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A-Priori Algorithm – (1)

 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity
 If a set of items I appears at 

least s times, so does every subset J of I
 E.g., if {A,C} is frequent, then {A} is frequent (so does {C})

 Contrapositive for pairs:
If item i does not appear in s baskets, then no pair 
including i can appear in s baskets
 E.g., if {A} is not frequent, then {A,C} is not frequent

 So, how does A-Priori find freq. pairs?
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A-Priori Algorithm – (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each individual item

 Requires only memory proportional to #items

 Items that appear ≥ 𝒔𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main memory 
only those pairs where both elements 
are frequent (from Pass 1)
 Requires memory proportional to square of frequent items 

only (for counts)
 Plus a list of the frequent items (so you know what must be 

counted)
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Main-Memory: Picture of A-Priori
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Detail for A-Priori

 You can use the triangular 
matrix method with n = 
number of frequent items
 Why?
 => May save space 

compared with storing 
triples

 Trick: re-number frequent 
items 1,2,… and keep a 
table relating new 
numbers to original item 
numbers
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Frequent Triples, Etc.

 For each k, we construct two sets of k-tuples
(sets of size k):
 Ck = candidate k-tuples = those that might be frequent 

sets (support > s) based on information from the pass 
for k–1

 Lk = the set of truly frequent k-tuples
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Example

 Hypothetical steps of the A-Priori algorithm
 C1 = { {b} {c} {j} {m} {n} {p} }
 Count the support of itemsets in C1

 Prune non-frequent: L1 = { b, c, j, m }
 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
 Count the support of itemsets in C2

 Prune non-frequent: L2 = { {b,c} {b,m}  {c,j}  {c,m} }
 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
 Count the support of itemsets in C3

 Prune non-frequent: L3 = { {b,c,m} }
** Note here we generate new candidates by 
generating Ck from Lk-1.
But one can be more careful with candidate 
generation. For example, in C3 we know {b,m,j} 
cannot be frequent since {m,j} is not frequent

**
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Generating C3 From L2

 Assume {x1, x2, x3} is frequent. 
 Then, {x1,x2}, {x1, x3}, {x2, x3} are frequent, too.
 => if any of {x1,x2}, {x1, x3}, {x2, x3} is NOT frequent, 

then {x1, x2, x3} is NOT frequent!

 So, to generate C3 from L2, 
 Find two frequent pairs in the form of {a, b}, and {a, c}

 This can be done efficiently if we sort L2

 Check whether {b,c} is also frequent
 If yes, include {a,b,c} to C3
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A-Priori for All Frequent Itemsets

 One pass for each k (itemset size)
 Needs room in main memory to count 

each candidate k–tuple
 For typical market-basket data and reasonable 

minimum support (e.g., 1%), k = 2 requires the most 
memory

 Many possible extensions:
 Association rules with intervals: 

 For example: Men over 60 have 2 cars
 Association rules when items are in a taxonomy

 Bread, Butter → FruitJam
 BakedGoods, MilkProduct → PreservedGoods

 Lower the min. support s as itemset gets bigger
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PCY (Park-Chen-Yu) Algorithm

 Observation: 
In pass 1 of A-Priori, most memory is idle
 We store only individual item counts
 Can we use the idle memory to reduce memory 

required in pass 2?
 Pass 1 of PCY: In addition to item counts, 

maintain a hash table with as many buckets as fit 
in memory 
 Keep a count for each bucket into which pairs of items 

are hashed
 For each bucket just keep the count, not the actual pairs 

that hash to the bucket!
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PCY Algorithm – First Pass  
FOR (each basket) :

FOR (each item in the basket) :
add 1 to item’s count;

FOR (each pair of items) :
hash the pair to a bucket;
add 1 to the count for that bucket;

 Few things to note:
 Pairs of items need to be generated from the input file; 

they are not present in the file
 We are not just interested in the presence of a pair, but 

we need to see whether it is present at least s (support) 
times

New 
in 

PCY
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Example

 Assume min. support = 10
 Sup(1,2) = 10
 Sup(3,5) = 10
 Sup(2,3) = 5
 Sup(1,5) = 4
 Sup(1,6) = 7
 Sup(4,5) = 8

{1,2} {3,5}

{2,3} {1,5}

{1,6} {4,5}

Total count: 20

Total count: 9

Total count: 15

Note that {2,3}, and {1,5} cannot be frequent itemsets. (Why?)
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Observations about Buckets
 Observation: If a bucket contains a frequent pair, then 

the bucket is surely frequent
 However, even without any frequent pair, 

a bucket can still be frequent 
 So, we cannot use the hash to eliminate any 

member (pair) of a “frequent” bucket
 But, for a bucket with total count less than s, 

none of its pairs can be frequent 
 Pairs that hash to this bucket can be eliminated as candidates 

(even if the pair consists of 2 frequent items)
 E.g., even though {A}, {B} are frequent, count of the bucket containing 

{A,B} might be < s

 Pass 2:
Only count pairs that hash to frequent buckets
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PCY Algorithm – Between Passes

 Replace the buckets by a bit-vector:
 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent 
and list them for the second pass
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PCY Algorithm – Pass 2

 Count all pairs {i, j} that meet the conditions for 
being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in the 

bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent
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Main-Memory: Picture of PCY
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Main-Memory Details

 Buckets require a few bytes each:
 Note: we do not have to count past s

 If s < 256, then we need at most 1 byte for a bucket

 #buckets is O(main-memory size)
 Large number of buckets helps. (How?)
 => decreases false positive
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Refinement: Multistage Algorithm

 Limit the number of candidates to be counted
 Remember: Memory is the bottleneck
 We only want to count/keep track of the ones that are 

frequent

 Key idea: After Pass 1 of PCY, rehash only those 
pairs that qualify for Pass 2 of PCY
 i and j are frequent, and 
 {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to 
buckets, so fewer false positives

 Requires 3 passes over the data
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Main-Memory: Multistage
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Multistage – Pass 3

 Count only those pairs {i, j} that satisfy these 
candidate pair conditions:

1. Both i and j are frequent items
2. Using the first hash function, the pair hashes to 

a bucket whose bit in the first bit-vector is 1
3. Using the second hash function, the pair hashes to a 

bucket whose bit in the second bit-vector is 1
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Important Points

1. The two hash functions have to be 
independent

2. We need to check both hashes on the third 
pass
 If not, we may end up counting pairs of items 

that hashed first to an infrequent bucket but 
happened to hash second to a frequent bucket
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Refinement: Multihash

 Key idea: Use several independent hash tables on 
the first pass

 Risk: Halving the number of buckets doubles the 
average count
 We have to be sure most buckets will still not reach 

count s

 If so, we can get a benefit like multistage, 
but in only 2 passes
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Main-Memory: Multihash
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PCY: Extensions

 Either multistage or multihash can use more than 
two hash functions

 In multistage, there is a point of diminishing returns, 
since the bit-vectors eventually consume all of main 
memory
 If we spend too much space for bit-vectors, then we run 

out of space for candidate pairs

 For multihash, the bit-vectors occupy exactly what 
one PCY bitmap does, but too many hash functions 
make all counts > s
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Frequent Itemsets in < 2 Passes

 A-Priori, PCY, etc., take k passes to find frequent 
itemsets of size k

 Can we use fewer passes?

 Method that uses 2 or fewer passes for all sizes:u
 Random sampling
 SON (Savasere, Omiecinski, and Navathe)
 Toivonen (see textbook)
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Random Sampling (1)

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory
 So we don’t pay for disk I/O each 

time we increase the size of itemsets
 Reduce min. support proportionally 

to match the sample size
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Random Sampling (2)

 Optionally, verify that the candidate pairs are truly 
frequent in the entire data set by a second pass 
(avoid false positives)

 But you don’t catch sets frequent in the whole but 
not in the sample (cannot avoid false negatives)
 Smaller min. support, e.g., s/125, helps catch more truly 

frequent itemsets
 But requires more space
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SON Algorithm – (1)

 Repeatedly read small subsets of the baskets into 
main memory and run an in-memory algorithm 
to find all frequent itemsets
 We are not sampling, but processing the entire file in 

memory-sized chunks
 Min. support decreases to (s/k) for k chunks

 An itemset becomes a candidate if it is found to 
be frequent in any one or more subsets of the 
baskets.
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SON Algorithm – (2)

 On a second pass, count all the candidate itemsets
and determine which are frequent in the entire set

 Key “monotonicity” idea: an itemset cannot be 
frequent in the entire set of baskets unless it is 
frequent in at least one subset.
 Task: find frequent (>= s) itemsets among n baskets
 n baskets divided into k subsets
 Load (n/k) baskets in memory, look for frequent (>= s/k) 

pairs
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SON – Distributed Version

 SON lends itself to distributed data mining 

 Baskets distributed among many nodes 
 Compute frequent itemsets at each node
 Distribute candidates to all nodes
 Accumulate the counts of all candidates
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SON: Map/Reduce

 Phase 1: Find candidate itemsets
 Map? each machine finds frequent itemsets for the 

subset of baskets assigned to it
 Reduce? Collect and output candidate frequent 

itemsets (remove duplicates)

 Phase 2: Find true frequent itemsets
 Map? Output (candidate_itemset, count) for the 

subset of baskets assigned to it
 Reduce? Sum up the count, and output truly frequent

(>= s) itemsets
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Summary

 Frequent Itemsets
 One of the most ‘classical’ and important data mining 

task

 Association Rules: {A} -> {B}
 Confidence, Support, Interestingness

 Algorithms for Finding Frequent Itemsets
 A-Priori
 PCY
 <= 2-Pass algorithm: Random Sampling, SON
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Questions?
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