
explode
 Leaky units did this with manually chosen connection weights; Gated RNNs

allow the connection weights to change at each time step

 Leaky units allow the network to accumulate information over
time. However, once that information has been used, it might be
useful to forget the old state
 Gated RNNs learn to decide when to clear the old state

U Kang 29

Long Short-Term Memory (LSTM)

 An LSTM recurrent network “cell” that replaces a hidden unit
in a typical RNN

An LSTM cell

Each cell (e.g. ℎ(𝑡𝑡)) in RNN
receives input x and
its previous state ℎ(𝑡𝑡−1)

to make an output

U Kang 30

LSTM

 Initial LSTM (1997): introducing self-
loops to produce paths where the
gradient can flow for long durations

 (2000) Making the weight on this
self-loop gated (controlled by
another hidden unit)

 LSTM is a core module for many
applications
 Handwriting recognition
 Speech recognition
 Handwriting generation
 Machine translation
 Image captioning

U Kang 31

LSTM
 Self-loop weight is controlled by a forget

gate unit 𝑓𝑓𝑖𝑖
(𝑡𝑡) for time step t and cell i

 𝑓𝑓𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑓𝑓 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑓𝑓 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑓𝑓ℎ𝑗𝑗

𝑡𝑡−1)

 The internal state 𝑠𝑠𝑖𝑖
(𝑡𝑡) is updated with a

conditional self-loop weight 𝑓𝑓𝑖𝑖
(𝑡𝑡)

 𝑠𝑠𝑖𝑖
(𝑡𝑡) = 𝑓𝑓𝑖𝑖

(𝑡𝑡)𝑠𝑠𝑖𝑖
(𝑡𝑡−1) + 𝑔𝑔𝑖𝑖

𝑡𝑡 𝜎𝜎(𝑏𝑏𝑖𝑖 +
∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 ℎ𝑗𝑗
𝑡𝑡−1)

 The external input gate unit 𝑔𝑔𝑖𝑖
(𝑡𝑡) is

computed similarly to the forget gate

 𝑔𝑔𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑔𝑔 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑔𝑔 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑔𝑔ℎ𝑗𝑗

𝑡𝑡−1)

 The output ℎ𝑖𝑖
(𝑡𝑡) of the LSTM cell can also

be shut off, via the output gate 𝑞𝑞𝑖𝑖
(𝑡𝑡)

 ℎ𝑖𝑖
(𝑡𝑡) = tanh(𝑠𝑠𝑖𝑖

(𝑡𝑡))𝑞𝑞𝑖𝑖
(𝑡𝑡)

 𝑞𝑞𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑜𝑜 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑜𝑜 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑜𝑜 ℎ𝑗𝑗

𝑡𝑡−1)

U Kang 32

Gated Recurrent Unit (GRU)

 Similar to LSTM; the main difference is that in GRU a single gating
unit simultaneously controls the forgetting factor and the
decision to update the state unit
 ℎ𝑖𝑖

(𝑡𝑡) = 𝑢𝑢𝑖𝑖
(𝑡𝑡−1)ℎ𝑖𝑖

(𝑡𝑡−1) + (1 − 𝑢𝑢𝑖𝑖
𝑡𝑡−1)𝜎𝜎(𝑏𝑏𝑖𝑖 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 𝑟𝑟𝑗𝑗
𝑡𝑡−1 ℎ𝑗𝑗

𝑡𝑡−1)

 𝑢𝑢 stands for “update” gate and 𝑟𝑟 for “reset” gate

 𝑢𝑢𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑢𝑢 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑢𝑢 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑢𝑢 ℎ𝑗𝑗

𝑡𝑡)

 𝑟𝑟𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑟𝑟 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑟𝑟 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑟𝑟 ℎ𝑗𝑗

𝑡𝑡)

 GRU is less complex (computationally efficient) than LSTM while
providing similar accuracy
 GRU uses 2 gates, while LSTM uses 3 gates

U Kang 33

GRU
output

x

update gate

x
1 -

x

reset gate

x: sequence of input

previous hidden state

U Kang 34

Optimization for Long-Term Dependencies

 Gradients of parameters in RNN can be very large due to long-
term dependencies

 When the parameter gradient is very large, a gradient descent
parameter update could throw the parameters very far, into a
region where the objective function is larger, undoing much of
the work that hand been done to reach the current solution

 Gradient clipping: a simple solution that avoids very large
gradient
 2 versions

 Clip the gradient element wise, just before the parameter update
 Clip the norm | 𝑔𝑔 | of the gradient 𝑔𝑔, just before the parameter update

 If 𝑔𝑔 > 𝑣𝑣, then 𝑔𝑔 ← 𝑔𝑔𝑔𝑔
| 𝑔𝑔 | v: norm threshold

U Kang 35

Gradient Clipping

U Kang 36

Networks with Explicit Memory
 Different types of knowledge

 Implicit: sub-conscious, and difficult to verbalize: e.g., how to walk,
how a dog looks different from a cat

 Explicit: declarative, and relatively straightforward to put into words.
E.g., a cat is a kind of animal

 Neural networks excel at storing implicit knowledge.
However, they struggle to memorize facts
 The reason is because neural networks lack the working memory

 Memory networks: include a set of memory cells that can be
accessed via an addressing mechanism

 Neural Turing machine: learns to read from and write
arbitrary content to memory cells without explicit supervision
about which actions to undertake, and allowed end-to-end
training without this supervision signal

U Kang 37

Networks with Explicit Memory

U Kang 38

What you need to know

 Recurrent Neural Network
 Main idea: parameter sharing over time
 Major architectures:
 Problem of long-term dependencies: vanishing or

exploding gradient
 Model that operates at a multiple time scale: LSTM
 Optimization: gradient clipping

U Kang 39

Questions?

	슬라이드 번호 1
	In This Lecture
	RNN
	Classical Dynamical System
	Unfolding Computation Graphs
	Recurrent Hidden Units
	Recurrent through only the Output
	Sequence Input, Single Output
	Teacher Forcing
	Forward/Back Propagation in RNN
	Modeling Sequences Conditioned on Context
	Modeling Sequences Conditioned on Context
	Vector to Sequence
	Hidden and Output Recurrence
	Bidirectional RNN
	Bidirectional RNN
	Sequence to Sequence Architecture
	Sequence to Sequence Architecture
	Sequence to Sequence Architecture
	Deep RNNs
	Deep RNNs
	Recursive Network
	Challenge of Long-Term Dependencies
	Strategies for Long-term Dependencies
	Skip Connections through Time
	Leaky Units
	Removing Connections
	Gated RNNs
	Long Short-Term Memory (LSTM)
	LSTM
	LSTM
	Gated Recurrent Unit (GRU)
	GRU
	Optimization for Long-Term Dependencies
	Gradient Clipping
	Networks with Explicit Memory
	Networks with Explicit Memory
	What you need to know
	슬라이드 번호 39

