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Advanced Deep Learning

Approximate Inference

U Kang
Seoul National University
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In This Lecture

m Inference as Optimization
m Expectation Maximization
m MAP Inference and Sparse Coding
m Variational Inference and Learning
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m |Intractable inference problems in deep learning
are usually the result of interactions between
latent variables in a structured graphical model.

m These interactions can be due to edges directly
connecting one latent variable to another or
longer paths that are activated when the child of
a V-structure is observed.
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Motivation

m Left. These direct connections between latent
variables make the posterior distribution
intractable since latent variables are dependent.
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e Motivation

m Center. It still has an intractable posterior
distribution because of the connections between
layers.
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m Right. This directed model has interactions
between latent variables when the visible
variables are observed, because every two latent
variables are coparents (V-structure).
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m What do we want to do?
0 Computing p(h|v)
0 Taking expectations w.r.t. p(h|v)
m Exact inference requires an exponential amount
of time in these models.
a0 Computing p(v) is intractable!
m We need some approximate inference

techniques for confronting these intractable
inference problems.
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Example

m Consider the task of computing
p(h|v)

m If h’s are independent given v,
p(v) can be efficiently computed

0 p(v) = Zhl,hz p(v,hy, hy) =
Zhl,hz p(w, h))p(v, hy) =
2ih, p(v, hy) 2n, P(V, hz)

m Otherwise, p(v) is intractable
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®» O Inference as Optimization

[0 Expectation Maximization
[0 MAP Inference

[ Variational Inference and Learning
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== Inference as Optimization

m Exact inference can be described as an
optimization problem.

m Assume: we have a probabilistic model consisting
of observed variables v and latent variables h.

p(v|Wp(h)
p(v)

m Itis too difficult to compute p(v; 0) if it is costly
to marginalize out h.

m Our goal: compute p(h|v) =
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Inference as Optimization

m How to describe the inference problem as the
optimization problem?
2 We compute Evidence Lower BOund (ELBO) instead of
p(v; 6)
a Evidence Lower Bound (ELBO)
L(v,8,q) =logp(v:0) — Dkr (q(h | v)|p(h | v:0))

m L always has at most the same value as the desired log-
probability since the KL divergence is always nonnegative.

m If the KL divergence is O, g is the same as p(h|v)

U Kang 11



= Inference as Optimization

o L can be considerably easier to compute for some
distributions q.

m L is tractable to compute if we choose appropriate q.
L(v.0,q) =logp(v;0) — DkrL(q(h | v)||p(h | v:0))

q(h | v)
= log p(v; 0) — E~, log
— Aerniliars - q(h | v)
— l()% 1)(U. 0) — _‘.Ah\.(l l()g m
p(v:0)

=logp(v; 0) — By [logq(h | v) —log p(h,v; 0) + log p(v: 0)]
= — Epn~yg logq(h | v) —logp(h,v;0)].
= Ep-q[logp(h,v)] + H(q)

o For any choice of g, L provides a lower bound on the

likelihood.

U Kang
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== Inference as Optimization

m For g(h|v) that are better approximations of
p(h|v), the lower bound L will be tighter.

m We can think of inference as the procedure for
finding the g that maximizes L.

m Exact inference maximizes L perfectly by
searching over a family of functions g that
includes p(h | v).
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V] Inference as Optimization
®» [0 Expectation Maximization
[0 MAP Inference

[ Variational Inference and Learning
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m Now we will maximize a lower bound L by using
expectation maximization(EM) algorithm.

m What is EM algorithm?

o EM algorithm is an iterative optimization technique
which is operated locally
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s Expectation Maximization

m EM algorithm finds maximum likelihood
parameter estimates in problems where some
variables were unobserved.

m The EM algorithm consists of alternating
between two steps until convergence:

0 Expectation step

m For given parameter values we can compute the expected
values of the latent variable.

o Maximization step

m Updates the parameters of our model based on the latent
variable calculated using ML method.
U Kang
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Expectation Maximization

m EM can be viewed as a coordinate ascent
algorithm to maximize L

L(v,0,q) =logp(v:0) — Dk, (¢(h | v)||p(h | v:0))
m E-step: maximize L wrt. g

m M-step: maximize L wrt. 6

U Kang
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s Expectation Maximization

m E-step: maximize L wrt. g
0 Set gV (RO)v) = p(hOv®; =D) for all indices i
of the training examples v we want to train on.
L(v,8,q) =logp(v;0) — Dk (q(h | v)|p(h | v; 0))
m M-step: maximize L wrt. 6
o Completely or partially maximize Z:g(v<f>,9, q)

with respect to 6 using your optimization algorithm of
choice.

L(v,0,q) = Ep4[logp(h,v)] + H(q)

U Kang 18



= Another Viewpoint of EM

m |terate the following E-step and M-step
m E-step: evaluate p(h|v; 6¢~1)
» M-step: evaluate 89 = argmax,Q(6,6¢ V)
o where Q(6,0¢V) = Ey ohiv; ot-0y[logp(h, v; 0)]
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== Example of EM: Gaussian Mixture

)
¥y

m Consider mixtures of Gaussian model

K
P(X) =2 mN(X| py, 2 )
k=1 Mixing coefficient: weight for
Number of Gaussians each Gaussian dist.

.OSﬂkS]_,Zkﬂk:l
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Gaussian Mixture

m log likelihood
N N K
Inp(X|p,2,7)= lel p(x,)= Zln{z m N, | 4,52, )}

m MLE does not work here as there is no closed
form solution

m Parameters can be calculated using EM
algorithm.
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Gaussian Mixture

m We can think of the mixing coefficients as prior
probabilities for the components.

m For a given value of X/, we can evaluate the

corresponding posterior probabilities, called
responsibilities.

m From Bayes rule
70 =p(k | x) = EEOPXTO
o p(x)

O
Variable
D N (x| gy %)
j=1

U Kang 22
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Gaussian Mixture

m Given a Gaussian mixture model, the goal is to
maximize the likelihood function with respect to
the parameters comprising the means and
covariances of the components and the mixing
coefficients.

U Kang 23



k

g

"L‘[--és

X

(1

<K
%
== X
7?(«4.&’0

PLESS
EL" 4

2N

1.

Gaussian Mixture

Initialize the means u, covariances ), and mixing
coefficients i, and evaluate the initial value of
the log likelihood.

E step. Evaluate the responsibilities using the
current parameter values.

7 (X) = ka(XIﬂk,Zk)

Y A N(x|p,2 )
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Gaussian Mixture

M step. Re-estimate the parameters using the
current responsibilities.

N N
Zyj(xﬂ)xn Z_;?j(xn)(xn—ﬂjxxn—ﬂj)T 1 N
=3 2= ”jzizg’j(xn)
n=1

4.

D 7i(x,) ;%(Xn)

n=1

Evaluate log likelihood
N K
Inp(X| p, 2., ) = ZID{Z T N(X, | ﬂkazk )}
n=1 k=1

If there is no convergence, return to step 2.
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture




Questions?

U Kang

32



