
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Applications

U Kang
Seoul National University

U Kang 2

In This Lecture

 Core technology for large scale deep learning
 Applications
 Computer Vision
 Speech
 Natural Language Processing

U Kang 3

Large Scale Deep Learning

U Kang 4

Fast Implementations
 CPU

 Exploit fixed point arithmetic in CPU families for a speedup
 Cache-friendly implementations

 GPU
 High memory bandwidth
 No or little cache

 It can actually be faster to compute the same value twice, rather than compute it once
and read it back from memory

 Inherently multi-threaded, and different threads must be coordinated with
each other carefully

U Kang 5

Distributed Implementations
 Multi-GPU
 Multi-machine

 Model parallelism: multiple machines work together on a single data
point, with each machine running a different part of the model

 Data parallelism: each input example is processed by a separate machine
 Trivial at test time
 Asynchronous SGD (or lock-free SGD) at train time

 Several processor cores share the memory representing the parameters
 Each core reads parameters without a lock, then computes a gradient, then

increments the parameters without a lock
 This reduces the average amount of improvement that each gradient

descent step yields, because some of the cores overwrite each other’s
progress

 But the increased rate of production steps causes the learning process to be
faster overall

 Parameter server: manages parameters in multiple machines

U Kang 6

Model Compression
 In many commercial applications, it is crucial that the time and

memory cost of running inference is small
 It is accepted that the cost of training is large

 Model compression: replace the original, expensive model with a
smaller model that requires less memory and runtime to store
and evaluate

U Kang 7

Model Compression
 Large models often have lower test error

 Very large model trained with dropout
 Ensemble of many models

 Want small model for low resource use at test time
 Train a small model to mimic the learned larger model f

 Generate a training set containing infinitely many examples, by applying f
to randomly sampled points x

 We then train the new, smaller model to match f(x) on these points
 It is best to sample the new x points from a distribution resembling the

actual test inputs; this can be done by corrupting training examples, or by
drawing points from a generative model trained on the original training set

 Obtains better test error than directly training a small model

U Kang 8

Dynamic Structure
 Dynamic structure in deep learning systems

 A strategy for accelerating deep learning systems
 Many neural networks: determine which subset of them should be run on

a given input
 Individual neural network: determine which subset of features (hidden

units) to compute given information from the input; also called conditional
computation

 Major obstacle to using dynamic structure: decreased degree of
parallelism that results from the system following different code branches
for different input

 Examples
 Cascade
 Hard mixture of experts

U Kang 9

Dynamic Structure
 Cascade of classifiers

 Can be applied when the goal is to detect the presence of a rare object
 To know for sure the object is present, we must use a complex classifier

with high capacity
 However, we can usually use much less computation to reject inputs as

not containing the object
 We can train a sequence of classifiers
 The first classifier has low capacity, and has high recall; the final classifier

has high precision
 At test time, we run inference by running the classifiers in a sequence,

abandoning any example as soon as any one element in the cascade
rejects it

U Kang 10

Dynamic Structure
 Hard mixture of experts

 One can use a neural network (called the gater) to select which one out of
several expert networks will be used to compute the output, given the
current input

 Mixture of experts: the gater outputs a set of probabilities or weights, one
per expert, and the final output is obtained by the weighted combination
of the output of the experts

 Hard mixture of experts: a single expert is chosen by the gater

U Kang 11

Specialized Hardware Implementations

 ASICs (Application-Specific Integrated Circuit)
 FPGA (Field Programmable Gated Array)
 Tensor Processing Unit (TPU) by Google

 Algorithms with lower precision
 It has long been known that it is possible to use less precision in deep

network
 Recent works on low-precision implementation of backprop-based neural

nets suggest that 8 and 16 bits of precision can suffice for training deep
network

 More precision is required during training than at inference time
 Fixed point representation can save bits per number

 Reduces hardware surface area, power requirements, and computing time

U Kang 12

Computer Vision (CV)
 One of the most active research areas for deep learning

applications
 Most deep learning for CV is used for object recognition or

detection of some form
 Reporting which object is present in an image
 Annotating an image with bounding boxes around each object
 Transcribing a sequence of symbols from an image
 Labeling each pixel in an image with the identity of the object it belongs to

U Kang 13

Computer Vision (CV)
 Preprocessing for CV

 CV usually requires very little preprocessing
 Standardizing pixel values

 The only strictly necessary preprocessing is to standardize pixel values to be in [0, 1] or [-
1, 1]

 Scaling images
 Many CV architectures require images of a standard size, so images must be cropped or

scaled to fit that size
 But, some convolutional models automatically scales images

 Dataset augmentation
 Reduce generalization errors

U Kang 14

Speech Recognition
 1980s ~ 2009

 State of the art: GMM-HMM model
 GMM (Gaussian mixture model): models the association between acoustic

features and phonemes
 HMM: models the sequences of phonemes

 2009~
 Use neural network to replace GMMs for the task of associating acoustic

features to phonemes
 Ongoing task: building an end-to-end deep learning speech recognition

system that completely removes the HMM

U Kang 15

Natural Language Processing
 The use of human languages by a computer

 E.g., Machine translation, dialogue system, etc.

 Many NLP applications are based on language models that define
a probability distribution over sequences of words

 Because the total number of possible words is so large, word-
based language models must operate on an extremely high-
dimensional and sparse discrete space; several strategies have
been developed to make efficient models

 Models
 N-gram
 Neural language model

U Kang 16

N-gram Model
 N-grams language model

 N-gram: a sequence of n tokens (typically, words)
 Models based on n-grams define the conditional probability of the n-th

token given the preceding n-1 tokens
 Assumes that the probability depends only on the n-1 tokens

 The model uses products of these conditional distributions to define the
probability distribution over longer sequences

 Special names: unigram (n=1), bigram (n=2), trigram (n=3)
 Training n-gram models is straightforward because the maximum

likelihood estimate can be computed simply by counting

U Kang 17

N-gram Model
 Trigram example: compute the probability of the sentence “THE

DOG RAN AWAY”
 P(THE DOG RAN AWAY) = P(THE DOG RAN) P(AWAY | THE DOG RAN)

= P(THE DOG RAN) P(AWAY| DOG RAN)
= P(THE DOG RAN) P(DOG RAN AWAY) / P(DOG RAN)

 Problem of maximum likelihood for n-gram: sparseness
 Smoothing: add non-zero probability mass to all of the possible symbol

values
 Mixture model containing higher-order and lower-order n-gram models,

with the high-order models providing more capacity and the lower-order
models being more likely to avoid counts of zero
 Back-off methods: look-up the lower-order n-grams if the frequency of the context

𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥𝑡𝑡−𝑛𝑛+1 is too small to use the higher-order model

U Kang 18

Word Embeddings in Neural Language
Models

 Neural language models
 Learns distributed representation of words (also known as word

embeddings)
 In the embedding space, words that frequently appear in similar contexts

(or any pair of words sharing some features learned by the model) are
close to each other. This often results in words with similar meanings
being neighbors

 Skipgram model (word2vec)
 Given a sequence of training words 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑇𝑇 ,

Maximize 1
𝑇𝑇
∑𝑡𝑡=1𝑇𝑇 ∑−𝑐𝑐≤𝑗𝑗≤𝑐𝑐,𝑗𝑗≠0 log𝑝𝑝(𝑤𝑤𝑡𝑡+𝑗𝑗|𝑤𝑤𝑡𝑡)

where 𝑝𝑝 𝑤𝑤𝑂𝑂 𝑤𝑤𝐼𝐼 =
exp(𝑣𝑣𝑣𝑤𝑤𝑂𝑂

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

∑𝑤𝑤=1
|𝑉𝑉| exp(𝑣𝑣𝑣𝑤𝑤𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

U Kang 19

Word Embeddings in Neural Language
Models

 Word2vec

U Kang 20

High-Dimensional Output Layers for
Large Vocabularies

 In many natural language applications, we want our model to
produce words as the fundamental unit of the output

 The vocabulary V often contains hundreds of thousands of words
 Assume ℎ is the top hidden layer used to predict the output

probabilities 𝑦𝑦
 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 + ∑𝑗𝑗𝑊𝑊𝑖𝑖𝑗𝑗ℎ𝑗𝑗

 𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖
∑
𝑖𝑖′=1
|𝑉𝑉| 𝑒𝑒𝑎𝑎𝑖𝑖′

 To compute 𝑦𝑦𝑖𝑖, we need to compute |V| terms in the
denominator!

U Kang 21

High-Dimensional Output Layers for
Large Vocabularies

 Solutions of the high-dimensional output problem
 Hierarchical softmax
 Negative sampling

U Kang 22

Hierarchical Softmax

 Decompose probabilities hierarchically
 Instead of running a computations |V| times, do it only log |V| times
 𝑃𝑃 𝑦𝑦 = 𝑤𝑤4 = 𝑃𝑃 𝑏𝑏0 = 1, 𝑏𝑏1 = 0, 𝑏𝑏2 = 0

= 𝑃𝑃 𝑏𝑏0 = 1 𝑃𝑃 𝑏𝑏1 = 0 𝑏𝑏0 = 1 𝑃𝑃(𝑏𝑏2 = 0|𝑏𝑏0 = 1, 𝑏𝑏1 = 0)

U Kang 23

Negative Sampling

 In word2vec, our goal is to maximize 𝑝𝑝 𝑤𝑤𝑂𝑂 𝑤𝑤𝐼𝐼 =
exp(𝑣𝑣𝑣𝑤𝑤𝑂𝑂

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

∑𝑤𝑤=1
|𝑉𝑉| exp(𝑣𝑣𝑣𝑤𝑤𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

 Evaluating the denominator requires too much computation
 Negative sampling

 Maximize a bit different, but related objective

 New objective: log𝜎𝜎(𝑣𝑣𝑣𝑤𝑤𝑂𝑂
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼) + ∑𝑖𝑖=1𝑘𝑘 𝐸𝐸𝑤𝑤𝑖𝑖~𝑃𝑃𝑛𝑛(𝑤𝑤) log𝜎𝜎(−𝑣𝑣𝑣𝑤𝑤𝑖𝑖

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

 Intuition: maximize 𝑣𝑣𝑣𝑤𝑤𝑂𝑂
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼 for similar words 𝑤𝑤𝑂𝑂 and 𝑤𝑤𝐼𝐼, but minimize

𝑣𝑣𝑣𝑤𝑤𝑖𝑖
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼 for dissimilar words 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝐼𝐼

U Kang 24

Neural Machine Translation

U Kang 25

What you need to know

 Core technology for large scale deep learning
 Fast implementation
 Distributed implementation
 Model compression
 Dynamic structure
 Specialized hardware

 Applications
 Computer Vision: light preprocessing needed
 Speech
 Natural Language Processing: efficient method for

high-dimensional output

U Kang 26

Questions?

	슬라이드 번호 1
	In This Lecture
	Large Scale Deep Learning
	Fast Implementations
	Distributed Implementations
	Model Compression
	Model Compression
	Dynamic Structure
	Dynamic Structure
	Dynamic Structure
	Specialized Hardware Implementations
	Computer Vision (CV)
	Computer Vision (CV)
	Speech Recognition
	Natural Language Processing
	N-gram Model
	N-gram Model
	Word Embeddings in Neural Language Models
	Word Embeddings in Neural Language Models
	High-Dimensional Output Layers for Large Vocabularies
	High-Dimensional Output Layers for Large Vocabularies
	Hierarchical Softmax
	Negative Sampling
	Neural Machine Translation
	What you need to know
	슬라이드 번호 26

