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In This Lecture

 Overview of basic probability theory

 Overview of information theory
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Why Probability

 Probability theory: a mathematical framework for 
representing uncertain statements
 Provides a means of quantifying uncertainty and axioms for 

making new uncertain statements
 A fundamental tool of many disciplines of science and 

engineering

 Use of probability in AI
 The laws of probability tell us how AI systems should 

reason, so we design algorithms to compute or 
approximate various expressions using probability theory

 Theoretically analyze the behavior of proposed AI systems
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Random Variable

 A random variable is a variable that can take on 
different values randomly
 With some probabilities for values

 Random variables may be discrete or continuous
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Probability Mass Function (PMF)

 For discrete random variables
 The domain of P must be the set of all possible states of x
 ∀𝑥𝑥 ∈ x, 0 ≤ 𝑃𝑃(𝑥𝑥) ≤ 1. An impossible event has 

probability 0 and no state can be less probable than that. 
Likewise, an event that is guaranteed to happen has 
probability 1, and no state can have a greater chance of 
occurring

 ∑𝑥𝑥∈x 𝑃𝑃(𝑥𝑥) = 1. We refer to this property as being 
normalized. Without this property, we could obtain 
probabilities greater than one by computing the 
probability of one of many events occurring

 Uniform distribution among k states:   P(x = xi) = 1/k



U Kang 6

Probability Density Function (PDF)

 For continuous random variables
 The domain of P must be the set of all possible 

states of x
 ∀𝑥𝑥 ∈ x,𝑝𝑝(𝑥𝑥) ≥ 0. Note that we do not require 
𝑝𝑝(𝑥𝑥) ≤ 1

 ∫𝑝𝑝 𝑥𝑥 𝑑𝑑𝑥𝑥 = 1

 Uniform distribution u(x; a,b) = 1/(b-a)

parameterized by
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Computing Marginal Probability 
with the Sum Rule

 ∀𝑥𝑥 ∈ x,𝑃𝑃 x = 𝑥𝑥 = ∑𝑦𝑦 𝑃𝑃(x = 𝑥𝑥, y = 𝑦𝑦)

 𝑝𝑝 𝑥𝑥 = ∫𝑝𝑝 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦
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Conditional Probability

 𝑃𝑃 y = 𝑦𝑦|x = 𝑥𝑥 = 𝑃𝑃(y=𝑦𝑦, x=𝑥𝑥)
𝑃𝑃(x=𝑥𝑥)
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Chain Rule of Probability

 𝑃𝑃 𝑥𝑥(1), … , 𝑥𝑥(𝑛𝑛) =
𝑃𝑃 𝑥𝑥 1 ∏𝑖𝑖=2

𝑛𝑛 𝑃𝑃 𝑥𝑥 𝑖𝑖 |𝑥𝑥 1 , … , 𝑥𝑥 𝑖𝑖−1

 E.g., 𝑃𝑃 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑃𝑃 𝑎𝑎 𝑏𝑏, 𝑐𝑐) 𝑃𝑃 𝑏𝑏 𝑐𝑐) 𝑃𝑃(𝑐𝑐)
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Independence

 Independence
 ∀𝑥𝑥 ∈ x,𝑦𝑦 ∈ y,𝑝𝑝 x = 𝑥𝑥, y = 𝑦𝑦 = 𝑝𝑝 x = 𝑥𝑥 𝑝𝑝(y = 𝑦𝑦)
 Notation: 𝑥𝑥 ⊥ 𝑦𝑦

 Conditional independence
 ∀𝑥𝑥 ∈ x, 𝑦𝑦 ∈ y, z ∈ 𝑧𝑧,
 𝑝𝑝 x = 𝑥𝑥, y = 𝑦𝑦|z = 𝑧𝑧 = 𝑝𝑝 x = 𝑥𝑥|z = 𝑧𝑧 𝑝𝑝 y = 𝑦𝑦 z = 𝑧𝑧)
 Equivalently, 𝑝𝑝 𝑥𝑥|𝑦𝑦, 𝑧𝑧 = 𝑝𝑝 𝑥𝑥|𝑧𝑧

 Pf?

 Notation: 𝑥𝑥 ⊥ 𝑦𝑦 | 𝑧𝑧
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Expectation

 Discrete variable: 𝐸𝐸𝑥𝑥~𝑃𝑃 𝑓𝑓 𝑥𝑥 = ∑𝑥𝑥 𝑃𝑃 𝑥𝑥 𝑓𝑓(𝑥𝑥)
 Continuous variable: 𝐸𝐸𝑥𝑥~𝑝𝑝 𝑓𝑓 𝑥𝑥 = ∫𝑝𝑝 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥
 Linearity of expectations:

 𝐸𝐸𝑥𝑥 𝛼𝛼𝑓𝑓 𝑥𝑥 + 𝛽𝛽𝑔𝑔(𝑥𝑥) = 𝛼𝛼𝐸𝐸𝑥𝑥 𝑓𝑓 𝑥𝑥 + 𝛽𝛽𝐸𝐸𝑥𝑥 𝑔𝑔 𝑥𝑥
 This always holds, even when f(x) and g(x) are dependent
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Variance and Covariance

 Var f x = 𝐸𝐸 (𝑓𝑓 𝑥𝑥 − 𝐸𝐸 𝑓𝑓 𝑥𝑥 )2 = 𝐸𝐸 𝑓𝑓 𝑥𝑥 2 − (𝐸𝐸 𝑓𝑓 𝑥𝑥 )2

 Standard deviation: square root of Var

 Cov f x ,𝑔𝑔(𝑦𝑦) = 𝐸𝐸 (𝑓𝑓 𝑥𝑥 − 𝐸𝐸 𝑓𝑓 𝑥𝑥 )(𝑔𝑔 𝑦𝑦 − 𝐸𝐸 𝑔𝑔 𝑥𝑥 )
 Intuition:

 Positive covariance
 Negative covariance

 Covariance matrix: 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )
 Diagonal elements 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)𝑖𝑖,𝑖𝑖 = 𝑉𝑉𝑎𝑎𝑉𝑉(𝑥𝑥𝑖𝑖)
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Bernoulli Distribution

 PDF
 P x = 1 = ϕ
 P x = 0 = 1 − ϕ
 P x = 𝑥𝑥 = ϕ𝑥𝑥(1 −ϕ)1−𝑥𝑥

 E[x] = ϕ
 Var[x] = ϕ (1- ϕ)

 Pf?
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Multinoulli Distribution

 Categorical Distribution
 A distribution over a single discrete variable with k different 

states
 Parameterized by a vector 𝑝𝑝 ∈ [0, 1]𝑘𝑘−1

 The final, k-th state’s probability is given by 1 – 1Tp
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Gaussian Distribution

 Parameterized by variance:
 E[x] = 𝜇𝜇,  Var[x] = 𝜎𝜎2

Ν 𝑥𝑥; 𝜇𝜇,𝜎𝜎2 =
1

2𝜋𝜋𝜎𝜎2
exp(−

1
2𝜎𝜎2

(𝑥𝑥 − 𝜇𝜇)2)

 Parameterized by precision:

Ν 𝑥𝑥; 𝜇𝜇,𝜎𝜎2 =
𝛽𝛽

2𝜋𝜋
exp(−

1
2
𝛽𝛽(𝑥𝑥 − 𝜇𝜇)2)
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Gaussian Distribution
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Gaussian Distribution

 Central limit theorem: the sum of many independent 
random variables is approximately normally distributed


𝑛𝑛
𝜎𝜎

𝑋𝑋𝑛𝑛 − 𝜇𝜇 → 𝑁𝑁(0,1) as    𝑛𝑛 → ∞

 Law of large numbers: the sample average converges 
to the expectation as the sample size goes to infinity
 𝑋𝑋𝑛𝑛 → 𝜇𝜇 as    𝑛𝑛 → ∞, where 𝑋𝑋𝑛𝑛 = 1

𝑛𝑛
(𝑋𝑋1 + 𝑋𝑋2 + … + 𝑋𝑋𝑛𝑛)
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Multivariate Gaussian

 Parameterized by covariance matrix:

Ν 𝑥𝑥; 𝜇𝜇, Σ =
1

(2𝜋𝜋)𝑛𝑛det(Σ)
exp(−

1
2

(𝑥𝑥 − 𝜇𝜇)𝑇𝑇Σ−1(𝑥𝑥 − 𝜇𝜇))

 𝜇𝜇 is a vector
 Σ is a covariance matrix
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Multivariate Gaussian

 Parameterized by precision matrix:

Ν 𝑥𝑥; 𝜇𝜇,𝛽𝛽−1 =
det(𝛽𝛽)
(2𝜋𝜋)𝑛𝑛

exp(−
1
2

(𝑥𝑥 − 𝜇𝜇)𝑇𝑇𝛽𝛽(𝑥𝑥 − 𝜇𝜇))
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More Distributions

 Exponential: 𝑝𝑝 𝑥𝑥; 𝜆𝜆 = 𝜆𝜆 𝟏𝟏𝑥𝑥≥0 exp(−𝜆𝜆𝑥𝑥)

 Laplace: 𝑝𝑝 𝑥𝑥; 𝜇𝜇, 𝑏𝑏 = 1
2𝑏𝑏

exp(− |𝑥𝑥−𝜇𝜇|
𝑏𝑏

)
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More Distributions

 Dirac Delta: p x = 𝛿𝛿 𝑥𝑥 − 𝜇𝜇
 It is zero-valued everywhere except at 𝜇𝜇, yet integrates to 1

 Empirical Distribution
 �̂�𝑝 𝑥𝑥 = 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝛿𝛿(𝑥𝑥 − 𝑥𝑥 𝑖𝑖 )
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Mixture Distribution

 𝑃𝑃 𝑥𝑥 = ∑𝑖𝑖 𝑃𝑃 𝑐𝑐 = 𝑖𝑖 𝑃𝑃 𝑥𝑥 𝑐𝑐 = 𝑖𝑖)
 Gaussian mixture: 𝑃𝑃 𝑥𝑥 𝑐𝑐 = 𝑖𝑖) is Gaussian

Gaussian mixture with three components
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Logistic Sigmoid

 𝜎𝜎 𝑥𝑥 = 1
1+exp(−𝑥𝑥)
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Softplus Function

 𝜁𝜁 𝑥𝑥 = log(1 + exp 𝑥𝑥 )

 “softened” version of 𝑥𝑥+ = max(0, 𝑥𝑥)
“rectified linear unit”
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Properties of sigmoid and softplus

 𝜎𝜎 𝑥𝑥 = 1
1+exp(−𝑥𝑥)

= exp(𝑥𝑥)
exp 𝑥𝑥 +exp(0)


𝑑𝑑
𝑑𝑑𝑥𝑥
𝜎𝜎 𝑥𝑥 = 𝜎𝜎 𝑥𝑥 (1 − 𝜎𝜎 𝑥𝑥 )

 1 − 𝜎𝜎 𝑥𝑥 = 𝜎𝜎 −𝑥𝑥
 log𝜎𝜎(𝑥𝑥) = −𝜁𝜁 −𝑥𝑥


𝑑𝑑
𝑑𝑑𝑥𝑥
𝜁𝜁 𝑥𝑥 = 𝜎𝜎 𝑥𝑥

 ∀𝑥𝑥 ∈ 0,1 ,𝜎𝜎−1 𝑥𝑥 = log( 𝑥𝑥
1−𝑥𝑥

)

 ∀𝑥𝑥 > 0, 𝜁𝜁−1 𝑥𝑥 = log(exp 𝑥𝑥 − 1)
 𝜁𝜁 𝑥𝑥 = ∫−∞

𝑥𝑥 𝜎𝜎 𝑦𝑦 𝑑𝑑𝑦𝑦
 𝜁𝜁 𝑥𝑥 − 𝜁𝜁 −𝑥𝑥 = 𝑥𝑥
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Bayes Rule

 𝑃𝑃 𝑥𝑥 𝑦𝑦) = 𝑃𝑃 𝑥𝑥 𝑃𝑃 𝑦𝑦 𝑥𝑥)
𝑃𝑃(𝑦𝑦)

= 𝑃𝑃(𝑥𝑥,𝑦𝑦)
∑𝑦𝑦 𝑃𝑃(𝑥𝑥,𝑦𝑦)
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Change of Variables

 Assume two r.v. x and y such that y = g(x) where 
g is an invertible, continuous, and differentiable 
function

 𝑝𝑝𝑦𝑦 𝑦𝑦 = 𝑝𝑝𝑥𝑥(𝑔𝑔−1(𝑦𝑦))?
 Example: y = x/2, and x ~ U(0,1)
 If we use the rule 𝑝𝑝𝑦𝑦 𝑦𝑦 = 𝑝𝑝𝑥𝑥(2𝑦𝑦), 𝑝𝑝𝑦𝑦 will be 0 

everywhere except in [0,1/2] where it has 1
 It means ∫𝑝𝑝𝑦𝑦 𝑦𝑦 𝑑𝑑𝑦𝑦 = 1/2 !
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Change of Variables

 Assume two r.v. x and y such that y = g(x) where 
g is an invertible, continuous, and differentiable 
function

 𝑝𝑝𝑦𝑦 𝑦𝑦 = 𝑝𝑝𝑥𝑥(𝑔𝑔−1(𝑦𝑦)) 𝑑𝑑𝑥𝑥
𝑑𝑑𝑦𝑦

 (pf) 𝑝𝑝𝑦𝑦 𝑦𝑦 𝑑𝑑𝑦𝑦 = 𝑝𝑝𝑥𝑥 𝑥𝑥 𝑑𝑑𝑥𝑥

 Example: y = x/2, and x ~ U(0,1)
 𝑝𝑝𝑦𝑦 𝑦𝑦 = 𝑝𝑝𝑥𝑥 2𝑦𝑦 2 = 2 (for 0<y<1/2)
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Information Theory

 Information theory: quantifying how much 
information is present in a signal

 Learning that an unlikely event has occurred is 
more informative than learning that a likely event 
has occurred

 Self-Information of x
 𝐼𝐼 𝑥𝑥 = − log𝑃𝑃(𝑥𝑥)
 Intuition: minimum # of bits to express (encode) an 

event with probability P(x)
 Rare event has a large information content
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Information Theory

 Entropy: expectation of self-information
 𝐻𝐻 𝑥𝑥 = 𝐸𝐸𝑥𝑥~𝑃𝑃 𝐼𝐼 𝑥𝑥 = −𝐸𝐸𝑥𝑥~𝑃𝑃 log𝑃𝑃(𝑥𝑥)
 Minimum expected # of bits to express a distribution
 For Bernoulli variable,

 𝐻𝐻 𝑥𝑥 = −𝑝𝑝𝑝𝑝𝐶𝐶𝑔𝑔 𝑝𝑝 − 1 − 𝑝𝑝 log(1 − 𝑝𝑝)

0 log 0 is treated as 0
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KL Divergence

 Measure the difference of two distributions P(x) and 
Q(x)

 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃| 𝑄𝑄 = 𝐸𝐸𝑥𝑥~𝑃𝑃 log 𝑃𝑃 𝑥𝑥
𝑄𝑄 𝑥𝑥

= 𝐸𝐸𝑥𝑥~𝑃𝑃 log𝑃𝑃(𝑥𝑥) − log𝑄𝑄(𝑥𝑥)
 Properties

 Always nonnegative: 0 if and only if P and Q are the same
 Intuition: If x ~ P, the best (minimal) encoding is given by assigning 

log P(x) bits for each x

 Not symmetric: 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃| 𝑄𝑄 ≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃)
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KL Divergence is Asymmetric
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Cross-entropy

 Average # of bits needed to identify an event from 
the true distribution P, if we use a coding scheme 
optimized for unnatural distribution Q

 𝐻𝐻 𝑃𝑃,𝑄𝑄 = 𝐻𝐻 𝑃𝑃 + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃| 𝑄𝑄 = −𝐸𝐸𝑥𝑥~𝑃𝑃 log𝑄𝑄(𝑥𝑥)
 Minimizing the cross-entropy w.r.t. Q is equivalent 

to minimizing the KL divergence
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What you need to know

 Probability theory concepts
 PDF and PMF
 Conditional probability and chain rule
 Distribution: Bernoulli, Gaussian, …
 Sigmoid and softplus functions
 Bayes rule

 Information theory concepts
 Entropy, KL divergence, and cross-entropy
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Questions?
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