
1U Kang

Introduction to Data Mining

Lecture #4: MapReduce-2

U Kang
Seoul National University

2U Kang

Outline

Problems Suited For Map-Reduce
Pointers and Further Reading

3U Kang

Example: Host size

 Suppose we have a large web corpus
 Look at the metadata file
 Lines of the form: (URL, size, date, …)

 For each host, find the total number of bytes
 That is, the sum of the page sizes for all URLs from that

particular host

4U Kang

Example: Language Model

 Statistical machine translation:
 Need to count number of times every 5-word

sequence occurs in a large corpus of documents

 Very easy with MapReduce:
 Map:

 Extract (5-word sequence, count) from document

 Reduce:
 Combine the counts

5U Kang

More Examples

 Distributed Grep
 Map() : emits a line if it matches a supplied pattern

 Reverse Web-Link graph
 Map() : output <target, source> for each target in a

source web page
 Reduce: output <target, list(source)>

6U Kang

More Examples

 Term-Vector per Host
 Term vector : summarizes most important words that

occur in a given host
 Map: output <hostname, term vector> for a given

document
 Reduce: output <hostname, term vector> for frequent

terms

7U Kang

More Examples

 Inverted index
 Map(): output <word, document ID>
 Reduce(): output <word, list(document ID)>

8U Kang

Example: Join By Map-Reduce

 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S

Student id Course id Course id
Course
name Student id

Course
name

(Enrollment)
(Course Info.)

9U Kang

Map-Reduce Join

 Use a hash function h from B-values to 1...k
 A Map process turns:
 Each input tuple R(a,b) into key-value pair (b,(a,R))
 Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with key b
to Reduce process h(b)
 Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs (b,(a,R))
with all (b,(c,S)) and outputs (a,b,c).

10U Kang

Cost Measures for Algorithms

 In MapReduce we quantify the cost of an
algorithm using

1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along

any path
3. (Elapsed) computation cost analogous, but

count only running time of processes

11U Kang

Example: Cost Measures

 For a map-reduce algorithm:
 Communication cost = input file size + 2 × (sum of the

sizes of all files passed from Map processes to Reduce
processes) + the sum of the output sizes of the Reduce
processes.

 Elapsed communication cost is the sum of the largest
input + output for any map process, plus the same for
any reduce process

12U Kang

What Cost Measures Mean

 Either the I/O (communication) or processing
(computation) cost dominates
 Ignore one or the other

 Total cost tells what you pay in rent from
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using parallelism

13U Kang

Cost of Map-Reduce Join

 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
 We’re going to pick k (# of reducers) and the number

of Map processes so that the I/O limit s is respected
 We put a limit s on the amount of input or output that

any one process can have. s could be:
 What fits in main memory
 What fits on local disk

 In many cases, computation cost is linear in the
input + output size
 So computation cost is like comm. cost

14U Kang

Outline

Problems Suited For Map-Reduce
Pointers and Further Reading

15U Kang

Implementations

 Google
 Not available outside Google

 Hadoop
 An open-source implementation in Java
 Uses HDFS for stable storage
 Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/

16U Kang

Cloud Computing

 Ability to rent computing by the hour
 Additional services e.g., persistent storage

 Amazon’s “Elastic Compute Cloud” (EC2)

17U Kang

Reading

 Jeffrey Dean and Sanjay Ghemawat: MapReduce:
Simplified Data Processing on Large Clusters
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/mapreduce-osdi04.pdf
 Must Read!

 Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung: The Google File System
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/ko/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/ko/archive/gfs-sosp2003.pdf

18U Kang

Resources

 Hadoop Wiki
 Introduction

 http://wiki.apache.org/lucene-hadoop/
 Getting Started

 http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
 Map/Reduce Overview

 http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

 Eclipse Environment
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

 Javadoc
 http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/

19U Kang

Resources

 Releases from Apache download mirrors
 http://www.apache.org/dyn/closer.cgi/lucene/hadoop

/

 Nightly builds of source
 http://people.apache.org/dist/lucene/hadoop/nightly/

 Source code from subversion
 http://lucene.apache.org/hadoop/version_control.ht

ml

http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://lucene.apache.org/hadoop/version_control.html

20U Kang

Further Reading

 Programming model inspired by functional language primitives
 Partitioning/shuffling similar to many large-scale sorting systems

 NOW-Sort ['97]
 Re-execution for fault tolerance

 BAD-FS ['04] and TACC ['97]
 Locality optimization has parallels with Active Disks/Diamond w

ork
 Active Disks ['01], Diamond ['04]

 Backup tasks similar to Eager Scheduling in Charlotte system
 Charlotte ['96]

 Dynamic load balancing solves similar problem as River's distribu
ted queues
 River ['99]

21U Kang

Questions?

	슬라이드 번호 1
	Outline
	Example: Host size
	Example: Language Model
	More Examples
	More Examples
	More Examples
	Example: Join By Map-Reduce
	Map-Reduce Join
	Cost Measures for Algorithms
	Example: Cost Measures
	What Cost Measures Mean
	Cost of Map-Reduce Join
	Outline
	Implementations
	Cloud Computing
	Reading
	Resources
	Resources
	Further Reading
	슬라이드 번호 21

