
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Applications

U Kang
Seoul National University

U Kang 2

In This Lecture

 Core technology for large scale deep learning
 Applications
 Computer Vision
 Speech
 Natural Language Processing

U Kang 3

Large Scale Deep Learning

U Kang 4

Fast Implementations
 CPU

 Exploit fixed point arithmetic in CPU families for a speedup
 Cache-friendly implementations

 GPU
 High memory bandwidth
 No or little cache

 It can actually be faster to compute the same value twice, rather than compute it once
and read it back from memory

 Inherently multi-threaded, and different threads must be coordinated with
each other carefully

U Kang 5

Distributed Implementations
 Multi-GPU
 Multi-machine

 Model parallelism: multiple machines work together on a single data
point, with each machine running a different part of the model

 Data parallelism: each input example is processed by a separate machine
 Trivial at test time
 Asynchronous SGD (or lock-free SGD) at train time

 Several processor cores share the memory representing the parameters
 Each core reads parameters without a lock, then computes a gradient, then

increments the parameters without a lock
 This reduces the average amount of improvement that each gradient

descent step yields, because some of the cores overwrite each other’s
progress

 But the increased rate of production steps causes the learning process to be
faster overall

 Parameter server: manages parameters in multiple machines

U Kang 6

Model Compression
 In many commercial applications, it is crucial that the time and

memory cost of running inference is small
 It is accepted that the cost of training is large

 Model compression: replace the original, expensive model with a
smaller model that requires less memory and runtime to store
and evaluate

U Kang 7

Model Compression
 Large models often have lower test error

 Very large model trained with dropout
 Ensemble of many models

 Want small model for low resource use at test time
 Train a small model to mimic the learned larger model f

 Generate a training set containing infinitely many examples, by applying f
to randomly sampled points x

 We then train the new, smaller model to match f(x) on these points
 It is best to sample the new x points from a distribution resembling the

actual test inputs; this can be done by corrupting training examples, or by
drawing points from a generative model trained on the original training set

 Obtains better test error than directly training a small model

U Kang 8

Dynamic Structure
 Dynamic structure in deep learning systems

 A strategy for accelerating deep learning systems
 Many neural networks: determine which subset of them should be run on

a given input
 Individual neural network: determine which subset of features (hidden

units) to compute given information from the input; also called conditional
computation

 Major obstacle to using dynamic structure: decreased degree of
parallelism that results from the system following different code branches
for different input

 Examples
 Cascade
 Hard mixture of experts

U Kang 9

Dynamic Structure
 Cascade of classifiers

 Can be applied when the goal is to detect the presence of a rare object
 To know for sure the object is present, we must use a complex classifier

with high capacity
 However, we can usually use much less computation to reject inputs as

not containing the object
 We can train a sequence of classifiers
 The first classifier has low capacity, and has high recall; the final classifier

has high precision
 At test time, we run inference by running the classifiers in a sequence,

abandoning any example as soon as any one element in the cascade
rejects it

U Kang 10

Dynamic Structure
 Hard mixture of experts

 One can use a neural network (called the gater) to select which one out of
several expert networks will be used to compute the output, given the
current input

 Mixture of experts: the gater outputs a set of probabilities or weights, one
per expert, and the final output is obtained by the weighted combination
of the output of the experts

 Hard mixture of experts: a single expert is chosen by the gater

U Kang 11

Specialized Hardware Implementations

 ASICs (Application-Specific Integrated Circuit)
 FPGA (Field Programmable Gated Array)
 Tensor Processing Unit (TPU) by Google

 Algorithms with lower precision
 It has long been known that it is possible to use less precision in deep

network
 Recent works on low-precision implementation of backprop-based neural

nets suggest that 8 and 16 bits of precision can suffice for training deep
network

 More precision is required during training than at inference time
 Fixed point representation can save bits per number

 Reduces hardware surface area, power requirements, and computing time

U Kang 12

Computer Vision (CV)
 One of the most active research areas for deep learning

applications
 Most deep learning for CV is used for object recognition or

detection of some form
 Reporting which object is present in an image
 Annotating an image with bounding boxes around each object
 Transcribing a sequence of symbols from an image
 Labeling each pixel in an image with the identity of the object it belongs to

U Kang 13

Computer Vision (CV)
 Preprocessing for CV

 CV usually requires very little preprocessing
 Standardizing pixel values

 The only strictly necessary preprocessing is to standardize pixel values to be in [0, 1] or [-
1, 1]

 Scaling images
 Many CV architectures require images of a standard size, so images must be cropped or

scaled to fit that size
 But, some convolutional models automatically scales images

 Dataset augmentation
 Reduce generalization errors

U Kang 14

Speech Recognition
 1980s ~ 2009

 State of the art: GMM-HMM model
 GMM (Gaussian mixture model): models the association between acoustic

features and phonemes
 HMM: models the sequences of phonemes

 2009~
 Use neural network to replace GMMs for the task of associating acoustic

features to phonemes
 Ongoing task: building an end-to-end deep learning speech recognition

system that completely removes the HMM

U Kang 15

Natural Language Processing
 The use of human languages by a computer

 E.g., Machine translation, dialogue system, etc.

 Many NLP applications are based on language models that define
a probability distribution over sequences of words

 Because the total number of possible words is so large, word-
based language models must operate on an extremely high-
dimensional and sparse discrete space; several strategies have
been developed to make efficient models

 Models
 N-gram
 Neural language model

U Kang 16

N-gram Model
 N-grams language model

 N-gram: a sequence of n tokens (typically, words)
 Models based on n-grams define the conditional probability of the n-th

token given the preceding n-1 tokens
 Assumes that the probability depends only on the n-1 tokens

 The model uses products of these conditional distributions to define the
probability distribution over longer sequences

 Special names: unigram (n=1), bigram (n=2), trigram (n=3)
 Training n-gram models is straightforward because the maximum

likelihood estimate can be computed simply by counting

U Kang 17

N-gram Model
 Trigram example: compute the probability of the sentence “THE

DOG RAN AWAY”
 P(THE DOG RAN AWAY) = P(THE DOG RAN) P(AWAY | THE DOG RAN)

= P(THE DOG RAN) P(AWAY| DOG RAN)
= P(THE DOG RAN) P(DOG RAN AWAY) / P(DOG RAN)

 Problem of maximum likelihood for n-gram: sparseness
 Smoothing: add non-zero probability mass to all of the possible symbol

values
 Mixture model containing higher-order and lower-order n-gram models,

with the high-order models providing more capacity and the lower-order
models being more likely to avoid counts of zero
 Back-off methods: look-up the lower-order n-grams if the frequency of the context

𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥𝑡𝑡−𝑛𝑛+1 is too small to use the higher-order model

U Kang 18

Word Embeddings in Neural Language
Models

 Neural language models
 Learns distributed representation of words (also known as word

embeddings)
 In the embedding space, words that frequently appear in similar contexts

(or any pair of words sharing some features learned by the model) are
close to each other. This often results in words with similar meanings
being neighbors

 Skipgram model (word2vec)
 Given a sequence of training words 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑇𝑇 ,

Maximize 1
𝑇𝑇
∑𝑡𝑡=1𝑇𝑇 ∑−𝑐𝑐≤𝑗𝑗≤𝑐𝑐,𝑗𝑗≠0 log𝑝𝑝(𝑤𝑤𝑡𝑡+𝑗𝑗|𝑤𝑤𝑡𝑡)

where 𝑝𝑝 𝑤𝑤𝑂𝑂 𝑤𝑤𝐼𝐼 =
exp(𝑣𝑣𝑣𝑤𝑤𝑂𝑂

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

∑𝑤𝑤=1
|𝑉𝑉| exp(𝑣𝑣𝑣𝑤𝑤𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

U Kang 19

Word Embeddings in Neural Language
Models

 Word2vec

U Kang 20

High-Dimensional Output Layers for
Large Vocabularies

 In many natural language applications, we want our model to
produce words as the fundamental unit of the output

 The vocabulary V often contains hundreds of thousands of words
 Assume ℎ is the top hidden layer used to predict the output

probabilities 𝑦𝑦
 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 + ∑𝑗𝑗𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑗𝑗

 𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖
∑
𝑖𝑖′=1
|𝑉𝑉| 𝑒𝑒𝑎𝑎𝑖𝑖𝑖

 To compute 𝑦𝑦𝑖𝑖, we need to compute |V| terms in the
denominator!

U Kang 21

High-Dimensional Output Layers for
Large Vocabularies

 Solutions of the high-dimensional output problem
 Hierarchical softmax
 Negative sampling

U Kang 22

Hierarchical Softmax

 Decompose probabilities hierarchically
 Instead of running a computations |V| times, do it only log |V| times
 𝑃𝑃 𝑦𝑦 = 𝑤𝑤4 = 𝑃𝑃 𝑏𝑏0 = 1, 𝑏𝑏1 = 0, 𝑏𝑏2 = 0

= 𝑃𝑃 𝑏𝑏0 = 1 𝑃𝑃 𝑏𝑏1 = 0 𝑏𝑏0 = 1 𝑃𝑃(𝑏𝑏2 = 0|𝑏𝑏0 = 1, 𝑏𝑏1 = 0)

U Kang 23

Negative Sampling

 In word2vec, our goal is to maximize 𝑝𝑝 𝑤𝑤𝑂𝑂 𝑤𝑤𝐼𝐼 =
exp(𝑣𝑣𝑣𝑤𝑤𝑂𝑂

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

∑𝑤𝑤=1
|𝑉𝑉| exp(𝑣𝑣𝑣𝑤𝑤𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

 Evaluating the denominator requires too much computation
 Negative sampling

 Maximize a bit different, but related objective

 New objective: log𝜎𝜎(𝑣𝑣𝑣𝑤𝑤𝑂𝑂
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼) + ∑𝑖𝑖=1𝑘𝑘 𝐸𝐸𝑤𝑤𝑖𝑖~𝑃𝑃𝑛𝑛(𝑤𝑤) log𝜎𝜎(−𝑣𝑣𝑣𝑤𝑤𝑖𝑖

𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼)

 Intuition: maximize 𝑣𝑣𝑣𝑤𝑤𝑂𝑂
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼 for similar words 𝑤𝑤𝑂𝑂 and 𝑤𝑤𝐼𝐼, but minimize

𝑣𝑣𝑣𝑤𝑤𝑖𝑖
𝑇𝑇𝑣𝑣𝑤𝑤𝐼𝐼 for dissimilar words 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝐼𝐼

U Kang 24

Neural Machine Translation

U Kang 25

What you need to know

 Core technology for large scale deep learning
 Fast implementation
 Distributed implementation
 Model compression
 Dynamic structure
 Specialized hardware

 Applications
 Computer Vision: light preprocessing needed
 Speech
 Natural Language Processing: efficient method for

high-dimensional output

U Kang 26

Questions?

	슬라이드 번호 1
	In This Lecture
	Large Scale Deep Learning
	Fast Implementations
	Distributed Implementations
	Model Compression
	Model Compression
	Dynamic Structure
	Dynamic Structure
	Dynamic Structure
	Specialized Hardware Implementations
	Computer Vision (CV)
	Computer Vision (CV)
	Speech Recognition
	Natural Language Processing
	N-gram Model
	N-gram Model
	Word Embeddings in Neural Language Models
	Word Embeddings in Neural Language Models
	High-Dimensional Output Layers for Large Vocabularies
	High-Dimensional Output Layers for Large Vocabularies
	Hierarchical Softmax
	Negative Sampling
	Neural Machine Translation
	What you need to know
	슬라이드 번호 26

