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In This Lecture

 Inference as Optimization

 Expectation Maximization

 MAP Inference and Sparse Coding

 Variational Inference and Learning
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Motivation

 Intractable inference problems in deep learning 
are usually the result of interactions between 
latent variables in a structured graphical model. 

 These interactions can be due to edges directly 
connecting one latent variable to another or 
longer paths that are activated when the child of 
a V-structure is observed.
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Motivation

 Left. These direct connections between latent 
variables make the posterior distribution 
intractable since latent variables are dependent.
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Motivation

 Center. It still has an intractable posterior 
distribution because of the connections between 
layers.
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Motivation

 Right. This directed model has interactions 
between latent variables when the visible 
variables are observed, because every two latent 
variables are coparents (V-structure).
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Motivation

 What do we want to do?

 Computing 𝑝(ℎ|𝑣)

 Taking expectations w.r.t. 𝑝(ℎ|𝑣)

 Exact inference requires an exponential amount 
of time in these models.

 Computing 𝑝(𝑣) is intractable!

 We need some approximate inference 
techniques for confronting these intractable 
inference problems.
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Example

 Consider the task of computing 
𝑝 ℎ 𝑣

 If h’s are independent given v, 
p(v) can be efficiently computed

 𝑝 𝑣 = σℎ1,ℎ2
𝑝(𝑣, ℎ1, ℎ2) =

σℎ1,ℎ2
𝑝 𝑣, ℎ1 𝑝(𝑣, ℎ2) =

σℎ1
𝑝 𝑣, ℎ1 σℎ2

𝑝(𝑣, ℎ2)

 Otherwise, p(v) is intractable

ℎ1 ℎ2

𝑣

ℎ1 ℎ2

𝑣
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Outline

Inference as Optimization

Expectation Maximization

MAP Inference

Variational Inference and Learning
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Inference as Optimization

 Exact inference can be described as an 
optimization problem.

 Assume: we have a probabilistic model consisting 
of observed variables 𝑣 and latent variables ℎ.

 Our goal: compute 𝑝 ℎ 𝑣 =
𝑝(𝑣|ℎ)𝑝(ℎ)

𝑝(𝑣)

 It is too difficult to compute 𝑝(𝑣; 𝜃) if it is costly 
to marginalize out ℎ.
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Inference as Optimization

 How to describe the inference problem as the  
optimization problem?

 We compute Evidence Lower BOund (ELBO) instead of 
𝑝(𝑣; 𝜃)

 Evidence Lower Bound (ELBO)

 𝐿 always has at most the same value as the desired log-
probability since the KL divergence is always nonnegative.

 If the KL divergence is 0, 𝑞 is the same as 𝑝(ℎ|𝑣)
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Inference as Optimization

 𝐿 can be considerably easier to compute for some 
distributions 𝑞.

 𝐿 is tractable to compute if we choose appropriate 𝑞.

 For any choice of 𝑞, 𝐿 provides a lower bound on the 
likelihood.

= 𝐸ℎ~𝑞[log 𝑝(ℎ, 𝑣)] + 𝐻(𝑞)
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Inference as Optimization

 For 𝑞(ℎ|𝑣) that are better approximations of 
𝑝(ℎ|𝑣), the lower bound 𝐿 will be tighter.

 We can think of inference as the procedure for 
finding the 𝑞 that maximizes 𝐿. 

 Exact inference maximizes 𝐿 perfectly by 
searching over a family of functions 𝑞 that 
includes 𝑝(ℎ | 𝑣).
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Outline

Inference as Optimization

Expectation Maximization

MAP Inference 

Variational Inference and Learning
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Expectation Maximization

 Now we will maximize a lower bound L by using 
expectation maximization(EM) algorithm.

 What is EM algorithm?

 EM algorithm is an iterative optimization technique
which is operated locally
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Expectation Maximization

 EM algorithm finds maximum likelihood 
parameter estimates in problems where some 
variables were unobserved.

 The EM algorithm consists of alternating 
between two steps until convergence:

 Expectation step

 For given parameter values we can compute the expected 
values of the latent variable.

 Maximization step

 Updates the parameters of our model based on the latent 
variable calculated using ML method.
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Expectation Maximization

 EM can be viewed as a coordinate ascent 
algorithm to maximize L

 E-step: maximize L wrt. q

 M-step: maximize L wrt. 𝜃
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Expectation Maximization

 E-step: maximize L wrt. q

 Set 𝑞(𝑡) ℎ(𝑖)|𝑣 = 𝑝(ℎ 𝑖 |𝑣 𝑖 ; 𝜃(𝑡−1)) for all indices 𝑖

of the training examples 𝑣(𝑖) we want to train on. 

 M-step: maximize L wrt. 𝜃

 Completely or partially maximize

with respect to 𝜃 using your optimization algorithm of 
choice.

𝐿 𝑣, 𝜃, 𝑞 = 𝐸ℎ~𝑞[log 𝑝(ℎ, 𝑣)] + 𝐻(𝑞)
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Another Viewpoint of EM

 Iterate the following E-step and M-step

 E-step: evaluate 𝑝(ℎ|𝑣; 𝜃 𝑡−1 )

 M-step: evaluate 𝜃 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄 𝜃, 𝜃 𝑡−1

 where 𝑄 𝜃, 𝜃 𝑡−1 = 𝐸ℎ~𝑝(ℎ|𝑣; 𝜃 𝑡−1 )[log 𝑝(ℎ, 𝑣; 𝜃)]
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Example of EM: Gaussian Mixture

 Consider mixtures of Gaussian model

 0 ≤ 𝜋𝑘 ≤ 1,σ𝑘 𝜋𝑘 = 1

K

p(x) πkN (x | μk ,k )
k1

Number of Gaussians
Mixing coefficient: weight for 
each Gaussian dist.
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Gaussian Mixture

 log likelihood

 MLE does not work here as there is no closed 
form solution

 Parameters can be calculated using EM 
algorithm.
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Gaussian Mixture

 We can think of the mixing coefficients as prior  
probabilities for the components.

 For a given value of ‘x’, we can evaluate the  
corresponding posterior probabilities, called  
responsibilities.

 From Bayes rule
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Gaussian Mixture

 Given a Gaussian mixture model, the goal is to 
maximize the likelihood function with respect to 
the parameters comprising the means and 
covariances of the components and the mixing 
coefficients.
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Gaussian Mixture

1. Initialize the means 𝜇, covariances σ and mixing 
coefficients 𝜋, and evaluate the initial value of 
the log likelihood.

2. E step. Evaluate the responsibilities using the 
current parameter values.

j=1
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Gaussian Mixture

3. M step. Re-estimate the parameters using the 
current responsibilities.

4. Evaluate log likelihood

If there is no convergence, return to step 2.
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Questions?


