
1U Kang

Introduction to Data Mining

Lecture #4: MapReduce-2

U Kang
Seoul National University

2U Kang

Outline

Problems Suited For Map-Reduce
Pointers and Further Reading

3U Kang

Example: Host size

 Suppose we have a large web corpus
 Look at the metadata file
 Lines of the form: (URL, size, date, …)

 For each host, find the total number of bytes
 That is, the sum of the page sizes for all URLs from that

particular host

4U Kang

Example: Language Model

 Statistical machine translation:
 Need to count number of times every 5-word

sequence occurs in a large corpus of documents

 Very easy with MapReduce:
 Map:

 Extract (5-word sequence, count) from document

 Reduce:
 Combine the counts

5U Kang

More Examples

 Distributed Grep
 Map() : emits a line if it matches a supplied pattern

 Reverse Web-Link graph
 Map() : output <target, source> for each target in a

source web page
 Reduce: output <target, list(source)>

6U Kang

More Examples

 Term-Vector per Host
 Term vector : summarizes most important words that

occur in a given host
 Map: output <hostname, term vector> for a given

document
 Reduce: output <hostname, term vector> for frequent

terms

7U Kang

More Examples

 Inverted index
 Map(): output <word, document ID>
 Reduce(): output <word, list(document ID)>

8U Kang

Example: Join By Map-Reduce

 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S

Student id Course id Course id
Course
name Student id

Course
name

(Enrollment)
(Course Info.)

9U Kang

Map-Reduce Join

 Use a hash function h from B-values to 1...k
 A Map process turns:
 Each input tuple R(a,b) into key-value pair (b,(a,R))
 Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with key b
to Reduce process h(b)
 Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs (b,(a,R))
with all (b,(c,S)) and outputs (a,b,c).

10U Kang

Cost Measures for Algorithms

 In MapReduce we quantify the cost of an
algorithm using

1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along

any path
3. (Elapsed) computation cost analogous, but

count only running time of processes

11U Kang

Example: Cost Measures

 For a map-reduce algorithm:
 Communication cost = input file size + 2 × (sum of the

sizes of all files passed from Map processes to Reduce
processes) + the sum of the output sizes of the Reduce
processes.

 Elapsed communication cost is the sum of the largest
input + output for any map process, plus the same for
any reduce process

12U Kang

What Cost Measures Mean

 Either the I/O (communication) or processing
(computation) cost dominates
 Ignore one or the other

 Total cost tells what you pay in rent from
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using parallelism

13U Kang

Cost of Map-Reduce Join

 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
 We’re going to pick k (# of reducers) and the number

of Map processes so that the I/O limit s is respected
 We put a limit s on the amount of input or output that

any one process can have. s could be:
 What fits in main memory
 What fits on local disk

 In many cases, computation cost is linear in the
input + output size
 So computation cost is like comm. cost

14U Kang

Outline

Problems Suited For Map-Reduce
Pointers and Further Reading

15U Kang

Implementations

 Google
 Not available outside Google

 Hadoop
 An open-source implementation in Java
 Uses HDFS for stable storage
 Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/

16U Kang

Cloud Computing

 Ability to rent computing by the hour
 Additional services e.g., persistent storage

 Amazon’s “Elastic Compute Cloud” (EC2)

17U Kang

Reading

 Jeffrey Dean and Sanjay Ghemawat: MapReduce:
Simplified Data Processing on Large Clusters
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/mapreduce-osdi04.pdf
 Must Read!

 Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung: The Google File System
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/ko/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/ko/archive/gfs-sosp2003.pdf

18U Kang

Resources

 Hadoop Wiki
 Introduction

 http://wiki.apache.org/lucene-hadoop/
 Getting Started

 http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
 Map/Reduce Overview

 http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

 Eclipse Environment
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

 Javadoc
 http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/

19U Kang

Resources

 Releases from Apache download mirrors
 http://www.apache.org/dyn/closer.cgi/lucene/hadoop

/

 Nightly builds of source
 http://people.apache.org/dist/lucene/hadoop/nightly/

 Source code from subversion
 http://lucene.apache.org/hadoop/version_control.ht

ml

http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://lucene.apache.org/hadoop/version_control.html

20U Kang

Further Reading

 Programming model inspired by functional language primitives
 Partitioning/shuffling similar to many large-scale sorting systems

 NOW-Sort ['97]
 Re-execution for fault tolerance

 BAD-FS ['04] and TACC ['97]
 Locality optimization has parallels with Active Disks/Diamond w

ork
 Active Disks ['01], Diamond ['04]

 Backup tasks similar to Eager Scheduling in Charlotte system
 Charlotte ['96]

 Dynamic load balancing solves similar problem as River's distribu
ted queues
 River ['99]

21U Kang

Questions?

	슬라이드 번호 1
	Outline
	Example: Host size
	Example: Language Model
	More Examples
	More Examples
	More Examples
	Example: Join By Map-Reduce
	Map-Reduce Join
	Cost Measures for Algorithms
	Example: Cost Measures
	What Cost Measures Mean
	Cost of Map-Reduce Join
	Outline
	Implementations
	Cloud Computing
	Reading
	Resources
	Resources
	Further Reading
	슬라이드 번호 21

