
1U Kang

Introduction to Data Mining

Lecture #13: Frequent Itemsets-2

U Kang
Seoul National University

2U Kang

Outline

A-Priori Algorithm
PCY Algorithm
Frequent Itemsets in < 2 Passes

3U Kang

A-Priori Algorithm – (1)

 A two-pass approach called
A-Priori limits the need for
main memory

 Key idea: monotonicity
 If a set of items I appears at

least s times, so does every subset J of I
 E.g., if {A,C} is frequent, then {A} is frequent (so does {C})

 Contrapositive for pairs:
If item i does not appear in s baskets, then no pair
including i can appear in s baskets
 E.g., if {A} is not frequent, then {A,C} is not frequent

 So, how does A-Priori find freq. pairs?

4U Kang

A-Priori Algorithm – (2)

 Pass 1: Read baskets and count in main memory
the occurrences of each individual item

 Requires only memory proportional to #items

 Items that appear ≥ 𝒔𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main memory
only those pairs where both elements
are frequent (from Pass 1)
 Requires memory proportional to square of frequent items

only (for counts)
 Plus a list of the frequent items (so you know what must be

counted)

5U Kang

Main-Memory: Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

M
ai

n
m

em
or

y Counts of
pairs of

frequent items
(candidate

pairs)

6U Kang

Detail for A-Priori

 You can use the triangular
matrix method with n =
number of frequent items
 Why?
 => May save space

compared with storing
triples

 Trick: re-number frequent
items 1,2,… and keep a
table relating new
numbers to original item
numbers

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
#s

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

7U Kang

Frequent Triples, Etc.

 For each k, we construct two sets of k-tuples
(sets of size k):
 Ck = candidate k-tuples = those that might be frequent

sets (support > s) based on information from the pass
for k–1

 Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

8U Kang

Example

 Hypothetical steps of the A-Priori algorithm
 C1 = { {b} {c} {j} {m} {n} {p} }
 Count the support of itemsets in C1

 Prune non-frequent: L1 = { b, c, j, m }
 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
 Count the support of itemsets in C2

 Prune non-frequent: L2 = { {b,c} {b,m} {c,j} {c,m} }
 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
 Count the support of itemsets in C3

 Prune non-frequent: L3 = { {b,c,m} }
** Note here we generate new candidates by
generating Ck from Lk-1.
But one can be more careful with candidate
generation. For example, in C3 we know {b,m,j}
cannot be frequent since {m,j} is not frequent

**

9U Kang

Generating C3 From L2

 Assume {x1, x2, x3} is frequent.
 Then, {x1,x2}, {x1, x3}, {x2, x3} are frequent, too.
 => if any of {x1,x2}, {x1, x3}, {x2, x3} is NOT frequent,

then {x1, x2, x3} is NOT frequent!

 So, to generate C3 from L2,
 Find two frequent pairs in the form of {a, b}, and {a, c}

 This can be done efficiently if we sort L2

 Check whether {b,c} is also frequent
 If yes, include {a,b,c} to C3

10U Kang

A-Priori for All Frequent Itemsets

 One pass for each k (itemset size)
 Needs room in main memory to count

each candidate k–tuple
 For typical market-basket data and reasonable

minimum support (e.g., 1%), k = 2 requires the most
memory

 Many possible extensions:
 Association rules with intervals:

 For example: Men over 60 have 2 cars
 Association rules when items are in a taxonomy

 Bread, Butter → FruitJam
 BakedGoods, MilkProduct → PreservedGoods

 Lower the min. support s as itemset gets bigger

11U Kang

Outline

A-Priori Algorithm
PCY Algorithm
Frequent Itemsets in < 2 Passes

12U Kang

PCY (Park-Chen-Yu) Algorithm

 Observation:
In pass 1 of A-Priori, most memory is idle
 We store only individual item counts
 Can we use the idle memory to reduce memory

required in pass 2?
 Pass 1 of PCY: In addition to item counts,

maintain a hash table with as many buckets as fit
in memory
 Keep a count for each bucket into which pairs of items

are hashed
 For each bucket just keep the count, not the actual pairs

that hash to the bucket!

13U Kang

PCY Algorithm – First Pass
FOR (each basket) :

FOR (each item in the basket) :
add 1 to item’s count;

FOR (each pair of items) :
hash the pair to a bucket;
add 1 to the count for that bucket;

 Few things to note:
 Pairs of items need to be generated from the input file;

they are not present in the file
 We are not just interested in the presence of a pair, but

we need to see whether it is present at least s (support)
times

New
in

PCY

14U Kang

Example

 Assume min. support = 10
 Sup(1,2) = 10
 Sup(3,5) = 10
 Sup(2,3) = 5
 Sup(1,5) = 4
 Sup(1,6) = 7
 Sup(4,5) = 8

{1,2} {3,5}

{2,3} {1,5}

{1,6} {4,5}

Total count: 20

Total count: 9

Total count: 15

Note that {2,3}, and {1,5} cannot be frequent itemsets. (Why?)

15U Kang

Observations about Buckets
 Observation: If a bucket contains a frequent pair, then

the bucket is surely frequent
 However, even without any frequent pair,

a bucket can still be frequent
 So, we cannot use the hash to eliminate any

member (pair) of a “frequent” bucket
 But, for a bucket with total count less than s,

none of its pairs can be frequent
 Pairs that hash to this bucket can be eliminated as candidates

(even if the pair consists of 2 frequent items)
 E.g., even though {A}, {B} are frequent, count of the bucket containing

{A,B} might be < s

 Pass 2:
Only count pairs that hash to frequent buckets

16U Kang

PCY Algorithm – Between Passes

 Replace the buckets by a bit-vector:
 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits,
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent
and list them for the second pass

17U Kang

PCY Algorithm – Pass 2

 Count all pairs {i, j} that meet the conditions for
being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in the

bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the
pair to have a chance of being frequent

18U Kang

Main-Memory: Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table
for pairs

M
ai

n
m

em
or

y

Counts of
candidate

pairs

19U Kang

Main-Memory Details

 Buckets require a few bytes each:
 Note: we do not have to count past s

 If s < 256, then we need at most 1 byte for a bucket

 #buckets is O(main-memory size)
 Large number of buckets helps. (How?)
 => decreases false positive

20U Kang

Refinement: Multistage Algorithm

 Limit the number of candidates to be counted
 Remember: Memory is the bottleneck
 We only want to count/keep track of the ones that are

frequent

 Key idea: After Pass 1 of PCY, rehash only those
pairs that qualify for Pass 2 of PCY
 i and j are frequent, and
 {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to
buckets, so fewer false positives

 Requires 3 passes over the data

21U Kang

Main-Memory: Multistage

First
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate

pairs

Pass 1 Pass 2 Pass 3

Count items
Hash pairs {i,j}

Hash pairs {i,j}
into Hash2 iff:

i,j are frequent,
{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:
i,j are frequent,
{i,j} hashes to

freq. bucket in B1
{i,j} hashes to

freq. bucket in B2

First
hash table Second

hash table Counts of
candidate

pairs

M
ai

n
m

em
or

y

22U Kang

Multistage – Pass 3

 Count only those pairs {i, j} that satisfy these
candidate pair conditions:

1. Both i and j are frequent items
2. Using the first hash function, the pair hashes to

a bucket whose bit in the first bit-vector is 1
3. Using the second hash function, the pair hashes to a

bucket whose bit in the second bit-vector is 1

23U Kang

Important Points

1. The two hash functions have to be
independent

2. We need to check both hashes on the third
pass
 If not, we may end up counting pairs of items

that hashed first to an infrequent bucket but
happened to hash second to a frequent bucket

24U Kang

Refinement: Multihash

 Key idea: Use several independent hash tables on
the first pass

 Risk: Halving the number of buckets doubles the
average count
 We have to be sure most buckets will still not reach

count s

 If so, we can get a benefit like multistage,
but in only 2 passes

25U Kang

Main-Memory: Multihash

First hash
table

Second
hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of
candidate

pairs

Pass 1 Pass 2

First
hash table

Second
hash table

Counts of
candidate

pairs

M
ai

n
m

em
or

y

26U Kang

PCY: Extensions

 Either multistage or multihash can use more than
two hash functions

 In multistage, there is a point of diminishing returns,
since the bit-vectors eventually consume all of main
memory
 If we spend too much space for bit-vectors, then we run

out of space for candidate pairs

 For multihash, the bit-vectors occupy exactly what
one PCY bitmap does, but too many hash functions
make all counts > s

27U Kang

Outline

A-Priori Algorithm
PCY Algorithm
Frequent Itemsets in < 2 Passes

28U Kang

Frequent Itemsets in < 2 Passes

 A-Priori, PCY, etc., take k passes to find frequent
itemsets of size k

 Can we use fewer passes?

 Method that uses 2 or fewer passes for all sizes:u
 Random sampling
 SON (Savasere, Omiecinski, and Navathe)
 Toivonen (see textbook)

29U Kang

Random Sampling (1)

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory
 So we don’t pay for disk I/O each

time we increase the size of itemsets
 Reduce min. support proportionally

to match the sample size

Copy of
sample
baskets

Space
for

counts

M
ai

n
m

em
or

y

30U Kang

Random Sampling (2)

 Optionally, verify that the candidate pairs are truly
frequent in the entire data set by a second pass
(avoid false positives)

 But you don’t catch sets frequent in the whole but
not in the sample (cannot avoid false negatives)
 Smaller min. support, e.g., s/125, helps catch more truly

frequent itemsets
 But requires more space

31U Kang

SON Algorithm – (1)

 Repeatedly read small subsets of the baskets into
main memory and run an in-memory algorithm
to find all frequent itemsets
 We are not sampling, but processing the entire file in

memory-sized chunks
 Min. support decreases to (s/k) for k chunks

 An itemset becomes a candidate if it is found to
be frequent in any one or more subsets of the
baskets.

32U Kang

SON Algorithm – (2)

 On a second pass, count all the candidate itemsets
and determine which are frequent in the entire set

 Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is
frequent in at least one subset.
 Task: find frequent (>= s) itemsets among n baskets
 n baskets divided into k subsets
 Load (n/k) baskets in memory, look for frequent (>= s/k)

pairs

33U Kang

SON – Distributed Version

 SON lends itself to distributed data mining

 Baskets distributed among many nodes
 Compute frequent itemsets at each node
 Distribute candidates to all nodes
 Accumulate the counts of all candidates

34U Kang

SON: Map/Reduce

 Phase 1: Find candidate itemsets
 Map? each machine finds frequent itemsets for the

subset of baskets assigned to it
 Reduce? Collect and output candidate frequent

itemsets (remove duplicates)

 Phase 2: Find true frequent itemsets
 Map? Output (candidate_itemset, count) for the

subset of baskets assigned to it
 Reduce? Sum up the count, and output truly frequent

(>= s) itemsets

35U Kang

Summary

 Frequent Itemsets
 One of the most ‘classical’ and important data mining

task

 Association Rules: {A} -> {B}
 Confidence, Support, Interestingness

 Algorithms for Finding Frequent Itemsets
 A-Priori
 PCY
 <= 2-Pass algorithm: Random Sampling, SON

36U Kang

Questions?

	슬라이드 번호 1
	Outline
	A-Priori Algorithm – (1)
	A-Priori Algorithm – (2)
	Main-Memory: Picture of A-Priori
	Detail for A-Priori
	Frequent Triples, Etc.
	Example
	Generating C3 From L2
	A-Priori for All Frequent Itemsets
	Outline
	PCY (Park-Chen-Yu) Algorithm
	PCY Algorithm – First Pass
	Example
	Observations about Buckets
	PCY Algorithm – Between Passes
	PCY Algorithm – Pass 2
	Main-Memory: Picture of PCY
	Main-Memory Details
	Refinement: Multistage Algorithm
	Main-Memory: Multistage
	Multistage – Pass 3
	Important Points
	Refinement: Multihash
	Main-Memory: Multihash
	PCY: Extensions
	Outline
	Frequent Itemsets in < 2 Passes
	Random Sampling (1)
	Random Sampling (2)
	SON Algorithm – (1)
	SON Algorithm – (2)
	SON – Distributed Version
	SON: Map/Reduce
	Summary
	슬라이드 번호 36

