Dispersion

Dispersion examples

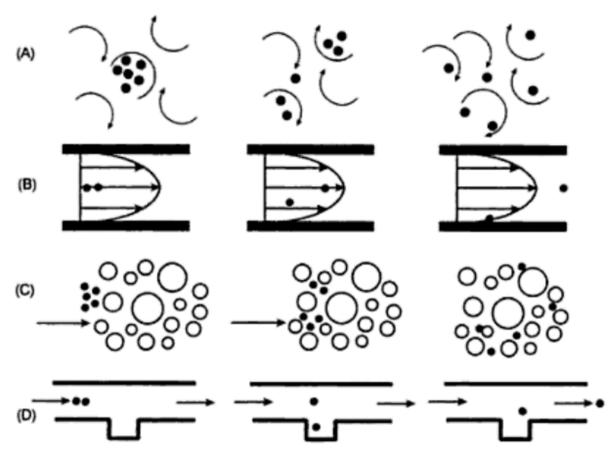
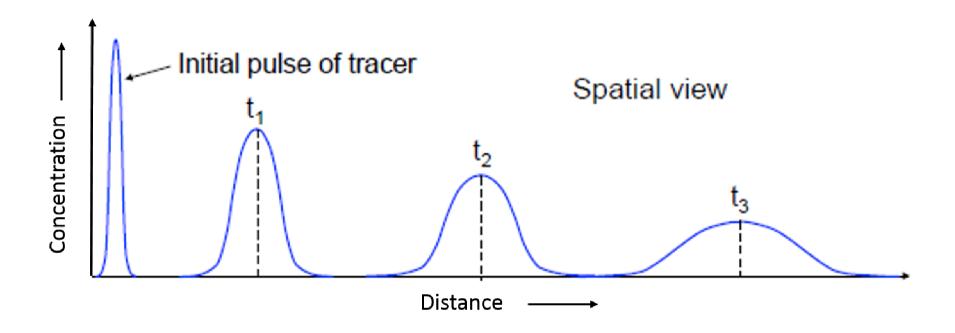


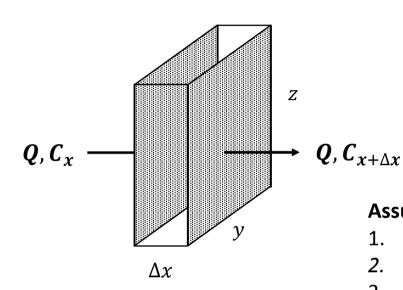
Figure 10.1 Examples of conditions that generate chemical dispersion (A) fluid eddies; (B) velocity gradients in flow in a pipe; (C) noncontinuous flow field (in porous media); (D) boundary effects.

Dispersion from pulse input of a tracer



- No change in area (tracer mass conserved)
- Concentration vs. Time at distances x₁, x₂, x₃?

Mass balance, control volume



$$C_{x+\Delta x} = C_x + (\Delta C/\Delta x) \cdot \Delta x$$

control volume, $V = A \cdot \Delta x$

Assumptions

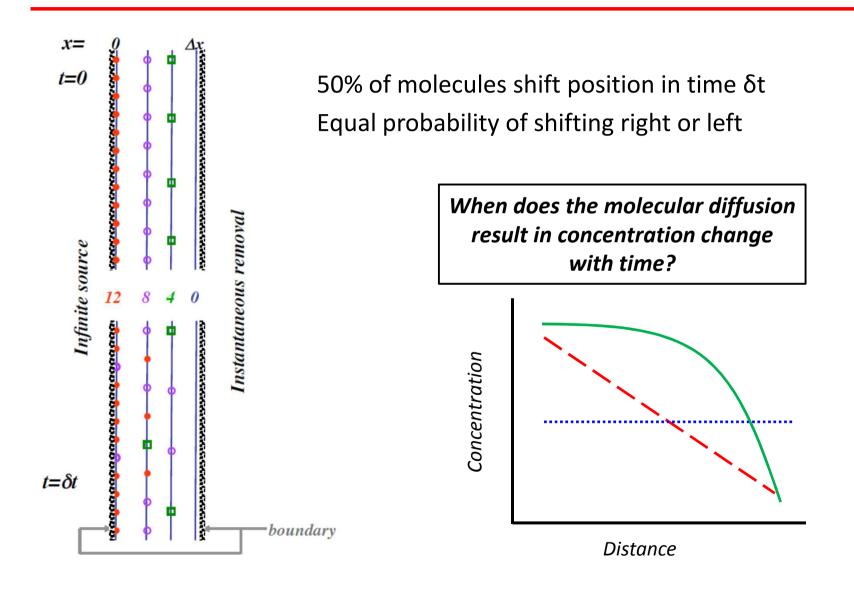
- 1. Flow only through 2 faces perpendicular to *x*-dir
- 2. Q, A constant
- 3. Instantaneous mixing within control volume

Rate of:

Accumulation = Input - Output + Net dispersion

$$\frac{\mathbf{V}\Delta\mathbf{C}}{\Delta\mathbf{t}} = \mathbf{Q}\mathbf{C}_{x} - \mathbf{Q}\mathbf{C}_{x+\Delta x} + \frac{\Delta\mathbf{M}_{disp}}{\Delta\mathbf{t}}$$

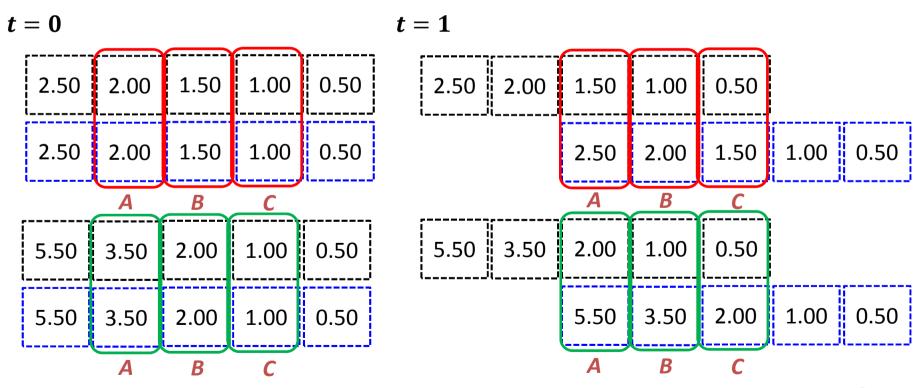
Recall molecular diffusion



Dispersion by velocity gradient

Turbulence -- creates velocity gradient

Top layer moves 1 grid right & bottom layer moves 1 grid left per unit time by differential velocity



Modeling dispersion

- Dispersion by turbulence, etc. can be expressed by the same model as molecular diffusion
- Apply Fick's 1st law:

$$J_x = -D_x' \frac{dC}{dx}$$
 $D_x' = mechanical dispersion coefficient in x-dir [L^2/T]$

 The overall dispersion coefficient can be defined as the sum of molecular diffusion & mechanical dispersion coeff.

$$J_x = -E_x \frac{dC}{dx}$$
, $E_x = D_m + D_x'$

 E_x = overall dispersion coefficient in x-dir [L²/T] D_m = molecular diffusion coefficient [L²/T]

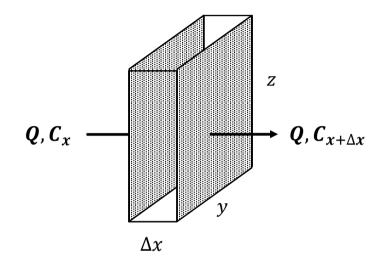
1-D advection dispersion equation

$$\frac{V\Delta C}{\Delta t} = QC_x - QC_{x+\Delta x} + \frac{\Delta M_{disp}}{\Delta t}$$

$$\frac{M_{disp,x_i}}{\Delta t} = -E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i} \times A$$

$$\frac{M_{disp,x_i+\Delta x}}{\Delta t} = E_x \cdot \left(\frac{\partial C}{\partial x}\right)_{x=x_i+\Delta x} \times A$$

$$\frac{\Delta M_{disp}}{\Delta t} = E_x \cdot A \cdot \left[\left(\frac{\partial C}{\partial x} \right)_{x = x_i + \Delta x} - \left(\frac{\partial C}{\partial x} \right)_{x = x_i} \right]$$



$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$

 $u = velocity of fluid (in x-dir) [L^2/T]$

Dispersion occurs:

Concentration

- When $\partial^2 C/dx^2 \neq 0$
- By multiple mechanisms
 - Molecular diffusion
 - Variable velocity, turbulence (mechanical dispersion)
 - In surface water, molecular diffusion often very small compared to mechanical dispersion
- With or without a net advective velocity

1-D advection dispersion equation

$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$

Distance

Dispersion from a pulse input of tracer

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2}$$
BC's & IC's: $C = 0$ at $x > 0$ & $t = 0$

$$M_0 = \text{finite mass pulse at } x = 0 \text{ & } t = 0, \quad C(0,0) = \infty$$

$$C = 0 \quad \text{at} \quad x \to \infty \text{ for all } t$$

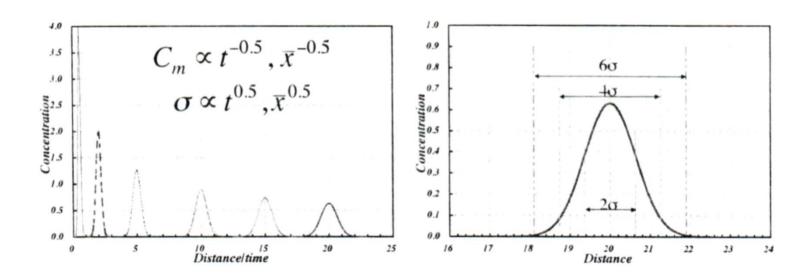
<u>define new, dimensionless variable η and solve</u>:

$$\eta = \frac{x - ut}{\sqrt{4E_x t}}$$
 $C(x, t) = C_{max}e^{-\eta^2} = \frac{M_0}{A\sqrt{4\pi E_x t}}e^{-\left[\frac{(x - ut)^2}{4E_x t}\right]}$

A = cross-sectional area

Solution is symmetric in space, centered at **ut** Solution is in the form of a normal distribution with **mean = ut** & σ =(2E_xt)^{0.5}

Dispersion from a pulse input of tracer



Mass is conserved, i.e., areas under all curves are the same 95% of the mass is located between x±2 σ ; 99% between x±2.6 σ

$$C_x = 0.01C_m @ x \pm 3\sigma$$

We define:
$$\Delta x_{plume} = 6\sigma$$

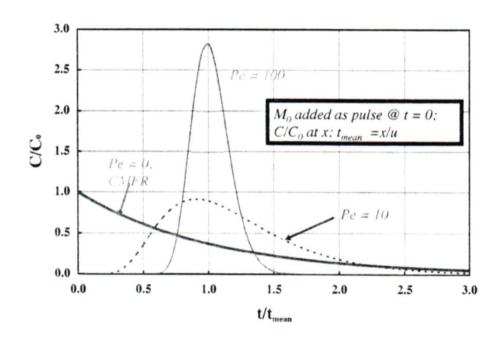
What if the concentration is observed at a certain distance, L, over time?

Peclet

$$t_{advect} = \frac{L_x}{u_x}$$
 $t_{disp} = \frac{L_x^2}{E_x}$

$$\frac{t_{disp}}{t_{advect}} = \frac{L_x^2/E_x}{L_x/u_x} = \frac{L_x u_x}{E_x} = \frac{L_x}{\alpha_x} = \mathbf{Pe}$$

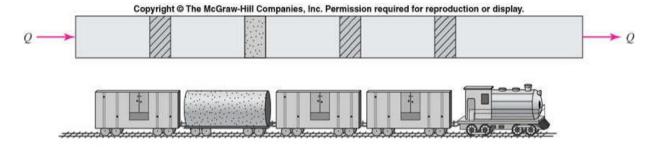
 $Pe \rightarrow \infty$ Plug flow $Pe \rightarrow 0$ Completely mixed For given α_x ; Pe increases with increasing length of system (river, reactor, etc.)



Plug flow vs. Completely mixed

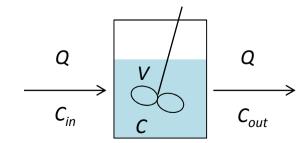
Plug flow

- Assume no mixing in the direction of flow; complete mixing in the direction perpendicular to the flow
- Long reactors (e.g., disinfection), rivers, aqueducts, pipes, etc.



Completely-mixed, flow-through

- Complete mixing of the contents of the reactors
- Common reactor setting for biological reactions, lakes, reservoirs, etc.



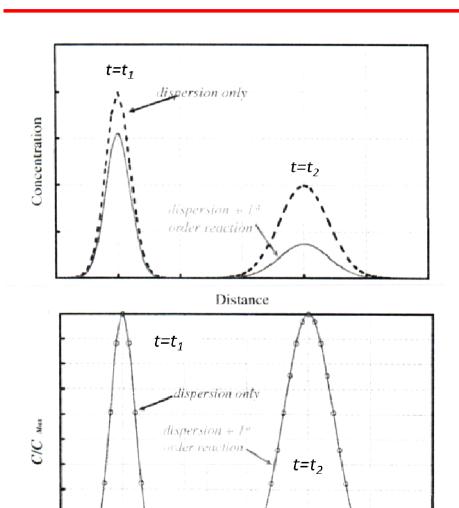
Advection, dispersion & reaction

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

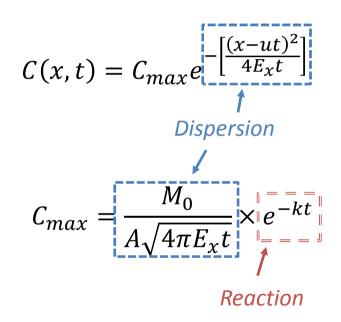
Because reaction is 1st order, $M_{tot,t} = M_0 e^{-kt}$

$$C(x,t) = \frac{M_0 e^{-kt}}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2}{4E_x t}\right]} = \frac{M_0}{A\sqrt{4\pi E_x t}} e^{-\left[\frac{(x-ut)^2+kt}{4E_x t}\right]}$$

Dispersion + 1st order reaction



Distance



Steady state response for reactor at x=L

Governing eq.:
$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E_x \frac{\partial^2 C}{\partial x^2} - kC$$

BC's & IC's:
$$C = 0$$
 at $x \ge 0$ & $t = 0$
 $C = C_I$ at $x = 0$ & $t > 0$

Steady state solution:

$$\frac{C_E}{C_I} = \frac{4a \cdot e^{Pe/2}}{[(1+a)^2 \cdot e^{(a \cdot Pe/2)} - (1-a)^2 \cdot e^{-(a \cdot Pe/2)}]}$$

Calculations show plug flow approximation is accurate to within 1% if $Pe \ge 100$ and $(k\bar{t}/Pe) \le 0.01$

PFR solution:
$$C_E/C_I=e^{-k\bar{t}}$$

Steady-state CSTR solution: $C_E/C_I = (1 + k\bar{t})^{-1}$

$$a = \left[1 + \frac{4k\bar{t}}{Pe}\right]^{0.5}$$

$$Pe = \frac{u_x L}{E_x}$$

 \bar{t} = hydraulic retention time = V/Q

Rivers as plug flow reactors

Rivers are typically relatively long, narrow & shallow

- Even if transverse dispersion is substantially less than longitudinal dispersion,
 vertical and transverse mixing is likely to be complete
- Characteristic time of dispersion, $t_{disp,i} = L_i^2/E_i$

Consider the following river setting (Sacramento River, USA):

Flow velocity	$u_x = 0.5 m/s$		Travel time = 80,000 s
Length	$L_x = 40,000 m$	$E_x = 15 m^2/s$	$t_{disp,x} = 1.1 \times 10^8 s$
Width	$L_y = 40 m$	$E_y = 0.12 m^2/s$	$t_{disp,y}=13,000\ s$
Height	$L_z = 4 m$	$E_z = 0.12 m^2/s$	$t_{disp,z} = 130 \ s$

Dispersion coefficients in aqueous systems

Environment	E, m²/sec
Estuaries (longitudinal)	$10^2 - 10^3$
Rivers (longitudinal)	$10^0 - 10^2$
Rivers (lateral)	$10^{-2} - 10^{-1}$
Surface waters (vertical)	10 ⁻⁶ – 10 ⁻³
Pipes, ducts (normal to flow)	10 ⁻⁵ – 10 ⁻²
Solutes in water	$10^{-10} - 10^{-8}$
Solutes in bioturbed sediments	10 ⁻⁹ – 10 ⁻⁸
Solutes in compacted soils, sediments	10 ⁻¹⁰ – 10 ⁻¹²