Removal of residual particulate and dissolved constituents
Tertiary treatment

• Further treatment of secondary treatment effluent
 – To meet standards
 – To reduce loading to the water body
 – For water reuse

• Removal of residual particulates and/or dissolved constituents
 – Particulates
 – TDS
 – Refractory organics
 – Nutrients

• Disinfection – pathogen inactivation (swimmable water!)
Removal of residual particulates

- By filtration processes

- Depth filtration
 - Usually sand filters, anthracite coal, dual- or multi-media

- Surface filtration
 - Use fabrics

- Membrane filtration
 - Smaller opening size than surface filtration
 - Microfiltration, ultrafiltration, nanofiltration, reverse osmosis
Depth filtration

- Particle removal mechanisms
Depth filtration

• **Particle removal mechanisms**
 – **Straining**
 • Mechanical: particles larger than the pore space are strained out mechanically
 • Chance contact: particles smaller than the pore space are trapped within the filter by chance contact
 – **Sedimentation or impaction**
 • Heavy particles that do not follow the flow streamlines are removed when they come in contact with the surface of the filtering medium
 – **Interception**
 • Particles that move along in the streamline are removed when they come in contact with the surface of the filtering medium
Depth filtration

- Operation of depth filter
 - Filtration-backwash cycle

<Filtration> <Backwash>
• Headloss buildup and effluent quality

- The shorter of the t_{headloss} and $t_{\text{breakthrough}}$ will be the time for backwash cycle
- Optimized design: design the filter such that $t_{\text{headloss}} \approx t_{\text{breakthrough}}$
Membrane filtration

• Terminologies
 – **Feed water**: influent water supplied to the membrane system for treatment
 – **Permeate**: the liquid that has passed through the membrane
 – **Retentate**: The portion of the feed water that does not pass through the membrane
 – **Flux**: The rate at which permeate flows through the membrane

\[
\text{Flux} = Q/A = \left[\frac{\text{volume permeate}}{\text{membrane area} \times \text{time}} \right]
\]
Membrane filtration - classification

RO/NF: nonporous membrane
Diffusion-like process

MF/UF: porous membrane
Straining-like process
Membrane configuration

• **Tubular**
 – Membrane is cast on the inside of a support tube and the tubes are placed in a pressure vessel
 – Feed water is pumped through the tube and the permeate is collected outside
 – Tube diameter 6-40 mm

• **Hollow fiber**
 – A module consists of a bundle of hundreds to thousands of hollow fibers
 – Inside diameter 35-45 μm, outside diameter 90-100 μm
Membrane configuration

- **Spiral wound**
 - Flat membrane sheets are rolled into a tight circular configuration
 - A flexible permeate spacer is placed between two flat sheets
 - Membrane is sealed on the three side; the open side is connected to a perforated pipe

- **Plate and frame**
 - Consists of a series of flat membrane sheets and support plates
 - The plate supports the membranes and provides a channel for the permeate to flow out of the unit
Driving force: pressure

- **Reverse osmosis**
 - Produces retentate (concentrate) that usually has x2 or more salt concentration than the feed water

Osmosis
Water moves from low salt conc. → high salt conc.

Osmotic equilibrium
No net water movement

Reverse osmosis
Water moves from high salt conc. → low salt conc.
Membrane fouling

• **Particulate fouling**
 – Particles clog the membrane pores

• **Scaling**
 – As chemical constituents in the feed water are removed at the surface of a membrane, their local concentration increases
 – Concentrations of some of the constituents will increase beyond their solubility limits and will be precipitated on the membrane surface
 – Especially critical for RO

• **Organic fouling**
 – Many natural organic matter (NOM) are sticky – accumulate on the membrane surface
 – Fouling is accelerated by forming stable organic/inorganic particulate matter

• **Biological fouling**
 – Elevated concentrations of organic matter and nutrients on the membrane surface → favorable for microbial growth
 – Biofilm formed on the membrane surface
Forward osmosis

- A membrane technology getting recent interest
 - RO: High energy consumption for pressurizing the feed water
 - FO: Uses natural osmotic pressure with minimal pressure application
 - **Use a more concentrated solution** (draw solution) to recover water from the feed water
 - Principal requirement of the draw solution
 - Osmotic pressure should be greater than the feed solution
 - Must be easy to reconcentrate after being diluted by the water from the feed solution
 - NaCl is a common salt used for draw solution: easy to reconcentrate, no scaling problems
Adsorption

• **Removal of substances in solution by accumulation of those substances on a solid phase**
 – Adsorbate: the substance that is being removed from the solution
 – Adsorbent: the material onto which the adsorbate accumulates

• **Applications**
 Removal of:
 • refractory organics
 • residual inorganic constituents (nitrogen, sulfides, heavy metals, etc.)
 • odor compounds
Types of adsorbents

• **Activated carbon**
 - **Most common** – removal of refractory organics & residual COD
 - Derived by i) pyrolysis of organic materials (wood, coal, coconut, etc.) and ii) activation by steam or CO₂ at high temperatures
 - Two types based on particle size
 - GAC (granular activated carbon): > 0.1 mm, apply in columns
 - PAC (powdered activated carbon): < 0.074 mm, apply in well-mixed contact tanks

• **Granular ferric hydroxide**
 - Ferric hydroxides/oxides have high affinity to many metals and metalloids
 - Applicable for removal of arsenic, chromium, selenium, copper, etc.

• **Activated alumina**
 - May be considered in case of water reuse
 - Removal of arsenic and fluoride
GAC columns: breakthrough curve

- **Mass transfer zone** (MTZ; dashed zone): adsorption is occurring, some adsorbate conc. in pore-water
- **Grey zone**: GAC exhausted (adsorption equilibrium with influent), no further adsorption
- **Breakthrough** occurs after adding V_{BT} of influent, but **want full usage of the column**!
GAC columns: configurations
Gas stripping

- Mass transfer of a gas from the liquid phase to the gas phase

 Recall:
 \[\frac{dC}{dt} = K_L \frac{A}{V} (C - C_s) = K_L a (C - C_s) \]
 (for desorption of gas)

- Stripping (blowing) a contaminant-free gas into the water
 - Creates large gas-liquid interfacial area for mass transfer
 - Most significant concern in the process design
 - Concentration gradient generated: \(C_s \to 0 \)

- Removal of NH\(_3\), odorous gases and VOCs
 - For ammonia stripping, pH should be raised by addition of lime (why?)
Gas stripping
Ion exchange

- A unit process in which ions of a given species are displaced from an insoluble exchange material by ions of a different species in solution
- So ions in the solution is exchanged by other ions originating from the insoluble exchange material
- Applications
 - Most common: water softening (Na$^+$ from exchange material to solution; Ca$^{2+}$ and Mg$^{2+}$ from solution to exchange material)
 - Removal of nitrogen, heavy metals, and TDS
Ion exchange

• Exchange materials
 – Naturally occurring materials: zeolite (clinoptilolite)
 – Synthetics material: resins, phenolic polymers

• Nitrogen removal
 – Remove NH$_4^+$ or NO$_3^-$
 – NH$_4^+$: zeolite or synthetic cation exchange resins
 – NO$_3^-$: synthetic anion exchange resins

• Heavy metal removal
 – Zeolites, synthetic anion and cation resins, chelating resins
 – Some chelating resins are made to have a high selectivity for specific metals (cations – Cu, Ni, Cd, Zn, ...)