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Outline

Problems Suited For Map-Reduce
Pointers and Further Reading
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Example: Host size

 Suppose we have a large web corpus
 Look at the metadata file
 Lines of the form: (URL, size, date, …)

 For each host, find the total number of bytes
 That is, the sum of the page sizes for all URLs from that 

particular host
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Example: Language Model

 Statistical machine translation:
 Need to count number of times every 5-word 

sequence occurs in a large corpus of documents

 Very easy with MapReduce:
 Map:

 Extract (5-word sequence, count) from document

 Reduce: 
 Combine the counts
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More Examples

 Distributed Grep
 Map() : emits a line if it matches a supplied pattern

 Reverse Web-Link graph
 Map() : output <target, source> for each target in a 

source web page
 Reduce: output <target, list(source)>
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More Examples

 Term-Vector per Host
 Term vector : summarizes most important words that 

occur in a given host
 Map: output <hostname, term vector> for a given 

document
 Reduce: output <hostname, term vector> for frequent 

terms
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More Examples

 Inverted index
 Map(): output <word, document ID>
 Reduce(): output <word, list(document ID)>
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Example: Join By Map-Reduce

 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S

Student id Course id Course id
Course 
name Student id

Course 
name

(Enrollment)
(Course Info.)
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Map-Reduce Join

 Use a hash function h from B-values to 1...k
 A Map process turns:
 Each input tuple R(a,b) into key-value pair (b,(a,R))
 Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with key b
to Reduce process h(b)
 Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs (b,(a,R))
with all (b,(c,S)) and outputs (a,b,c).
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Cost Measures for Algorithms

 In MapReduce we quantify the cost of an 
algorithm using 

1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along 

any path
3. (Elapsed) computation cost analogous, but 

count only running time of processes
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Example: Cost Measures

 For a map-reduce algorithm:
 Communication cost = input file size + 2 × (sum of the 

sizes of all files passed from Map processes to Reduce 
processes) + the sum of the output sizes of the Reduce 
processes.

 Elapsed communication cost is the sum of the largest 
input + output for any map process, plus the same for 
any reduce process
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What Cost Measures Mean

 Either the I/O (communication) or processing 
(computation) cost dominates
 Ignore one or the other

 Total cost tells what you pay in rent from 
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using parallelism
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Cost of Map-Reduce Join

 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
 We’re going to pick k (# of reducers) and the number 

of Map processes so that the I/O limit s is respected
 We put a limit s on the amount of input or output that 

any one process can have. s could be:
 What fits in main memory
 What fits on local disk

 In many cases, computation cost is linear in the 
input + output size
 So computation cost is like comm. cost
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Implementations

 Google
 Not available outside Google

 Hadoop
 An open-source implementation in Java
 Uses HDFS for stable storage
 Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/
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Cloud Computing

 Ability to rent computing by the hour
 Additional services e.g., persistent storage

 Amazon’s “Elastic Compute Cloud” (EC2)
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Reading

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: 
Simplified Data Processing   on Large Clusters
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/mapreduce-osdi04.pdf
 Must Read!

 Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung: The Google File System
 http://static.googleusercontent.com/media/research.

google.com/ko//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/ko/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/ko/archive/gfs-sosp2003.pdf
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Resources

 Hadoop Wiki
 Introduction

 http://wiki.apache.org/lucene-hadoop/
 Getting Started

 http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
 Map/Reduce Overview 

 http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

 Eclipse Environment
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

 Javadoc
 http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/
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Resources

 Releases from Apache download mirrors
 http://www.apache.org/dyn/closer.cgi/lucene/hadoop

/

 Nightly builds of source
 http://people.apache.org/dist/lucene/hadoop/nightly/

 Source code from subversion
 http://lucene.apache.org/hadoop/version_control.ht

ml

http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://lucene.apache.org/hadoop/version_control.html
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Further Reading

 Programming model inspired by functional language primitives
 Partitioning/shuffling similar to many large-scale sorting systems 

 NOW-Sort ['97] 
 Re-execution for fault tolerance 

 BAD-FS ['04] and TACC ['97] 
 Locality optimization has parallels with Active Disks/Diamond w

ork 
 Active Disks ['01], Diamond ['04] 

 Backup tasks similar to Eager Scheduling in Charlotte system 
 Charlotte ['96] 

 Dynamic load balancing solves similar problem as River's distribu
ted queues 
 River ['99]
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Questions?
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