Dispersion

Dispersion examples

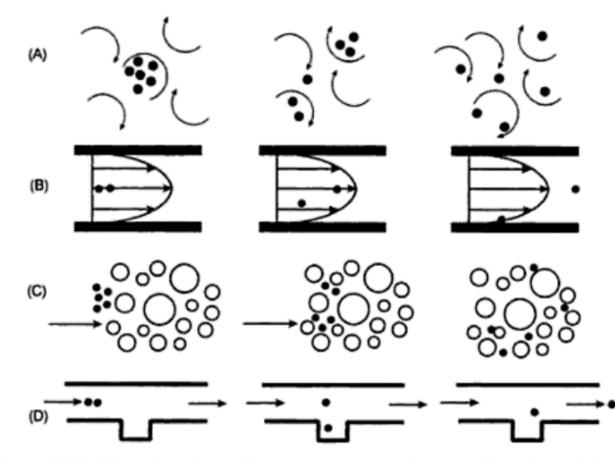
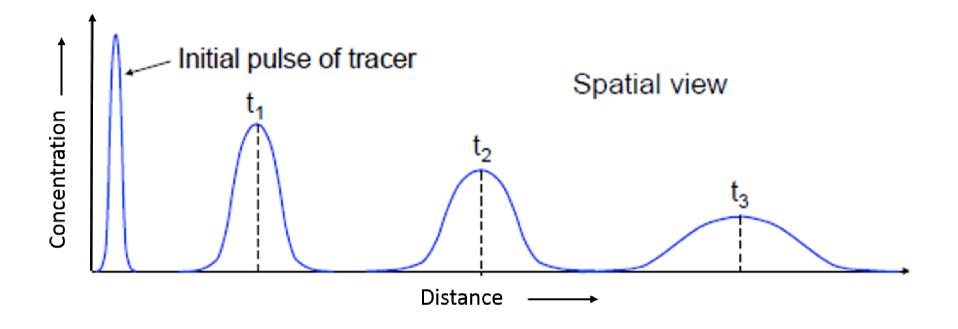


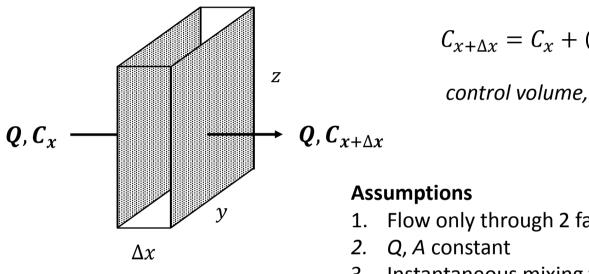
Figure 10.1 Examples of conditions that generate chemical dispersion (A) fluid eddies; (B) velocity gradients in flow in a pipe; (C) noncontinuous flow field (in porous media); (D) boundary effects.

Dispersion from pulse input of a tracer



- No change in area (tracer mass conserved)
- Concentration vs. Time at distances x₁, x₂, x₃?

Mass balance, control volume



$$C_{x+\Delta x} = C_x + (\Delta C / \Delta x) \cdot \Delta x$$

control volume, $V = A \cdot \Delta x$

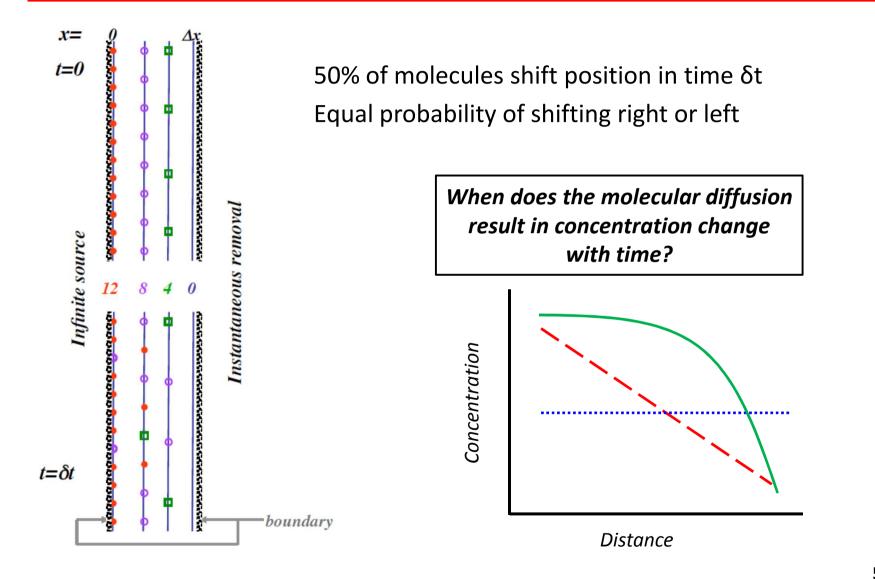
- 1. Flow only through 2 faces perpendicular to *x*-dir
- 3. Instantaneous mixing within control volume

Rate of:

Accumulation = Input – Output + Net dispersion

$$\frac{V\Delta C}{\Delta t} = QC_x - QC_{x+\Delta x} + \frac{\Delta M_{disp}}{\Delta t}$$

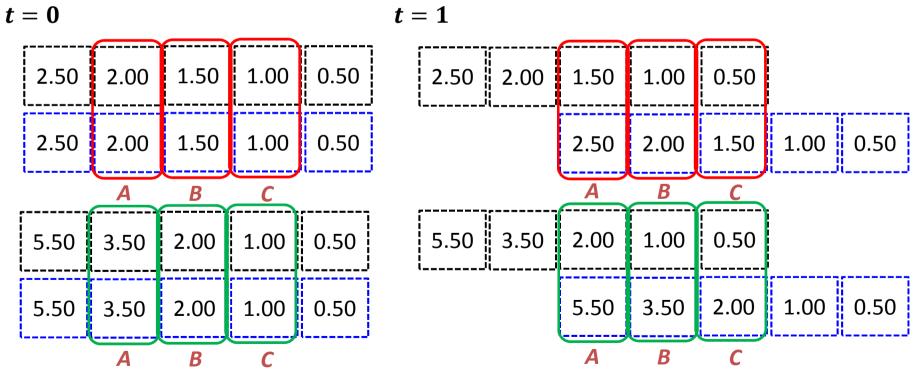
Recall molecular diffusion



Dispersion by velocity gradient

Turbulence -- creates velocity gradient

Top layer moves 1 grid right & bottom layer moves 1 grid left per unit time by differential velocity



6

Modeling dispersion

- Dispersion by turbulence, etc. can be expressed by the same model as molecular diffusion
- Apply Fick's 1st law:

$$J_x = -D_x' \frac{dC}{dx}$$

$$D_x' = mechanical dispersion coefficient in x-dir [L^2/T]$$

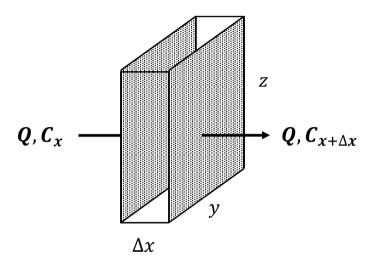
• The overall dispersion coefficient can be defined as the sum of molecular diffusion & mechanical dispersion coeff.

$$J_x = -E_x \frac{dC}{dx} , \quad E_x = D_m + D_x'$$

 E_x = overall dispersion coefficient in x-dir [L²/T] D_m = molecular diffusion coefficient [L²/T]

1-D advection dispersion equation

$$\frac{V\Delta C}{\Delta t} = QC_x - QC_{x+\Delta x} + \frac{\Delta M_{disp}}{\Delta t}$$
$$\frac{M_{disp,x_i}}{\Delta t} = -E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i} \times A$$
$$\frac{M_{disp,x_i+\Delta x}}{\Delta t} = E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i+\Delta x} \times A$$
$$\frac{\Delta M_{disp}}{\Delta t} = E_x \cdot A \cdot \left[\left(\frac{\partial C}{\partial x}\right)_{x=x_i+\Delta x} - \left(\frac{\partial C}{\partial x}\right)_{x=x_i}\right]$$



$$\frac{\partial C}{\partial t} = -u\frac{\partial C}{\partial x} + E_x\frac{\partial^2 C}{\partial x^2}$$

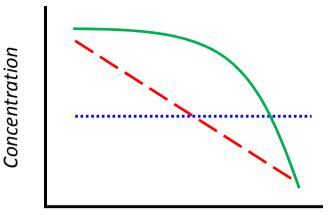
 $u = velocity of fluid (in x-dir) [L^2/T]$

Dispersion occurs:

- When $\partial^2 C/dx^2 \neq 0$ •
- By multiple mechanisms ullet
 - Molecular diffusion
 - Variable velocity, turbulence (mechanical dispersion) _
 - In surface water, molecular diffusion often very small compared to mechanical • dispersion
- With or without a net advective velocity ullet

1-D advection dispersion equation

$$\frac{\partial C}{\partial t} = -u\frac{\partial C}{\partial x} + E_x\frac{\partial^2 C}{\partial x^2}$$



Dispersion from a pulse input of tracer

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$

BC's & IC's: $C = 0$ at $x > 0$ & $t = 0$
 $M_0 = \text{ finite mass pulse at } x = 0$ & $t = 0$, $C(0,0) = \infty$
 $C = 0$ at $x \to 0$ for all t

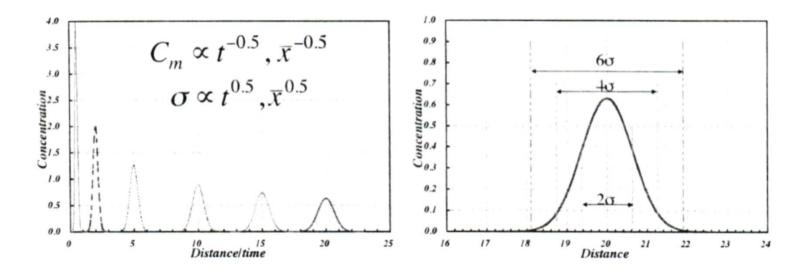
define new, dimensionless variable η and solve:

$$\eta = \frac{x - ut}{\sqrt{4E_x t}} \qquad C(x, t) = C_{max} e^{-\eta^2} = \frac{M_0}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x - ut)^2}{4E_x t}\right]}$$

$$A = cross-sectional area$$

Solution is symmetric in space, centered at **ut** Solution is in the form of a normal distribution with **mean = ut** & σ **=(2E**_x**t)**^{0.5}

Dispersion from a pulse input of tracer



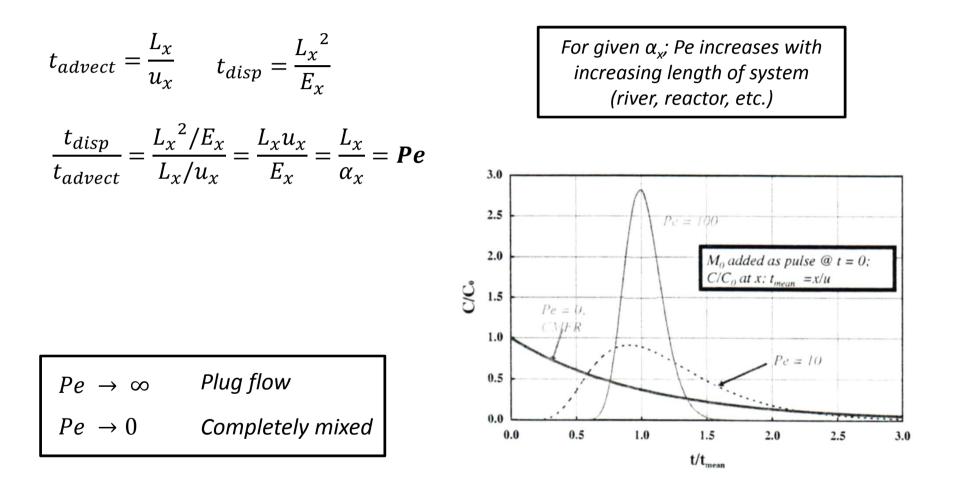
Mass is conserved, i.e., areas under all curves are the same 95% of the mass is located between $x\pm 2\sigma$; 99% between $x\pm 2.6\sigma$

 $C_x = 0.01C_m @ x \pm 3\sigma$

We define:
$$\Delta x_{plume} = 6\sigma$$

What if the concentration is observed at a certain distance, L, over time?

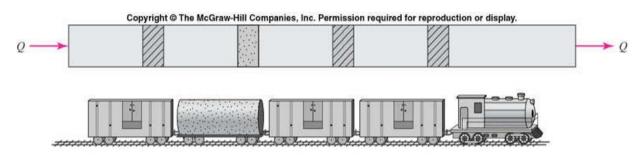
Peclet



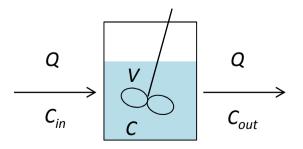
Plug flow vs. Completely mixed reactors

• Plug-flow reactor (PFR)

- Assume no mixing in the direction of flow; complete mixing in the direction perpendicular to the flow
- Long reactors (e.g., disinfection), rivers, aqueducts, pipes, etc.



- Completely-mixed flow reactors (CMFR) or continuously-stirred tank reactors (CSTR)
 - Complete mixing of the contents of the reactors
 - Common reactor setting for biological reactions, lakes, reservoirs, etc.



Advection, dispersion & reaction

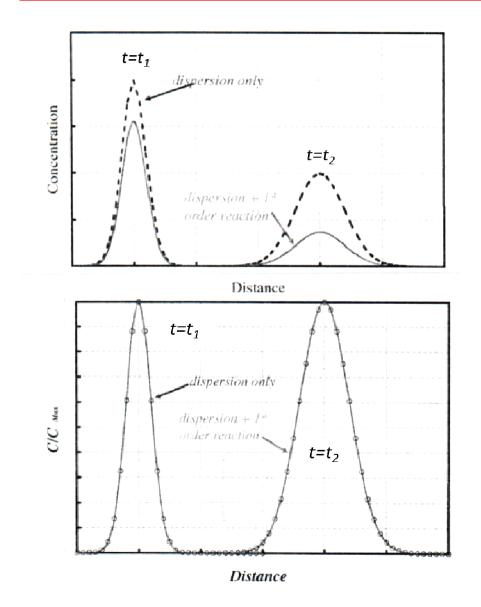
Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

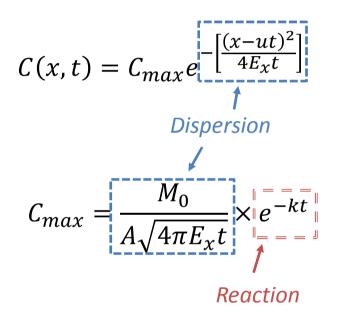
BC's & IC's: $C = 0$ at $x > 0$ & $t = 0$
 $M_0 = finite mass pulse at $x = 0$ & $t = 0$, $C(0,0) = \infty$
 $C = 0$ at $x \to 0$ for all $t$$

<u>Because reaction is 1^{st} order</u>, $M_{tot,t} = M_0 e^{-kt}$

$$C(x,t) = \frac{M_0 e^{-kt}}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2}{4E_x t}\right]} = \frac{M_0}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2 + kt}{4E_x t}\right]}$$

Dispersion + 1st order reaction





15

Steady state response for reactor at x=L

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

BC's & IC's: $C = 0$ at $x \ge 0$ & $t = 0$
 $C = C_I$ at $x = 0$ & $t > 0$

Steady state solution:

$$\frac{C_E}{C_I} = \frac{4a \cdot e^{Pe/2}}{\left[(1+a)^2 \cdot e^{(a \cdot Pe/2)} - (1-a)^2 \cdot e^{-(a \cdot Pe/2)}\right]} \qquad a = \left[1 + \frac{4k\bar{t}}{Pe}\right]^{0.5}$$

$$Pe = \frac{u_x L}{E_x}$$

Calculations show plug flow approximation is accurate to within 1% if $Pe \ge 100$ and $(k\bar{t}/Pe) \le 0.01$

PFR solution: $C_E/C_I = e^{-k\bar{t}}$ Steady-state CSTR solution: $C_E/C_I = (1 + k\bar{t})^{-1}$ \bar{t} = hydraulic retention time = V/Q

Rivers as plug flow reactors

• Rivers are typically relatively long, narrow & shallow

 Even if transverse dispersion is substantially less than longitudinal dispersion, vertical and transverse mixing is likely to be complete

 $- t_{disp} \sim L^2$

Consider the following river setting (Sacramento River, USA):

H = 4 m	$E_x = 15 \ m^2/s$	Travel time = 80,000 seconds
W = 40 m	$E_y = 0.12 \ m^2/s$	-
L = 40,000 m	$E_z = 0.12 \ m^2/s$	$t_{disp,x} = 1.1 \times 10^8 s$
$u_x = 0.5 m/s$		$t_{disp,y} = 13,000 \ s$
		$t_{disp,z} = 130 \ s$

Dispersion coefficients in aqueous systems

Environment	<i>E,</i> m²/sec
Estuaries (longitudinal)	$10^2 - 10^3$
Rivers (longitudinal)	$10^{0} - 10^{2}$
Rivers (lateral)	10-2 - 10-1
Surface waters (vertical)	10 ⁻⁶ - 10 ⁻³
Pipes, ducts (normal to flow)	10-5 - 10-2
Solutes in water	$10^{-10} - 10^{-8}$
Solutes in bioturbed sediments	10 ⁻⁹ – 10 ⁻⁸
Solutes in compacted soils, sediments	10 ⁻¹⁰ - 10 ⁻¹²