
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Regularization for Deep Learning - 2

U Kang
Seoul National University

U Kang 2

In This Lecture

 Regularization techniques
 Parameter tying and parameter sharing
 Sparse representations
 Bagging
 Dropout
 Adversarial training
 Tangent propagation

U Kang 3

Parameter Tying and Parameter
Sharing

 L2 regularization is a way to express our prior knowledge that
we penalize model parameters that deviate significantly from
the fixed value of 0

 Sometimes, we might not know precisely what values the
parameter should take, but we know, from the knowledge of
the domain and model architecture, that there should be
some dependencies between model parameters

U Kang 4

Parameter Tying and Parameter
Sharing

 Common dependencies
 Certain parameters should be close to one another

 Ω 𝑤𝑤(𝐴𝐴),𝑤𝑤(𝐵𝐵) = ||𝑤𝑤(𝐴𝐴) − 𝑤𝑤(𝐵𝐵)||22 where 𝑤𝑤(𝐴𝐴) and 𝑤𝑤(𝐵𝐵) are
parameters from different model

 Force set of parameters to be equal = parameter sharing
 Convolutional Neural Network (CNN)

 Share parameters over multiple image locations
 Parameter sharing in CNN makes it translation invariant: i.e., we can

find a cat with the same cat detector whether the cat appears at
column i or column i+1 in the image

 Parameter sharing in CNN also dramatically lowers the model
parameters, and significantly increases network sizes without requiring
a corresponding increase in training data

U Kang 5

Sparse Representations

 Representational regularization: place a penalty on the
activations of the units in a neural network

 Representational regularization is accomplished in a similar
way to the parameter regularization
 𝐽𝐽 Θ;𝑋𝑋,𝑦𝑦 = 𝐽𝐽 Θ;𝑋𝑋,𝑦𝑦 + 𝛼𝛼Ω(ℎ) where

Ω ℎ = ||ℎ||1 = ∑𝑖𝑖 |ℎ𝑖𝑖|

U Kang 6

Bagging
 Bagging (bootstrap aggregating) is a technique for reducing generalization

error by combining several models
 Train several different models separately, then have all of the models vote on the output

for test examples
 An example of model averaging (also called ensemble methods)

 Why does model averaging work?
 Different models will usually not make all the same errors on the test set
 Errors will cancel out if the members make independent errors

 Example: k regression models where i th model makes an error 𝜖𝜖𝑖𝑖 drawn
from a zero-mean multivariate normal distribution with 𝐸𝐸 𝜖𝜖𝑖𝑖2 = 𝑣𝑣 and
covariances 𝐸𝐸 𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗 = 𝑐𝑐
 The expected squared error of the ensemble predictor is

𝐸𝐸 1
𝑘𝑘
∑𝑖𝑖 𝜖𝜖𝑖𝑖

2
= 1

𝑘𝑘2
𝐸𝐸 ∑𝑖𝑖 𝜖𝜖𝑖𝑖2 + ∑𝑗𝑗≠𝑖𝑖 𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗 = 1

𝑘𝑘
𝑣𝑣 + 𝑘𝑘−1

𝑘𝑘
𝑐𝑐

 If errors are perfectly correlated and c = v, the expected squared error is v (no benefit)

 If errors are uncorrelated (i.e., c = 0), then the expected squared error is only 1
𝑘𝑘
𝑣𝑣

U Kang 7

Bagging
 Bagging construct k different datasets; each dataset has the same number

of examples as the original dataset, but each dataset is constructed by
sampling with replacement from the original dataset

 Each dataset is missing some examples, and also contains duplicate ones

U Kang 8

More on Model Averaging
 Different ensemble methods construct the ensemble of models in

different ways.
 E.g., each member of the ensemble could be formed by training a completely different

kind of model using a different algorithm or objective function.

 Neural networks reach a wide enough variety of solution points that they
can often benefit from model averaging even if all of the models are
trained on the same dataset. The following models often make partially
independent errors
 Differences in random initialization
 Random selection of minibatches,
 Differences in hyperparameters
 Different outcomes of non-deterministic implementations

U Kang 9

Dropout

 Computationally inexpensive but powerful method of
regularizing a broad family of models

 A method of making bagging practical for ensembles of many
large neural networks

 Trains the ensemble consisting of all sub-networks that can
be formed by removing non-output units from an underlying
base network

 In standard bagging, we train k different models from k
different datasets by sampling from the training set with
replacement; dropout aims to approximate this process, but
with an exponentially large number of neural networks

U Kang 10

Dropout

U Kang 11

Dropout Training

 Procedure of training with dropout
 Use a minibatch-based learning algorithm
 For each minibatch, we randomly sample a different binary

mask to apply to all of the input and hidden units in the
network

 The mask for each unit is sampled independently
 The probability of sampling a mask value of one is a

hyperparameter; typically, an input unit is included w/
prob 0.8, and a hidden unit is included w/ prob 0.5

 We then run forward propagation, back-propagation, and
the learning update as usual

U Kang 12

Dropout Training

 Analysis
 Suppose a mask vector 𝜇𝜇 specifies which units to include,

and 𝐽𝐽(𝜃𝜃, 𝜇𝜇) is the cost of the model defined by 𝜃𝜃 and 𝜇𝜇
 Then, dropout training consists in minimizing 𝐸𝐸𝜇𝜇𝐽𝐽(𝜃𝜃,𝜇𝜇)
 The expectation contains exponentially many terms but we

obtain an unbiased estimate of its gradient by sampling
values of 𝜇𝜇

 Model independence
 In the case of bagging, the models are all independent
 In the case of dropout, models share parameters

 This parameter sharing makes it possible to represent an
exponential number of models with a tractable amount of memory

U Kang 13

Inference After Dropout
 Assume that each sub-model defined by mask vector 𝜇𝜇 defines a

probability distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝜇𝜇)
 Then, the mean over all masks is given by

 Arithmetic mean: ∑𝜇𝜇 𝑝𝑝(𝜇𝜇)𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝜇𝜇)

 Geometric mean: 2
𝑑𝑑 ∏𝜇𝜇 𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜇𝜇)

 Computing the mean is intractable because it includes an
exponential number of terms

 However, we can approximate it by evaluating p(y|x) in one model
with all units, but with the weights going out of unit i multiplied by
the probability of including unit i

 This is called the weight scaling inference rule
 Intuition: assume unit i is included with probability 0.5 in dropout training.

In the inference stage with the one model with all units, we would output
2 times larger values if we do not adjust weights, and thus change the
model trained with the dropout

U Kang 14

Adversarial Examples

 Adversarial example
 Assume a neural network that performs at human level accuracy
 Given a data point x, it is possible to build x’ (an adversarial example)

around x such that the neural network makes nearly 100% error
 In many cases, x’ is so similar to x that a human observer cannot tell

the difference between x’ and x

U Kang 15

Adversarial Training
 A regularization technique is adversarial training:

training on adversarially perturbed examples from the
training set

 Neural networks are built out of linear building blocks;
unfortunately, the value of a linear function can change
very rapidly if it has numerous inputs
 E.g., if each input changes by 𝜖𝜖, then a linear function with

weights 𝑤𝑤 would change by as much as 𝜖𝜖||𝑤𝑤||1
 Adversarial training discourages this highly sensitive

locally linear behavior by encouraging the network to be
locally constant in the neighborhood of the training data

 This can be seen as a way of explicitly introducing a local
constancy prior into supervised neural nets

U Kang 16

Tangent Propagation
 Many machine learning algorithms aim to overcome the curse

of dimensionality by assuming that the data lies near a low-
dimensional manifold

 Tangent distance
 An approach to use manifold hypothesis
 A non-parametric nearest-neighbor algorithm in which the metric used

is not the generic Euclidean distance but one derived from knowledge
of the manifolds

 Nearest-neighbor distance between points 𝑥𝑥1 and 𝑥𝑥2 is given by the
distance between the manifolds 𝑀𝑀1 and 𝑀𝑀2 to which they respectively
belong to

 However, finding the nearest pair of points on 𝑀𝑀1 and 𝑀𝑀2 is difficult
 A cheap alternative is to approximate 𝑀𝑀𝑖𝑖 by its tangent plane at 𝑥𝑥𝑖𝑖, and

measure the distance between the two tangents, or between a
tangent plane and a point

U Kang 17

Tangent Propagation
 Trains a neural net classifier with an extra penalty to make each output

𝑓𝑓(𝑥𝑥) of the neural net locally invariant to known factors of variation
 Local invariance is achieved by requiring 𝛻𝛻𝑥𝑥𝑓𝑓(𝑥𝑥) to be orthogonal to the

known manifold tangent vectors 𝑣𝑣(𝑖𝑖) at 𝑥𝑥, or equivalently that the
directional derivative of 𝑓𝑓 at 𝑥𝑥 in the directions 𝑣𝑣(𝑖𝑖) be small by adding a
regularization penalty Ω
 Ω 𝑓𝑓 = ∑𝑖𝑖((𝛻𝛻𝑥𝑥𝑓𝑓(𝑥𝑥))𝑇𝑇𝑣𝑣(𝑖𝑖))2

U Kang 18

What you need to know

 Regularization techniques
 Parameter tying and parameter sharing
 Sparse representations
 Bagging
 Dropout
 Adversarial training
 Tangent propagation

U Kang 19

Questions?

	슬라이드 번호 1
	In This Lecture
	Parameter Tying and Parameter Sharing
	Parameter Tying and Parameter Sharing
	Sparse Representations
	Bagging
	Bagging
	More on Model Averaging
	Dropout
	Dropout
	Dropout Training
	Dropout Training
	Inference After Dropout
	Adversarial Examples
	Adversarial Training
	Tangent Propagation
	Tangent Propagation
	What you need to know
	슬라이드 번호 19

