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A In This Lecture

m Greedy Layer-Wise Unsupervised Pretraining

m Transfer Learning and Domain Adaptation

m Semi-Supervised Disentangling of Causal Factors
m Distributed Representation

m Exponential Gains from Depth

m Providing Clues to Discover Underlying Causes
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Overview

m Machine learning:
- Predictive Learning
- Representation Learning

m What makes one representation better than another?

m Example:
Division of CCX by VI ?

U Kang 4



= Overview
m Example:
Division of CCX by VI ? ==» Division of 210 by 6
210 | 6
18 35
30

m Processing tasks can be very easy/difficult depending
on how the information is represented.
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*= Representation Learning (RL)

m Most widely used unsupervised learning techniques
and the representations they produce:

> Clustering: maps data points to a discrete set where
the only meaningful operation is equality.
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Representation Learning (RL)

> Nonlinear dimensionality reduction algorithms:

map data points to a low-dimensional space where
Euclidean distance is meaningful.

> Linear dimensionality reduction algorithms like
PCA: map data points to a low-dimensional space
where Euclidean distance, linear combination,
and dot products are all meaningful.
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Representation Learning (RL)

m A good representation is one that makes a subse
guent learning task easier

m Trade-off between preserving as much information
as possible and attaining nice properties

m RL provides one way to perform unsupervised lear-
ning. We often have

- Large amounts of unlabeled data
- Relatively little labeled training data
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Representation Learning (RL)

m Why RL is interesting:
Learn good representations for the unlabeled data

Use these representations to solve the supervised
learning task.

m Unsupervised deep learning algorithm learns a
representation as a side effect.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP)

m Unsupervised learning: allowed researchers for the
1st time to train a deep supervised network
without requiring architectural specializations (like
convolution or recurrence).

m This procedure is called Unsupervised Pretraining;
or GLWUP.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP)

m GLWUP: canonical example of how a representation
learned for one task can be useful for another task

Example: Trying to capture the shape of the input distribution
(unsupervised task) useful for supervised learning with the same
input domain.

m Used to sidestep the difficulty of jointly training the
layers of a deep neural net for a supervised task.
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== GLWUP: Explanation of the terms

m Greedy Algorithm:
> Break a problem into many components

> Solve the optimal version of each component in
isolation

> It optimizes each piece of the solution indepen-
dently, one piece at a time, rather than jointly
optimizing all pieces.

U Kang 13
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"GLWUP: Explanation of the terms

m Greedy Algorithm:

> Example:
Greedy Algorithm

(3
@ © ¢

> Problem: not guaranteed to yield an optimal com-
plete solution
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= GLWUP: Explanation of the terms

m Greedy Algorithm:

Greedy Algornithm

» But computationally much cheaper than algorithms
that solve for the best joint solution

» The quality of a greedy solution is often acceptable,
if not optimal.

U Kang 15
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= GLWUP: Explanation of the terms

m Layer-Wise: these independent pieces are the lay
er of the network.

m Greedy Layer-Wise pretraining:
> Proceeds one layer at a time

» Training the k-th layer while keeping the previous
ones fixed

> The lower layers (trained first) are not adapted
after the upper layers are introduced.

U Kang 16
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= GLWUP: Explanation of the terms

m Unsupervised: Each layer is trained with an
unsupervised representation learning algorithm

m Differences between unsupervised and supervised?

Example:
There is a bunch of different fruits:

Supervised: Based on its color/shape weight, is that fruit an apple?
> Boolean

Unsupervised: How the different fruits can be clustered inside your
grocery store?

U Kang 17
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= Unsupervised: -
> Trying to “understand” the

data

» Datais unlabeled or value

unknown

» Goal: try to find correlations >
without any external inputs
other than the raw data

> Example: clustering

U Kang

Unsupervised vs Supervised

Supervised:

Data is labelled with a class
or value

Goal: predict class or value
label

Example: Neural Network, SVM,
Decisions Trees, Bayesian Classi
fiers

18
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= GLWUP: Explanation of the terms

m Pretraining:

= Supposed to be only a first step before a joint
training algorithm is applied, to fine-tune all the
layers together.

« It is common that the word “pretraining” refers
to the two-phase protocol: pretraining phase and
supervised learning phase.

U Kang 19
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m Pretraining:

GLWUP: Explanation of the terms

It can be viewed as a regularizer and a form of parame

ter initialization.
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== (GLWUP) Greedy Layer-Wise
Unsupervised Pretraining

m GLWUP can be used as initialization for other
unsupervised learning algorithms, such as deep
autoencoders and probabilistic models with many
layers of latent variables.

U Kang 21
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GLWUP: Algorithm

m GLWUP relies on a single-layer representation
learning algorithm such as:

- an RBM (Restricted Boltzmann Machine)
- a single-layer autoencoder
- a sparse coding model

- another model that learns latent represen-
tations

U Kang 22



GLWUP: Algorithm

GLWUP Protocol: . .
m Unsupervised feature learning

f « Identity function algorithm L, which takes a
X=X training set of examples and
for k=1,...,m do returns an encoder or feature
f = ( ) function f.
fef®of
X  f0(X)
end for m The raw input data is X, with
if fine-tuning then one row per example, and
f«<T(,X,Y) fll)(X) is the output of the first
end if stage encoder on X.

Return f m Y: associated targets

U Kang 23



GLWUP: Algorithm

m Basic pictorial

representation of the training

procedure for deep learning architecture:
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(a) First hidden layer pre-

training
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(b) Second hidden layer

pre-training
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(¢) Third hidden layer pre-
training

(d) Fine-tuning of whole
network
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&= GLWUP: Algorithm

m Step 1: Train the first hidden layer of the DNN and
reconstruct the input based upon the hidden layers

weight

Reconstruction

Calibrate weights
b / T back through
DNN Input Layer
Features v ?)
Input Layer

U Kang 25



GLWUP: Algorithm

m Step 2: We now take the next hidden layer of
“Additional Features” and train the layer using the
inputs from the “Features” and reconstruct the
Feature layer from the inputs.

Reconstruction

of input

Additional Calibrate weights

Features back through
DNN to the

Features Feature Layer

Input Layer

U Kang 26



GLWUP: Algorithm

m Step 3: We continue to go through each hidden
layer as described in step 2 until we reach the final
output layer.

Output Layer — EEE——) / /.\

More Abstract —

Features Y/‘><\J

Additional — Re-calibrate

Features ﬂ” kf weights back
\ through all layers

Features v \7/ of the DNN.
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Jiy GLWUP: Algorithm

\f /><u
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m Each layer is pretrained using unsupervised training,
taking the output of the previous layer and producing
as output a new representation of the data.

Input L

U Kang 28
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m Allows abstraction to develop naturally from one
layer to another

m Help the network initialize with good parameters

m Refine the features (intermediate layers) so they
become more relevant for the task
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When and Why does Unsupervised
Pretraining work?

m Unsupervised pretraining is sometimes helpful but
often harmful.

m Two different ideas for UP:

o 1tidea: the choice of initial parameters for a deep neural
network can have a significant regularizing effect on the
model (can improve optimization)

o 2" jdea: Learning about the input distribution can help
with learning about the mapping from inputs to outputs
m Many complicated interactions that are not
entirely understood.

U Kang 30
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“*When and Why does Unsupervised
Pretraining work?

m 15stidea (the least understood):

Initializing the model in a location that would cause it to
approach one local minimum rather than another.

Local minima are no longer considererd to be a serious
problem for neural network optimization (neural
network training procedures usually do not arrive at a
critical point)

U Kang 31
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“When and Why does Unsupervised
Pretraining work?

B

m 2" jdea:

- Some features that are useful for the unsupervised

task may also be useful for the supervised learning
task.

- Not yet understood at a mathematical, theoretical
level, not always possible to predict which tasks will
benefit from unsupervised learning.

U Kang 32
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"When and Why does Unsupervised
Pretraining work?

m Point of view of UP as a regularizer

- Most helpful when the number of labeled examples
is very small.

- Most useful when the function to be learned is
extremely complicated.

U Kang 33



= When and Why does Unsupervised
Pretraining work?

m Where UP is known to cause an improvement:

Reducing test set error: may be explained in terms of
unsupervised pretraining taking the parameters into a
region that would otherwise be inaccessible.
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“When and Why does Unsupervised
Pretraining work?

B

m Disadvantages: UP operates with 2 separate
training phases:

- Pre-training with unsupervised data (e.g.: RBMs)
- Fine-tuning parameters with supervised data

- UP does not offer a clear way to adjust the strength
of the regularization arising from the unsupervised
stage.

- Each phase has its own hyperparameters.

U Kang 35



== Greedy Layer-Wise
Supervised Pretraining

m Each added hidden layer is pretrained as part of a
shallow supervised MLP, taking as input the output
of the previously trained hidden layer.

(a) (b)

m Very common approach for transfer learning

U Kang



e Outline

1 Overview

] Greedy Layer-Wise Unsupervised Pretraining

®» [0 Transfer Learning and Domain Adaptation
[0 Semi-Supervised Disentangling of Causal Factors
[ Distributed Representation
[0 Exponential Gains from Depth

O Providing Clues to Discover Underlying Causes
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Transfer Learning

m Main idea

0 What has been learned in one setting (distribution P;)
is exploited to improve generalization in another
setting (distribution P5).

o Assumption: many factors that explain the variations
in P; are relevant to the variations that need to be
captured for learning P,.

U Kang 38



Transfer Learning

m Example
o Source task has a large amount of data.

0 Target task has a small amount of data.

Large
amount of
data/labels

Source labels

/ Source model \

Small
amount of

Source data
E.g. ImageNet

data/labels
Transfer Learned
Knowledge > / Target model \

e
| Target data
E.g. PASCAL

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN

U Kang
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How transferable are features?

m Motivation

o The core idea of transfer learning is that same
representation may be useful in both source setting
and target setting.

o How can we find common representation?
0 In deep learning model

m Lower layers: extract more general representation (e.g.
edges, visual shapes)

m Higher layers: extract more task specific representation (e.g.
effects of geometric, lightning)

U Kang
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=  How transferable are features?

m Visualization of a fully trained CNN model
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"Visualizing and understanding convolutional networks." ECCV 2014

U Kang
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"Visualizing and understanding convolutional networks." ECCV 2014

U Kang

42



m Ildea

Off-the-shelf

o ldea is that transfer some layers of a network trained

on a different task to target model.

loss

softmax

K fc2
fc1

Data and labels (e.g. ImageNet)

TRANSFER

Shallow classifier (e.g. SVM)

G features

fc1

conv3

conv2

conv1
A

Target data and labels

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN

U Kang
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Off-the-shelf

m Result

o Off-the-shelf outperforms other methods.

Method mean Accuracy
HSV [ ] 43.0
SIFT internal [27] 55.1
SIFT boundary [ '] 32.0
HOG [27] 49.6
HSV+SIFTi+SIFTb+HOG(MKL) [ ] 72.8
BOW(4000) [14] 65.5
SPM(4000) [ ] 67.4
FLH(100) [14] 72.7
BiCos seg [ '] 79.4
Dense HOG+Coding+Pooling[”] w/o seg 76.7
Seg+Dense HOG+Coding+Pooling| ] 80.7
CNN-SVM w/o seg 74.7
CNNaug-SVM w/o seg 86.8

"CNN features off-the-shelf: an astounding baseline for recognition.” IEEE CVPR 2014
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Fine-tuning

m Ildea

o Cut-off the top layers and replace with target task
dependent layers. (off-the-shelf)

a Fine-tune whole network using back-propagation.
0 Freezing or Fine-tuning is optional.

m Freeze: target task data are scarce, and we want to avoid
overfitting

m Fine-tune: target task data are enough

m In general, each layer is set to have a different learning rate.

(The learning rate of the lower layer is close to zero.)

U Kang
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= Fine-tuning

m ldea
0 The blue layers are e —
transferred from source \"\
taSk. -”-é ! fc2 + softmax
o Different learning rate £ 1
could be set to each layer. —
g conv2
N o conv1
[~~~

LR

1]
o

—

data labels

"Deep Learning for Computer Vision."
Summer seminar UPC TelecomBCN
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Fine-tuning

m Experimental test

o Transfer learning and
fine-tuning often lead
to better performance
than training from
scratch on the target
dataset.
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Layer n at which network is chopped and retrained

"How transferable are features in
deep neural networks?" NIPS 2014
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Domain Adaptation

m Domain adaptation is a major area of research in
transfer learning.
m Definition

0 Source domain distribution and target domain
distribution are different.

o Task is same. (e.g. sentiment classification)
0 Labeled data are available only in source domain.
m Example

o Sentiment classification

m (sentiment review for food) =2 (sentiment review for
electronics)

U Kang 48



Domain Adaptation

“Domain Adaptation for Large-Scale Sentiment

Classification: A Deep Learning Approach”, ICML
2011.

0 Sentiment classification for reviews.
o Data: Amazon review dataset

m Domain: toys, software, food, electronics, etc.
2 Purpose

m Transfer knowledge of sentiment classification from the

source domain (e.g. food) to the target domain (e.g.
electronics).

U Kang



Domain Adaptation

m “Domain Adaptation for Large-Scale Sentiment

Classification: A Deep Learning Approach”, ICML
2011.

0 Proposed method

1.

A Stacked Denoising Autoencoder (SDAE) is trained for all the available
domains. (All domains have a common embedding space)

Support Vector Machines (SVM) is trained on the source task.

The classifier (SVM) which is trained at step 2 is transferred to the target
domain.

U Kang
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Domain Adaptation

m “Domain Adaptation for Large-Scale Sentiment
Classification: A Deep Learning Approach”, ICML
2011.

Q RESUltS (|OW€F |S bEtter) ,—» Proposed method

14 | Il ascline IlscL Mlvicr Esea Il spash]
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Figure 1. Transfer losses on the Amazon benchmark of 4 domains: Kitchen(K), Electronics(E), DVDs(D) and

Books(B). All methods are trained on the labeled set of one domain and evaluated on the test sets of the others. SDA,
outperforms all others on 11 out of 12 cases.

U Kang
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Semi-supervised learning

m Definition

o Using labeled data and unlabeled data for supervised
learning (typically a small amount of labeled data with
a large amount of unlabeled data)
m Influence of unlabeled data in semi-supervised
learning -

\

-
-
-
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-~
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== Modifying Definition of Saliency

m Emerging strategy for unsupervised learning is to
modify the definition of which underlying causes
are most salient.

m Autoencoders and generative models usually
optimize a fixed criterion (e.g. MSE)

m These fixed criteria determine which causes are
considered salient.

2 MSE in image reconstruction implies that an
underlying cause is salient only if data significantly
changes the brightness of a large number of pixels.

U Kang
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Modifying definition of Saliency

m An autoencoder trained with MSE has failed to
reconstruct a small ball.

Input Reconstruction

U Kang 55
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~= Modifying definition of Saliency

m |f a group of pixels follows a highly recognizable
pattern then that pattern could be considered
salient. (even if that pattern does not involve
extreme brightness or darkness)

m GAN detects saliency (chapter 20)
o A generative model is trained to fool a discriminator.

o The discriminator attempts to recognize all samples
from the generative model as being fake and samples
from the training set as being real.

o Therefore, the network learns how to determine what
is salient.

U Kang 56



Modifying definition of Saliency

m MSE based model neglects to generate the ears
because the ears do not cause an extreme
difference in brightness.

m GAN generates ears.
Ground Truth MSE Adversarial

U Kang 57



Outline

Overview
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Z

Transfer Learning and Domain Adaptation

7] Semi-Supervised Disentangling of Causal Factors
®» [ Distributed Representation
[ Providing Clues to Discover Underlying Causes
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Nondistributed Representation

m Definition N &
&Q‘@ é’e '\\Qﬁ'\’ c}\\
. . ‘\"g (§ \e @
o Simple representation: 1 2 - A
. > 'l &
neuron dedicated to each & &S

thing no pattern O O O O

0 Easy to learn

0 Easy to associate with other

1
representations O
=

o BUT inefficient with
componential structured data

U Kang 59



m Generalization

Q

“= Nondistributed Representation

Term used to describe a model’s ability to react to new data.
After being trained on a training set it can digest new data and
make accurate predictions

It is central to the success of a model

If the model was trained too well on the training set it could

cause overfitting

The inverse could also happen and is called underfitting

T L

>

Underfitting

v

\_//

>

X

Balanced

U Kang
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Overfitting
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Nondistributed Representation

m Generalization in nondistributed representations

0 Some traditional nondistributed learning algorithms generalize
only due to the smoothness assumption that states that:
If u = v then the target function f has the property : f(u) = f(v)

o The end result of this assumption is that if we have (x,y) fpr

which we know that f(x) = y then we choose an estimator f
that approximately satisfies these constraints while changing
as little as possible when moving to a nearby input x + ¢

0 However this assumption causes the recurring problem of

dimensionality: we may need at least as many examples as the
number of regions.

U Kang 61



Distributed Representation

m What is a distributed representation ?

2 Each concept is represented by many neurons and

each neuron participates in the representation of
many concepts

0 Very useful in representation learning

0 It can use n features with k values to describe k™
different concepts

U Kang 62



Distributed Representation

m What is a distributed representation ?

¥ F
S S ~ '~ -
¥y & o & S & & o
M & F g N > $
F & § 3O Y & F &
& > 4 g & oy

X > N
.C? .\ee \a xe .
g & &F 8 no pattern
& & &4
no pattern O O O O

|] |
? oYX Yo ) eocoe

Nondistributed Representation VS Distributed Representation

U Kang 63
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Distributed Representation

m What is a distributed representation ?

0 Nondistributed Representation: new shape
would mean an increase in the dimensionality

0 Distributed Representation: we keep the same
d'menS|Ona||ty O ~ Vertical + Horizontal + Ellipse = . . O '.

U Kang 64
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Distributed Representation

m Example : Learning hy hy
algorithm based on
distributed representation

h=1[1.0.0'

o 3 binary features hq, h,, hs
that each divides R? into 2
half-planes.

o Each line represents the
decision boundary for h;

h=0.1,0" h=10.1,1]" h=10.0,1"

U Kang 65
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Distributed Representation

m Example : Learning algorithm based on distributed
representation

General case of d input dimensions:

0 For n features (for each dimension) it assigns unique codes to
O(nd) different regions, while nearest neighbor with m
examples assigns unique codes to only m regions

U Kang
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!  Advantages of Distributed
Representation

m Generalization in distributed representations

0 Generalization arise due to shared attributes between
different concepts

o Neural language models that operate on distributed
representations of words generalize much better than
other models.

Example: “cat” and “dog” in nondistributed representation are as
far as each other as any other symbols. However if we now have
a distributed representation that contains for instance “has_fur”
or “number_of_legs” those would have the same values for both
“cat” and “dog”

o Distributed representations induce a rich similarity space in
which semantically close concepts are close in distance
U Kang 67



m Statistical Advantage

0 Distributed representations can

Advantages of Distributed
Representation

ll'u) l!;;

have a statistical advantage when
a complicated structure can be
compactly represented using a
small number of parameters.

In the particular case depicted in
the figure, the number of regions
this binary feature
representation can distinguish is
0(2%)

h=[0,1.0]" h=[0.1.1] h=[0,0,1]

U Kang 68
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Advantages of Distributed
Representation

m Statistical Advantage

0 This provides geometric argument to explain the
generalization power of distributed representation:

With O(d) parameters we can distinctly represent 0(2%)
regions in input space.

While if we had used one symbol for each region specifying
0(2%) regions would require 0(2%) examples.

U Kang 69



¥  Advantages of Distributed
Representation

m Exponential Gains from Depth

o Compositions of nonlinearity can give an exponential
boost to statistical efficiency

o Many networks with saturating nonlinearities with a single
layer can be shown to be universal approximators (can
approximate a large class of functions). However the
required number of hidden units may be very large.
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Overview

=

] Greedy Layer-Wise Unsupervised Pretraining
v

Transfer Learning and Domain Adaptation

7] Semi-Supervised Disentangling of Causal Factors

] Distributed Representation
® [1 Providing Clues to Discover Underlying Causes
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&  Providing clues to discover

underlying causes
m Regularization

o Reduces overfitting by adding a complexity penalty to the loss
function. The idea behind is that models that overfit the data
are complex models that have for example too many
parameters

o To find the best model, a common method is to define a loss
function or cost function that describes how well the model fits
the data

0 The goalis to find the model that minimizes the function

0 Regularization can be motivated as a technique to improve the
generalizability of a learned model
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8  Providing clues to discover

underlying causes
m What makes one representation better ?

o An ideal representation disentangles the underlying causal
factors of variation that generated the data.

0 Strategy = Introducing clues that help the learning to find these
underlying causal factors of variation (e.g. supervised learning
provide a label y to each x)

0 It has been shown that regularization strategies are necessary to
obtain a good generalization

0 Itisimpossible to find a universally superior regularization
strategy; a goal of deep learning is to find a set of generic

regularization strategies that are applicable to a wide variety of
Al tasks
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&)  Providing clues to discover
underlying causes

m List of generic regularization strategies

2 Ways that learning algorithms can be encouraged to
discover features that correspond to underlying factors

2 Smoothness:

m Assumption that f(x + de) = f(x) , d unit and small ¢

m Allows the learner to generalize from training examples to
nearby points in input space

m [nsufficient in terms of dimensionality

0 Linearity:
m Allows predictions even very far from the observed data
m Can lead to overly extreme predictions (e.g., in regression)
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!  Providing clues to discover

underlying causes
m List of generic regularization strategies

0 Causal factors

m Factors of variation described by the learned
representation h are treated as the causes of observed
data x.

m Advantageous for semi-supervised learning
a0 Depth or a hierarchical organization of explanatory
factors

m Expresses our belief that ml task should be accomplished
via a multi-step program, with each step referring back to
the output of the processing accomplished via previous
steps
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Providing clues to discover
underlying causes

m List of generic regularization strategies

Q

Shared factors across tasks: sharing of statistical strength between
the tasks

Manifolds: area of low-dimensionality where data lives

Natural Clustering: each connected manifold in the input space may
be assigned to a single class

Temporal and spatial coherence: most important explanatory
factors change slowly over time

Sparsity: impose a prior that any feature that can be interpreted as
“present” or “absent” should be absent most of time

Simplicity of factor dependencies: in good high-level
representations, the factors are related to each other through

simple dependencies (e.g., factorial distributions)
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What you need to know

Greedy Layer-Wise Unsupervised Pretraining
Transfer Learning and Domain Adaptation
Semi-Supervised Disentangling of Causal Factors
Distributed Representation

Exponential Gains from Depth

Providing Clues to Discover Underlying Causes
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Questions?

U Kang



