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In This Lecture

 Challenges in neural network optimization
 Basic learning algorithms
 Algorithms with adaptive learning rates
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How Learning Differs from Pure Optimization

 Optimization for deep models differ from 
traditional optimization algorithms
 For deep model: optimize indirectly

 We care about some performance measure 𝑃𝑃 defined with 
respect to the test set

 We minimize a different cost function 𝐽𝐽(𝜃𝜃) in the hope that 
doing so will improve 𝑃𝑃

 Pure optimization: minimizing 𝐽𝐽 is a goal in and of itself



U Kang 4

How Learning Differs from Pure Optimization

 In optimization for deep models, our final goal is to minimize 
loss with regard to data generating distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 𝐸𝐸𝑥𝑥,𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 𝑓𝑓 𝑥𝑥,𝜃𝜃 ,𝑦𝑦

 Since we do not know 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, we use empirical risk 
minimization
 𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 𝑓𝑓 𝑥𝑥,𝜃𝜃 ,𝑦𝑦 = 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑓𝑓 𝑥𝑥 𝑖𝑖 ,𝜃𝜃 , 𝑦𝑦 𝑖𝑖 )

 However, optimization for deep model does not perform 
direct empirical risk minimization due to overfitting and often 
non-differentiable loss function
 Instead, optimization for deep model uses early stopping and 

surrogate loss function (e.g. cross entropy)
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Challenges in Neural Network Optimization

 Ill-Conditioning
 Local minima
 Cliffs and exploding gradients
 Long-term dependencies
 Poor correspondence between local and global structure
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Ill-Conditioning
 Gradient descent procedure

 𝑓𝑓 𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 0 + 𝑥𝑥 − 𝑥𝑥 0 𝑇𝑇
𝑔𝑔 + 1

2
𝑥𝑥 − 𝑥𝑥 0 𝑇𝑇

𝐻𝐻 𝑥𝑥 − 𝑥𝑥 0 where g 
is the gradient and H is the Hessian at 𝑥𝑥 0 .

 Using a learning rate of 𝜖𝜖, then the new point x will be given by 𝑥𝑥 0 −
𝜖𝜖g. 

 Then, 𝑓𝑓 𝑥𝑥 0 − 𝜖𝜖g ≈ 𝑓𝑓 𝑥𝑥 0 − 𝜖𝜖𝑔𝑔𝑇𝑇𝑔𝑔 + 1
2
𝜖𝜖2𝑔𝑔𝑇𝑇𝐻𝐻𝐻𝐻

 Ill-conditioning happens when 1
2
𝜖𝜖2𝑔𝑔𝑇𝑇𝐻𝐻𝐻𝐻 exceeds 𝜖𝜖𝑔𝑔𝑇𝑇𝑔𝑔
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No Critical Point

 Gradient may be large even if the error converged
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Local Minima
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Local Minima

 Neural networks have multiple local minima, because of model 
identifiability problem
 A model is identifiable if a sufficiently large training set can rule out all but 

one setting of the model’s parameters
 Models with latent variables are often not identifiable because we can 

obtain equivalent models by exchanging latent variables with each other
 Neural network: one can make many equivalent models by swapping 

weights of node i with those of node j. This kind of non-identifiability is 
called weight space symmetry

 Optimizing in the presence of local minima is an active area of 
research
 However, experts suspect that for sufficiently large neural networks, most 

local minima have a sufficiently low cost function value, and finding a true 
global minimum is not that important
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Poor Correspondence between Local 
and Global Structure

 Optimization based on local downhill moves can fail if the local 
surface does not point toward the global solution
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Basic Algorithms

 Stochastic Gradient Descent (SGD)
 Momentum
 Nesterov momentum
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Stochastic Gradient Descent (SGD)

 Obtain an unbiased estimate of the gradient by taking the 
average gradient on a minibatch of m examples drawn i.i.d
from the data generating distribution
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Momentum

 Learning with SGD can sometimes be slow
 The method of momentum is designed to solve poor 

conditioning of the Hessian matrix and variance in SGD
 The momentum algorithm accumulates an exponentially 

decaying moving average of past gradients and continues to 
move in their direction

Red line: from momentum
Black arrow: from SGD
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Momentum

 Update rule in momentum
 𝑣𝑣 ← 𝛼𝛼𝑣𝑣 − 𝜖𝜖𝛻𝛻𝜃𝜃( 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑓𝑓 𝑥𝑥 𝑖𝑖 ,𝜃𝜃 , 𝑦𝑦 𝑖𝑖 ))

 𝜃𝜃 ← 𝜃𝜃 + 𝑣𝑣

 Common values of 𝛼𝛼: 0.5, 0.9, and 0.99
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Nesterov Momentum

 Update rule is the same as that of momentum
 𝑣𝑣 ← 𝛼𝛼𝑣𝑣 − 𝜖𝜖𝛻𝛻𝜃𝜃( 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑓𝑓 𝑥𝑥 𝑖𝑖 ,𝜃𝜃 , 𝑦𝑦 𝑖𝑖 ))

 𝜃𝜃 ← 𝜃𝜃 + 𝑣𝑣

 Difference is that with Nesterov momentum the gradient is 
evaluated after the current velocity is applied
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Algorithms with Adaptive Learning Rates

 Learning rate is one of the hyperparameters that is the most 
difficult to set since it has a significant impact on model 
performance

 The momentum algorithm can mitigate the issue, but at the 
expense of introducing another hyperparameter

 Methods with adaptive learning rates for model parameters
 AdaGrad
 RMSProp
 Adam (variant of RMSProp + momentum)
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AdaGrad
 Adapts the learning rates of all model parameters by scaling 

them inversely proportional to the square root of the sum of 
all of their historical squared values
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AdaGrad
 Adapts the learning rates of all model parameters by scaling them 

inversely proportional to the square root of the sum of all of their 
historical squared values

 Puts more weights on rare features
 E.g., in document classification,  rare terms would become more important 

features than common terms do
 Consider a linear model (e.g., logistic regression) for document classification
 Assume a rare term y does not appear in a document D
 Gradient vector’s element for 𝑤𝑤𝑦𝑦(weight for term y) would be 0 for loss wrt D (i.e., 

changing 𝑤𝑤𝑦𝑦 does not change classification of D) since y is not in D
 Thus, AdaGrad would accumulate small values for rare terms (since their gradients would 

be 0 if they do not appear in documents), but large values for frequent terms
 AdaGrad gives larger weights for gradients of rare terms, and smaller weights for those of 

common terms
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AdaGrad
 For convex optimization, AdaGrad works well with desirable 

theoretical properties
 For training deep neural network models, however, 

accumulation of squared gradients from the beginning of 
training can result in a premature and excessive decrease in 
the effective learning rate
 Correction: RMSProp

 AdaGrad performs well for some but not all deep learning 
models
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RMSProp
 RMSProp modifies AdaGrad to perform better in the non-convex 

setting by changing the gradient computation into an 
exponentially weighted moving average
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RMSProp
 RMSProp modifies AdaGrad to perform better in the non-convex 

setting by changing the gradient computation into an 
exponentially weighted moving average

 AdaGrad shrinks the learning rate according to the entire history 
of the squared gradient and may have made the learning rate 
too small before arriving at such a convex structure

 RMSProp uses an exponentially decaying average to discard 
history from the extreme past so that it can converge rapidly 
after finding a convex bowl, as if it were an instance of the 
AdaGrad algorithm initialized within that bowl

 RMSProp is an effective and practical optimization algorithm for 
deep neural networks. It is one of the go-to optimization 
methods by deep learning practitioners
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RMSProp with Nesterov Momentum
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Choosing the Right Opt. Algorithm
 There is no consensus on this point
 Algorithms with adaptive learning rates perform robustly, but no 

single best algorithm has emerged
 The most popular optimization algorithms actively in use

 SGD
 SGD with momentum
 RMSProp
 RMSProp with momentum
 AdaDelta
 Adam
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What you need to know

 Challenges in neural network optimization
 Ill-conditioning, local minima, cliffs and exploding 

gradients, long-term dependencies, and poor 
correspondence between local and global structure

 Basic learning algorithms
 SGD, momentum, and Nesterov momentum

 Algorithms with adaptive learning rates
 AdaGrad and RMSProp
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Questions?
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