

Introduction to Data Mining

Lecture #17: Recommendation – Content based & Collaborative Filtering

U Kang Seoul National University

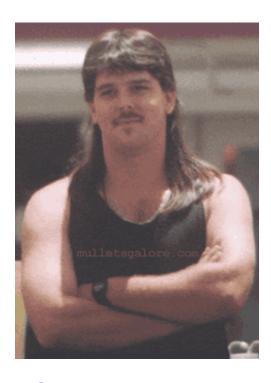
In This Lecture

- Understand the motivation and the problem of recommendation
- Compare the content-based vs. collaborative filtering approaches for recommender system
- Learn how to evaluate methods for recommendation

Outline

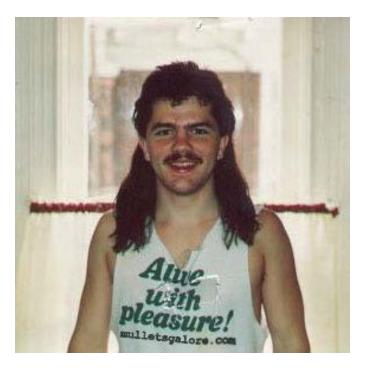
Overview
 Content-based Recommender System
 Collaborative Filtering
 Evaluation & Complexity

Example: Recommender Systems



Customer X

- Buys Metallica CD
- Buys Megadeth CD



Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations



helping you find the right movies

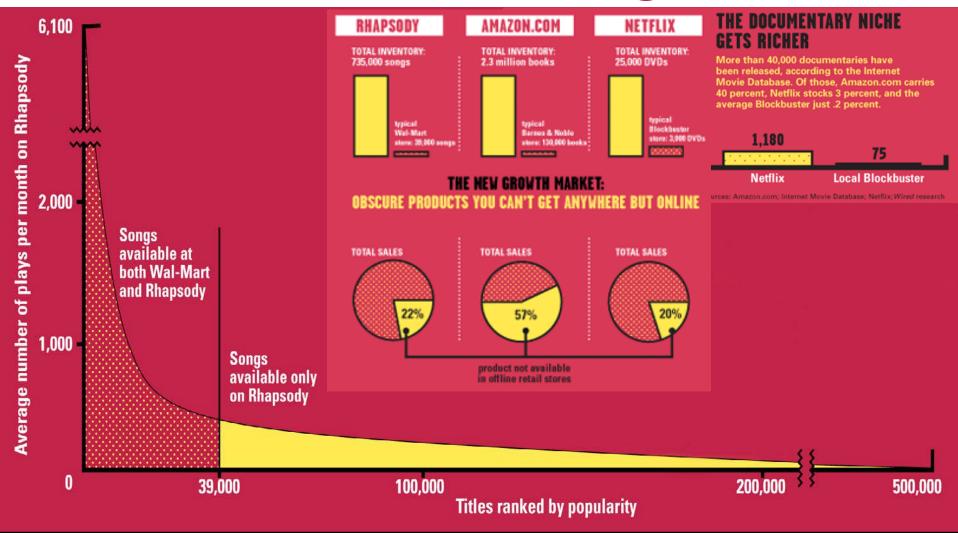
Offline vs. Online Recommendation

- Offline recommendation: popular item
 - Wall-mart: shelf space contains only 'popular' items
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - Can recommend scarce items, too
- More choice necessitates better filters
 - Recommendation engines
 - □ How Into Thin Air (1998) made Touching the Void (1988) a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

U Kang

6

Sidenote: The Long Tail



Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Types of Recommendations

Editorial and hand curated

- List of favorite cities
- List of "essential" items for travel

Simple aggregates

□ Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...

Formal Model

- X = set of Customers
- \blacksquare S = set of Items

- Utility function $u: X \times S \rightarrow R$
 - \square R = set of ratings
 - R is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- **(3)** Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?
 - "not buying an item" = "don't like the item" ?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - □ 1) Content-based
 - Collaborative
 - □ 3) Latent factor based

U Kang

13

Outline

- Overview
- Content-based Recommender System
 - □ Collaborative Filtering
 - Evaluation & Complexity

Content-based Recommendations

- Main idea: Recommend items to customer x similar to previous items rated highly by x
 - Andy enjoyed watching "Avengers 2". Andy will also like "Captain America Civil War" as well since they are similar in content

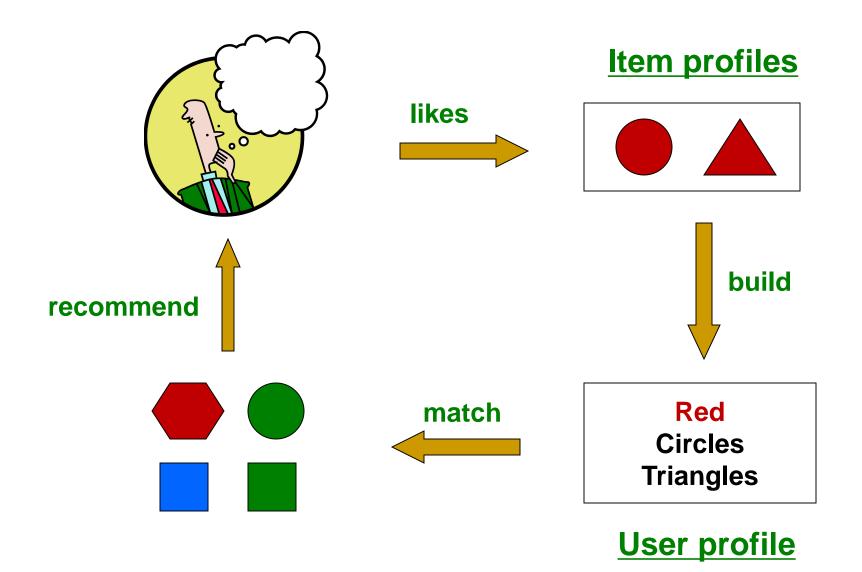
Example:

- Movie recommendations
 - □ Recommend movies with same actor(s), genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

U Kang

15

Plan of Action



Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - **Movies:** author, title, actor, ...
 - □ **Text:** Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF
 (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

U Kang

17

Sidenote: TF-IDF

 f_{ii} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

18

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF
scores, together with their scores

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- **...**

Prediction heuristic:

Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

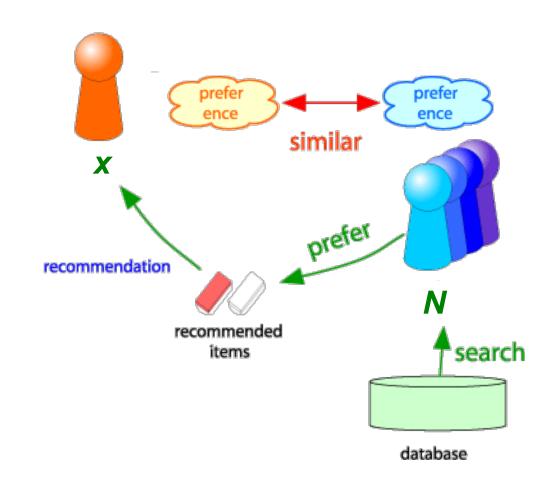
- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Outline

- Overview
- Content-based Recommender System
- → □ Collaborative Filtering
 - Evaluation & Complexity

Collaborative Filtering

- Consider user **x**
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



Note that contents of items are not used here.

Finding "Similar" Users

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure

 - Problem: low rating is not penalized much
- Pearson correlation coefficient
 - \Box S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \quad \overline{r_x}, \overline{r_y} \dots \text{ avg. rating of } x, y}$$

 r_x , r_y as sets: $r_x = \{1, 4, 5\}$ $r_y = \{1, 3, 4\}$

 r_x , r_y as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_y = \{1, 0, 2, 2, 0\}$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Problem: low rating is not penalized much
 - Solution: subtract the (row) mean

	ı			TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D		0			,		0

sim A,B vs. A,C: 0.092 > -0.559

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N (called 'k-nearest neighbors') be the set of k users most similar to x who have rated item i
- Prediction r_{xi} for item i of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 Shorthand:
$$s_{xy} = sim(x, y)$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items rated by user x
 - Use the utility matrix for computing similarity
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

 s_{ij} ... similarity of items i and j r_{xj} ...rating of user x on item j N(i;x)... set items rated by x similar to i

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

users

sim(1,m	12	11	10	9	8	7	6	5	4	3	2	1	
1.00		4		5			5	?		3		1	1
-0.18	3	1	2			4			4	5			2
<u>0.41</u>		5	3	4		3		2	1		4	2	<u>3</u>
-0.10		2			4			5		4	2		4
-0.31	5	2					2	4	3	4			5
<u>0.59</u>		4			2			3		3		1	<u>6</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Similarity computation:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

sim(1,m)

1.00

-0.18

0.41

-0.10

-0.31

0.59

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$$

 $r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$

32

CF: Common Practice $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{s_{ii}} s_{ij}}$

Before:
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij} r_{xj}}$$

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

•
$$\mu$$
 = overall mean movie rating

•
$$b_x$$
 = rating deviation of user x

=
$$(avg. rating of user x) - \mu$$

•
$$b_i$$
 = rating deviation of movie i
= $(avg. rating of movie i) - \mu$

CF: Baseline Predictor

- Mean movie rating: 3.7 stars
- The Sixth Sense is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Needs enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

 Cannot recommend an item that has not been previously rated (e.g., new items, esoteric items)

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for "new item problem"
 - User-user CF: no one has ever rated the new item
 - Item-item CF: one cannot find similar items to the new item
 - Demographics to deal with "new user problem"
 - User-user CF: cannot find similar users to the new user
 - Item-item CF: cannot find similar items to the item of interest

37

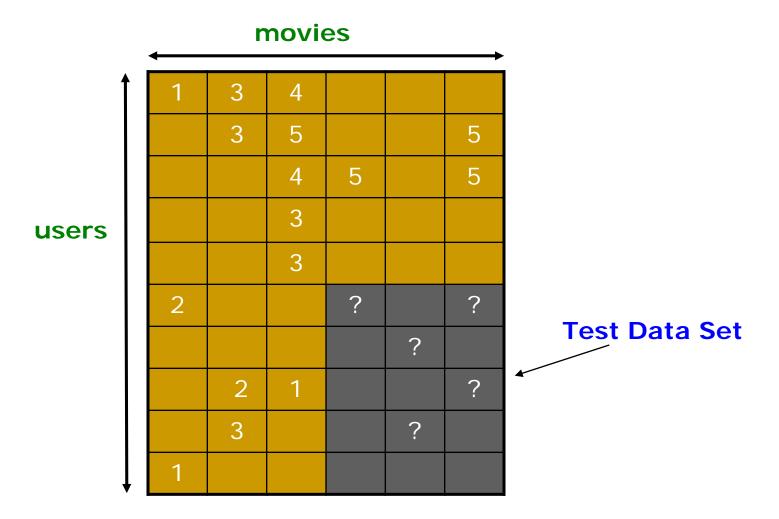
Outline

- Overview
- Content-based Recommender System
- Collaborative Filtering
- **→** □ Evaluation & Complexity

Evaluation

	•	n	novi	es		→
1	1	3	4			
		3	5			5
			4	5		5
users			3			
users			3			
	2			2		2
					5	
		2	1			1
		3			3	
	1					

Evaluation



(From

Wikipedia)

Evaluating Predictions

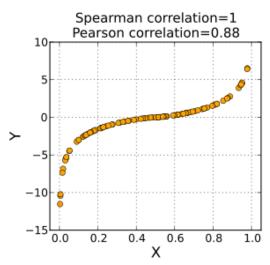
- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - □ **Precision at top 10**: error in top 10 highest predictions
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 1 -1 -1 -1

0 0 0 0 0 0 0 0 0

Pearson correlation coefficient UKang



Rank correlation coefficient=1

41

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - E.g., Prediction diversity

- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
 - X ... set of customers
- Too expensive to do at runtime
 - Could pre-compute
- Pre-compute finding similar customers
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction (later)

Tip: Add Data

- Simple method on large data is better than complex method on small data
 - Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Questions?