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In This Lecture

 Autoencoder
 Motivation
 Undercomplete and overcomplet autoencoders
 Regularization
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Autoencoder

 A neural network that is trained to attempt to copy its input 
to output

 Has a hidden layer h that describes a code used to represent 
the input

 Consists of two parts: an encoder function h = f(x), and a 
decoder function r = g(h) that reconstructs the original data

 The most simplest function would be an identity function for 
g and h; however, they are not useful to find important 
features of x

 Autoencoders are restricted to copy only approximately, and 
to copy only input that resembles the training data
 This often leads to learn useful properties of data

 Can be thought of as a dimensionality reduction
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Autoencoder
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Structure of an Autoencoder
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Stochastic Autoencoders
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Undercomplete Autoencoders
 Copying the input to the output seems useless
 We are not typically interested in the output of the decoder; we 

hope that training the autoencoder to perform the copying task 
will result in h taking on useful properties

 Undercomplete autoencoder
 h has smaller dimension than x; this allows to learn the most salient 

features of the data distribution
 Learning process: minimizing a loss function L(x, g(f(x))
 When the decoder is linear and L is the mean square error, an 

undercomplete autoencoder learns to span the same subspace as PCA
 Autoencoders with nonlinear encoder and decoder functions learn a more 

powerful nonlinear generalization of PCA 
 Undercomplete autoencoders fail to learn anything useful if the encoder 

and decoder are given too much capacity: it can learn to perform the 
copying task without extracting useful information about the distribution of 
the data
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Regularized Autoencoders
 Undercomplete autoencoders fail to learn anything useful if the 

encoder and decoder are given too much capacity
 A similar problem occurs if the hidden code is allowed to have 

dimension equal to the input
 Overcomplete case: hidden code has dimension greater than the input

 In these cases, authoencoder can learn to copy input to output, 
without learning anything useful

 Regularized autoencoder: rather than limiting the model capacity 
(shallow encoder/decoder, and small code size), use a loss 
function that encourages the model to learn useful features
 Sparse autoencoders
 Denoising autoencoders
 Contractive autoencoders
 Autoencoders with dropout on the hidden layer
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Sparse Autoencoders
 Limit capacity of autoencoder by adding a term to the cost 

function penalizing the code for being larger

 𝐿𝐿 𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 + Ω(ℎ)

where Ω ℎ = 𝜆𝜆∑𝑖𝑖 |ℎ𝑖𝑖|
 By limiting the code h, autoencoders learn unique and important features
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Denoising Autoencoder
 Rather than adding a penalty Ω to the cost function, we can 

obtain an autoencoder that learns something useful by changing 
the reconstruction error term

 Typical autoencoders minimize 𝐿𝐿 𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥

 Denoising autoencoder (DAE) minimizes 𝐿𝐿 𝑥𝑥,𝑔𝑔 𝑓𝑓 �𝑥𝑥

where �𝑥𝑥 is  a copy of 𝑥𝑥 with some noise or corruption
 Denoising autoencoders must therefore undo this corruption 

rather than simply copying the input
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Denoising Autoencoder
 DAE training procedure

 Sample a training example x from the training data
 Sample a corrupted version �𝑥𝑥 from C( �𝑥𝑥|𝑥𝑥) where C is a conditional 

distribution of corrupted samples �𝑥𝑥 given a data sample 𝑥𝑥
 Use (𝑥𝑥, �𝑥𝑥) as a training example for estimating the autoencoder

reconstruction distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥|ℎ) where h is the output of the 
encoder 𝑓𝑓( �𝑥𝑥)
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Denoising Autoencoders Learn a Manifold

 DAE maps each data point to its nearest point on the manifold
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Vector Field Learned by a 
Denoising Autoencoder
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Contractive Autoencoder
 As in sparse autoencoder, use a penalty term Ω, but with a 

different form

 𝐿𝐿 𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 + Ω(ℎ, 𝑥𝑥)

where Ω ℎ, 𝑥𝑥 = 𝜆𝜆∑𝑖𝑖 ||∇𝑥𝑥ℎ𝑖𝑖||2

 This forces the model to learn a function that does not change 
much when 𝑥𝑥 changes slightly
 For an “identity” encoder, the penalty would be large

 Connection between DAE and contractive autoencoder
 For a small Gaussian input noise, the denoising reconstruction error is 

equivalent to a contractive penalty
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Representational Power, Layer Size and 
Depth

 Autoencoders are often trained with only a single layer encoder 
and a single layer decoder

 However, deep encoders and decoders offer many advantages
 Because autoencoders are feedforward networks
 Depth can exponentially reduce the computational cost of representing 

some functions
 Depth can also exponentially decrease the amount of training data needed 

to learn some functions

 A common strategy for training a deep autoencoder is to greedily 
pretrain the deep architecture by training a stack of shallow 
autoencoders
 Thus, we often encounter shallow autoencoders even in the case of a deep 

autoencoder
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What you need to know

 Autoencoder
 Motivation

 Learn low dimensional embedding of data points, by learning 
to reconstruct output given input

 Undercomplete and overcomplete autoencoders
 Undercomplete autoencoders avoid learning trivial function, 

but with low capacity
 Overcomplte autoencoders can avoid learning trivial function 

via regularization

 Regularization
 Sparse, denoising, contractive autoencoders
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Questions?
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