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• What we will do

– Focus on the air-water interphase

– Discuss factors that affect mass transfer rates

– Consider the interfacial region

– Consider models that attempt to predict mass transfer rates

• Some background

• Some examples

• Considerable empiricism involved

– Difficult/impossible to directly measure certain parameters of interest

• Employ models with a fundamental underpinning

• Get constants from correlations
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• Net change in a compound’s mass, concentration, and/or fugacity 

within a specific volume, compartment, phase

– Non-equilibrium process

– Movement is from high to low fugacity

• Within a single phase, this means from high to low concentration

• A consequence of random behavior, motion
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• Moles of drunks meandering through space

– Random walk

• Consider the (ground level) atmosphere

– Molecules

• Take up ~0.1% of available space

• Zip around at ~450 m/sec (average)

• Have ~2 x 1010 collisions/sec

– Mean free path (mfp) ~20 nm (2 x 10-8 m); characteristic travel distance is:

» ~6 mm in one second

» ~5 cm in one minute

» ~40 cm in one hour
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m: molecular weight; V: molecular volume 

x, y in the range of 0.6 to 0.8

[L2/T]

Specific flux (J): net mass (or 

molecules) crossing unit area of 

boundary per unit time
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[M/L2/T] or [mole/L2/T]
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• Observed air/water transfer rates are too fast to be explained by 

molecular diffusion across a flat interphase from/into a quiescent 

phase

– Regions where diffusion controls are very thin

• Turbulence

– Actual interfacial areas may be >> than nominal

• Difficult to measure
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Let’s consider model systems with:

• 1-dimensional movement

• At t = 0

– For 0 < x < 25; Concentration (C) = 1000/unit volume

• At any t

– For x = 0; C = 1000

– For x = 25; C = 0

• At boundaries there is continuous replenishment/scavenging

• For any time step 

– System A: DA = 0.5

– System B: DB = 1
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50% of molecules shift position in time δt

Equal probability of shifting right or left

If this represents a unit area, then flux, J = 1/δt

For this case we are at steady state:
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• Initially 

– Concentration profile changes rapidly

– Flux out changes rapidly

– System with high D � concentration gradient decreases faster at the 

outlet
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• After a long time

– Linear concentration profile
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Transport is from high fugacity to 

low fugacity

Assumptions

• ����
% �  &'' · ����

)

(equilibrium at the interface)

• �% � �)

(No accumulation at the interface)

• “Permanent” films 

developed

• Sufficient time for linear 

conc. gradients to 

develop in each film

• Changes in Cbulk are slow 

compared to gradient 

response rates
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.� � ��/*�,  mass transfer 

coefficient [L/T](+) flux when bulk � interface

Flux in the films for phase i:

Since �% � �) ,
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set (+) flux when liquid � gas

.) � �)/*),  mass transfer coefficient at the liquid film [L/T]

.% � �%/*% ,  mass transfer coefficient at the gas film [L/T]
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This is the liquid phase 

concentration that would 

be in equilibrium with the 

actual bulk gas phase 

concentration

Liquid phase as a 

reference
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The behavior is exactly analogous to having 2 resistors in series in 

an electric circuit
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If .) ≪  .%&'' then 3) ≫  3%; liquid phase boundary layer controls flux

Typically: 1 <
.%

.)

< 300 Gas phase D >> liquid (by ~104)

Film thickness: δG > δL

If assume 95+% resistance equals phase control, & kG/kL = 100, then:

Hcc > 19: liquid phase control

0.06 < Hcc ≤ 19: maybe liquid phase control

Hcc < 0.0002: gas phase control

0.0002 < Hcc < 0.005: maybe gas phase control

0.005 < Hcc < 5: probably affected by both phases
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Assume .%/.) � 100 for general estimation



23

• Assumes fully developed, time invariant interfacial regions

– Linear concentration gradient within the boundary layer

• If resistance in one phase dominates, overall mass transfer 

resistance then 

– 0)  ∝  �� ,  i = phase of dominant resistance

• Experimental studies have shown

– 0)  ∝  ��
8

• 0.5 ≤ a ≤ 1

– Film theory not always consistent with experimental data
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• Suppose turbulence goes all the way to the interface. 

Assume:

– Some fraction “s” of the N0 surface “chunks” of water are replaced 

every unit of time, Δt = 1

– The replacement of surface “chunks” is random

• N1 represents the number of surface chunks not replaced at 0 ≤ t ≤ t1
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• But

cf. Film theory: .� ∝ ��
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• Flux equations still hold:

AB � CBDB
E.G

si = surface renewal rate, [T-1]
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• The Sherwood number:

Di = molecular diffusion [L2/T]

ki = mass transfer coefficient [L/T]

d = characteristic length (particle diameter, stream depth, etc.)

aj = constants, often empirical

Dimensionless numbers:

Re = Reynolds #, ratio of inertial force to viscous forces

Sc = Schmidt #, ratio of momentum diffusivity to mass diffusivity

Sh = Sherwood #, ratio of mass transport to mass diffusivity

- Mathematical form analogous to momentum and heat transfer models

- Incorporates effects of mixing on mass transfer
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• Used in fluid mechanics to predict system behavior

– Re: Reynolds #, ratio of inertial force to viscous force

3< �  
� N O

P
�

� N O N Q

R
d = characteristic length 

u = velocity [L/T]

ν  = kinematic viscosity [L2/T]

μ  = dynamic viscosity [M/L-T]

velocity x density = inertial force

viscosity

– Low Re: laminar flow; High Re: turbulent flow

• For pipe flow

– Re2d = Red if ud = 2u2d
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If a1 = 0, then:

a2: 0.01 to 1.0

a3: 0.33 (laminar flow) to 0.8 (turbulent flow)

a4: 0 to 0.5 (~0.33 is common)
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J� 3< 8K P 8M��
:=8M

�
� J�� 8K=: O8KP 8M=8K ��

:=8M

a3 = 0.33; a4 = 0.5 .� � J��=;.STO;.UUP;.:T��
;.V

a3 = 0.8; a4 = 0.33 .� � J��=;.�O;.WP=;.XT��
;.ST
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Flux rate per unit area
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Total flux (A is area of air-water interface)
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This is the rate of change in concentration in water

a = interfacial area for mass transfer per unit volume, A/V [L-1]

V = volume in which concentration is changing [L3]

KLa = volumetric mass transfer coefficient [T-1]
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Studies of oxygen reaeration in streams have been reasonably fit by the following:

(O’Connor & Dobbins, 1958)

0)J �
�)O ;.V

&:.V

0) �
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&

;.V

� .)

u = stream velocity, m/s

H = 1/a = average stream depth, m

DL = liquid phase diffusivity, m2/s
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• Applying surface renewal model:

– O’Connor and Dobbins hypothesized that

9) �  
YZ[. Z<\�]LJ^ Z<^_L]�` a` �O\aO^<bL<

YZ[. �]�]b[ ^<b[�I
�  
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– Therefore,

0) ≈ .) � �)9)
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• Applying boundary layer theory:

If a2 = 1.0; a3 & a4 = 0.5: 

0) ≈ .) �
�)O
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Transfer to particle surface in stagnant fluid:
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Here, a1 = 2
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0)J ≈ .)J ≈
10=W

�d
�  9<L=:

Equilibration time can be 

characterized by 1/kLa

If resistance is dominant at liquid phase, 
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ki: mass transfer coefficient

has unit of [L/T]; velocity



36

Total air-water transfer velocity vtot as a 

function of Henry’s coefficient KH for two 

different wind speeds, u10.

Q: Why is vtot a function of KH (=HPC) 

at B but not at A?
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• Molecular diffusion important over short lengths

– Thin, stagnant regions at interphases

– Turbulence critical at macroscopic levels

• Mixing within phase

• Generating interfacial surfaces

• Three models

– Differing versions of the interfacial region

• Difficult/impossible to directly measure region

• Infer interfacial region properties from experimental data

• Models differ in molecular diffusion’s impact on overall mass transfer

• For many compounds mass transfer resistance in one phase 

controls overall mass transfer rate




