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Large Scale Data Analysis Using
Deep Learning

Autoencoder

U Kang
Seoul National University
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In This Lecture

m Autoencoder
o Motivation

0 Undercomplete and overcomplet autoencoders
0 Regularization
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Autoencoder

A neural network that is trained to attempt to copy its input
to output

Has a hidden layer h that describes a code used to represent
the input

Consists of two parts: an encoder function h = f(x), and a
decoder function r = g(h) that reconstructs the original data

The most simplest function would be an identity function for
g and h; however, they are not useful to find important
features of x

Autoencoders are restricted to copy only approximately, and
to copy only input that resembles the training data
o This often leads to learn useful properties of data

Can be thought of as a dimensionality reduction
U Kang



Autoencoder
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Structure of an Autoencoder

Hidden layer (code)

Input
Reconstruction
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== Stochastic Autoencoders

pencoder(hf ’ 113) pdecoder(a3 ’ h’)
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Undercomplete Autoencoders

m Copying the input to the output seems useless
m We are not typically interested in the output of the decoder; we

hope that training the autoencoder to perform the copying task
will result in h taking on useful properties

Undercomplete autoencoder

0 h has smaller dimension than x; this allows to learn the most salient
features of the data distribution

Learning process: minimizing a loss function L(x, g(f(x))

When the decoder is linear and L is the mean square error, an
undercomplete autoencoder learns to span the same subspace as PCA

0 Autoencoders with nonlinear encoder and decoder functions learn a more
powerful nonlinear generalization of PCA

o Undercomplete autoencoders fail to learn anything useful if the encoder
and decoder are given too much capacity: it can learn to perform the
copying task without extracting useful information about the distribution of
the data
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Regularized Autoencoders

Undercomplete autoencoders fail to learn anything useful if the
encoder and decoder are given too much capacity

A similar problem occurs if the hidden code is allowed to have
dimension equal to the input
o Overcomplete case: hidden code has dimension greater than the input

In these cases, authoencoder can learn to copy input to output,
without learning anything useful

Regularized autoencoder: rather than limiting the model capacity
(shallow encoder/decoder, and small code size), use a loss
function that encourages the model to learn useful features

o Sparse autoencoders

Denoising autoencoders

Contractive autoencoders

Autoencoders with dropout on the hidden layer

U

U

U
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Sparse Autoencoders

m Limit capacity of autoencoder by adding a term to the cost
function penalizing the code for being larger

2 L(xg(F@)) + am
where Q(h) = 1) |hy]

o By limiting the code h, autoencoders learn unigue and important features
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Denoising Autoencoder

Rather than adding a penalty () to the cost function, we can
obtain an autoencoder that learns something useful by changing
the reconstruction error term

Typical autoencoders minimize L (x,g(f(x)))

Denoising autoencoder (DAE) minimizes L (x, g(f(f)))

where X is a copy of x with some noise or corruption

Denoising autoencoders must therefore undo this corruption
rather than simply copying the input
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Denoising Autoencoder

m DAE training procedure

Q

a

Sample a training example x from the training data

Sample a corrupted version X from C(X|x) where Cis a conditional
distribution of corrupted samples X given a data sample x

Use (x, X) as a training example for estimating the autoencoder

reconstruction distribution pgecoderr (X|h) where h is the output of the
encoder f(X)

(" corruption process

(introduce noise)
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* Denoising Autoencoders Learn a Manifold

m DAE maps each data point to its nearest point on the manifold
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Contractive Autoencoder

As in sparse autoencoder, use a penalty term (2, but with a
different form

o L (x,g(f(x))) + Q(h, x)
where Q(h, x) = 1Y, ||V.chi||?
This forces the model to learn a function that does not change
much when x changes slightly
o For an “identity” encoder, the penalty would be large
Connection between DAE and contractive autoencoder

o For a small Gaussian input noise, the denoising reconstruction error is
equivalent to a contractive penalty
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Representational Power, Layer Size and
Depth

m Autoencoders are often trained with only a single layer encoder
and a single layer decoder

m However, deep encoders and decoders offer many advantages
0 Because autoencoders are feedforward networks

o Depth can exponentially reduce the computational cost of representing
some functions

0 Depth can also exponentially decrease the amount of training data needed
to learn some functions
m A common strategy for training a deep autoencoder is to greedily
pretrain the deep architecture by training a stack of shallow
autoencoders

o Thus, we often encounter shallow autoencoders even in the case of a deep
autoencoder
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= What you need to know

m Autoencoder
o Motivation

m Learn low dimensional embedding of data points, by learning
to reconstruct output given input

0 Undercomplete and overcomplete autoencoders

m Undercomplete autoencoders avoid learning trivial function,
but with low capacity

m Overcomplte autoencoders can avoid learning trivial function
via regularization

o Regularization

m Sparse, denoising, contractive autoencoders
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Questions?
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