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In This Lecture

 Greedy Layer-Wise Unsupervised Pretraining

 Transfer Learning and Domain Adaptation

 Semi-Supervised Disentangling of Causal Factors

 Distributed Representation

 Exponential Gains from Depth

 Providing Clues to Discover Underlying Causes
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Overview

 Machine learning:

- Predictive Learning

- Representation Learning

 What makes one representation better than another?

 Example:

Division of CCX by VI ?



U Kang 5

Overview

 Example:

Division of CCX by VI ? Division of 210 by 6

 Processing tasks can be very easy/difficult depending
on how the information is represented.
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Representation Learning (RL)

 Most widely used unsupervised learning techniques 
and the representations they produce:

 Clustering: maps data points to a discrete set where 
the only meaningful operation is equality.



U Kang 7

Representation Learning (RL)

 Nonlinear dimensionality reduction algorithms:

map data points to a low-dimensional space where
Euclidean distance is meaningful.

 Linear dimensionality reduction algorithms like
PCA: map data points to a low-dimensional space
where Euclidean distance, linear combination,
and dot products are all meaningful.
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Representation Learning (RL)

 A good representation is one that makes a subse
quent learning task easier

 Trade-off between preserving as much information
as possible and attaining nice properties

 RL provides one way to perform unsupervised lear-
ning. We often have

- Large amounts of unlabeled data

- Relatively little labeled training data
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Representation Learning (RL)

 Why RL is interesting:

- Learn good representations for the unlabeled data

- Use these representations to solve the supervised 
learning task.

 Unsupervised deep learning algorithm learns a
representation as a side effect.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP) 

 Unsupervised learning: allowed researchers for the
1st time to train a deep supervised network
without requiring architectural specializations (like
convolution or recurrence).

 This procedure is called Unsupervised Pretraining;
or GLWUP.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP) 

 GLWUP: canonical example of how a representation
learned for one task can be useful for another task

• Example: Trying to capture the shape of the input distribution
(unsupervised task) useful for supervised learning with the same
input domain.

 Used to sidestep the difficulty of jointly training the
layers of a deep neural net for a supervised task.
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GLWUP: Explanation of the terms

 Greedy Algorithm:

 Break a problem into many components

 Solve the optimal version of each component in
isolation

 It optimizes each piece of the solution indepen-
dently, one piece at a time, rather than jointly
optimizing all pieces.



U Kang 14

GLWUP: Explanation of the terms

 Greedy Algorithm:

 Example:

 Problem: not guaranteed to yield an optimal com-
plete solution
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GLWUP: Explanation of the terms

 Greedy Algorithm:

 But computationally much cheaper than algorithms
that solve for the best joint solution

 The quality of a greedy solution is often acceptable,
if not optimal.
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GLWUP: Explanation of the terms

 Layer-Wise: these independent pieces are the lay
er of the network.

 Greedy Layer-Wise pretraining:

 Proceeds one layer at a time

 Training the k-th layer while keeping the previous
ones fixed

 The lower layers (trained first) are not adapted
after the upper layers are introduced.
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GLWUP: Explanation of the terms

 Unsupervised: Each layer is trained with an
unsupervised representation learning algorithm

 Differences between unsupervised and supervised?

• Example:

• There is a bunch of different fruits:

 Supervised: Based on its color/shape weight, is that fruit an apple? 
> Boolean

• Unsupervised: How the different fruits can be clustered inside your 
grocery store?
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Unsupervised vs Supervised

 Supervised: 

 Data is labelled with a class 
or value

 Goal: predict class or value 
label

 Example: Neural Network, SVM, 
Decisions Trees, Bayesian Classi
fiers

 Unsupervised: 

 Trying to “understand” the 
data

 Data is unlabeled or value    
unknown

 Goal: try to find correlations 
without any external inputs 
other than the raw data

 Example: clustering
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GLWUP: Explanation of the terms

 Pretraining:

 Supposed to be only a first step before a joint
training algorithm is applied, to fine-tune all the
layers together.

 It is common that the word “pretraining” refers
to the two-phase protocol: pretraining phase and
supervised learning phase.
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GLWUP: Explanation of the terms

 Pretraining:

 It can be viewed as a regularizer and a form of parame
ter initialization.
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(GLWUP) Greedy Layer-Wise
Unsupervised Pretraining

 GLWUP can be used as initialization for other
unsupervised learning algorithms, such as deep
autoencoders and probabilistic models with many
layers of latent variables.
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GLWUP: Algorithm

 GLWUP relies on a single-layer representation
learning algorithm such as:

- an RBM (Restricted Boltzmann Machine)

- a single-layer autoencoder

- a sparse coding model

- another model that learns latent represen-
tations
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GLWUP: Algorithm

 GLWUP Protocol: 
 Unsupervised feature learning

algorithm L, which takes a
training set of examples and
returns an encoder or feature
function f.

 The raw input data is X, with
one row per example, and
f(1)(X) is the output of the first
stage encoder on X.

 Y: associated targets
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GLWUP: Algorithm

 Basic pictorial representation of the training
procedure for deep learning architecture:
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GLWUP: Algorithm

 Step 1: Train the first hidden layer of the DNN and
reconstruct the input based upon the hidden layers
weight



U Kang 26

GLWUP: Algorithm

 Step 2: We now take the next hidden layer of
“Additional Features” and train the layer using the
inputs from the “Features” and reconstruct the
Feature layer from the inputs.
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GLWUP: Algorithm

 Step 3: We continue to go through each hidden
layer as described in step 2 until we reach the final
output layer.
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GLWUP: Algorithm

 Each layer is pretrained using unsupervised training,
taking the output of the previous layer and producing
as output a new representation of the data.
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GLWUP Benefits

 Allows abstraction to develop naturally from one
layer to another

 Help the network initialize with good parameters

 Refine the features (intermediate layers) so they
become more relevant for the task
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When and Why does Unsupervised 
Pretraining work?

 Unsupervised pretraining is sometimes helpful but
often harmful.

 Two different ideas for UP:
 1st idea: the choice of initial parameters for a deep neural

network can have a significant regularizing effect on the
model (can improve optimization)

 2nd idea: Learning about the input distribution can help
with learning about the mapping from inputs to outputs

 Many complicated interactions that are not
entirely understood.
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When and Why does Unsupervised 
Pretraining work?

 1st idea (the least understood):

- Initializing the model in a location that would cause it to
approach one local minimum rather than another.

- Local minima are no longer considererd to be a serious
problem for neural network optimization (neural
network training procedures usually do not arrive at a
critical point)
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When and Why does Unsupervised 
Pretraining work?

 2nd idea:

- Some features that are useful for the unsupervised
task may also be useful for the supervised learning
task.

- Not yet understood at a mathematical, theoretical
level, not always possible to predict which tasks will
benefit from unsupervised learning.
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When and Why does Unsupervised 
Pretraining work?

 Point of view of UP as a regularizer

- Most helpful when the number of labeled examples
is very small.

- Most useful when the function to be learned is
extremely complicated.
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When and Why does Unsupervised 
Pretraining work?

 Where UP is known to cause an improvement:

Reducing test set error: may be explained in terms of
unsupervised pretraining taking the parameters into a
region that would otherwise be inaccessible.
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When and Why does Unsupervised 
Pretraining work?

 Disadvantages: UP operates with 2 separate
training phases:

- Pre-training with unsupervised data (e.g.: RBMs)

- Fine-tuning parameters with supervised data

- UP does not offer a clear way to adjust the strength
of the regularization arising from the unsupervised
stage.

- Each phase has its own hyperparameters.
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Greedy Layer-Wise
Supervised Pretraining

 Each added hidden layer is pretrained as part of a
shallow supervised MLP, taking as input the output
of the previously trained hidden layer.

 Very common approach for transfer learning
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Transfer Learning

 Main idea

 What has been learned in one setting (distribution 𝑃1) 
is exploited to improve generalization in another 
setting (distribution 𝑃2).

 Assumption: many factors that explain the variations 
in 𝑃1 are relevant to the variations that need to be 
captured for learning 𝑃2.
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Transfer Learning

 Example

 Source task has a large amount of data.

 Target task has a small amount of data.

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN
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How transferable are features?

 Motivation

 The core idea of transfer learning is that same 
representation may be useful in both source setting 
and target setting.

 How can we find common representation?

 In deep learning model

 Lower layers: extract more general representation (e.g. 
edges, visual shapes)

 Higher layers: extract more task specific representation (e.g. 
effects of geometric, lightning)
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How transferable are features?

 Visualization of a fully trained CNN model

"Visualizing and understanding convolutional networks." ECCV 2014
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How transferable are features?

 Visualization of a fully trained CNN model

"Visualizing and understanding convolutional networks." ECCV 2014
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Off-the-shelf

 Idea

 Idea is that transfer some layers of a network trained 
on a different task to target model.

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN
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Off-the-shelf

 Result

 Off-the-shelf outperforms other methods.

"CNN features off-the-shelf: an astounding baseline for recognition.” IEEE CVPR 2014
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Fine-tuning

 Idea

 Cut-off the top layers and replace with target task 
dependent layers. (off-the-shelf)

 Fine-tune whole network using back-propagation.

 Freezing or Fine-tuning is optional.

 Freeze: target task data are scarce, and we want to avoid 
overfitting

 Fine-tune: target task data are enough

 In general, each layer is set to have a different learning rate. 
(The learning rate of the lower layer is close to zero.)
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Fine-tuning

 Idea

 The blue layers are 
transferred from source 
task.

 Different learning rate 
could be set to each layer.

"Deep Learning for Computer Vision."

Summer seminar UPC TelecomBCN
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Fine-tuning

 Experimental test

 Transfer learning and 
fine-tuning often lead 
to better performance 
than training from 
scratch on the target 
dataset.

"How transferable are features in 

deep neural networks?" NIPS 2014
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Domain Adaptation

 Domain adaptation is a major area of research in 
transfer learning.

 Definition

 Source domain distribution and target domain 
distribution are different.

 Task is same. (e.g. sentiment classification)

 Labeled data are available only in source domain.

 Example

 Sentiment classification

 (sentiment review for food)  (sentiment review for 
electronics)
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Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Sentiment classification for reviews.

 Data: Amazon review dataset

 Domain: toys, software, food, electronics, etc.

 Purpose

 Transfer knowledge of sentiment classification from the 
source domain (e.g. food) to the target domain (e.g. 
electronics).
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Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Proposed method
1. A Stacked Denoising Autoencoder (SDAE) is trained for all the available 

domains. (All domains have a common embedding space)

2. Support Vector Machines (SVM) is trained on the source task.

3. The classifier (SVM) which is trained at step 2 is transferred to the target 
domain.
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Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Results (lower is better) Proposed method
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Semi-supervised learning

 Definition

 Using labeled data and unlabeled data for supervised 
learning (typically a small amount of labeled data with 
a large amount of unlabeled data)

 Influence of unlabeled data in semi-supervised 
learning
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Modifying Definition of Saliency

 Emerging strategy for unsupervised learning is to 
modify the definition of which underlying causes 
are most salient.

 Autoencoders and generative models usually 
optimize a fixed criterion (e.g. MSE)

 These fixed criteria determine which causes are 
considered salient.

 MSE in image reconstruction implies that an 
underlying cause is salient only if data significantly 
changes the brightness of a large number of pixels.



U Kang 55

Modifying definition of Saliency

 An autoencoder trained with MSE has failed to 
reconstruct a small ball.
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Modifying definition of Saliency

 If a group of pixels follows a highly recognizable 
pattern then that pattern could be considered 
salient. (even if that pattern does not involve 
extreme brightness or darkness)

 GAN detects saliency (chapter 20)

 A generative model is trained to fool a discriminator.

 The discriminator attempts to recognize all samples 
from the generative model as being fake and samples 
from the training set as being real.

 Therefore, the network learns how to determine what 
is salient.
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Modifying definition of Saliency

 MSE based model neglects to generate the ears 
because the ears do not cause an extreme 
difference in brightness.

 GAN generates ears.
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Nondistributed Representation

 Definition

 Simple representation: 1 
neuron dedicated to each 
thing

 Easy to learn 

 Easy to associate with other 
representations

 BUT inefficient with 
componential structured data
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Nondistributed Representation

 Generalization
 Term used to describe a model’s ability to react to new data. 

After being trained on a training set it can digest new data and 
make accurate predictions

 It is central to the success of a model

 If the model was trained too well on the training set it could 
cause overfitting

 The inverse could also happen and is called underfitting
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Nondistributed Representation
 Generalization in nondistributed representations

 Some traditional nondistributed learning algorithms generalize 
only due to the smoothness assumption that states that:             
If u ≈ v then the target function f has the property : f(u) ≈ f(v)

 The end result of this assumption is that if  we have ( x, y ) for 
which we know that f(x) ≈ y then we choose an estimator መ𝑓
that approximately satisfies these constraints while changing 
as little as possible when moving to a nearby input x + 𝜀

 However this assumption causes the recurring problem of 
dimensionality: we may need at least as many examples as the 
number of regions.
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Distributed Representation

 What is a distributed representation ?

 Each concept is represented by many neurons and 
each neuron participates in the representation of 
many concepts

 Very useful in representation learning

 It can use n features with k values to describe 𝑘𝑛

different concepts



U Kang 63

Distributed Representation

 What is a distributed representation ?

Nondistributed Representation           VS                Distributed Representation
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Distributed Representation

 What is a distributed representation ?

 Nondistributed Representation: new shape 
would mean an increase in the dimensionality 

 Distributed Representation: we keep the same

dimensionality 
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Distributed Representation
 Example : Learning 

algorithm based on 
distributed representation

 3 binary features ℎ1, ℎ2, ℎ3
that each divides ℝ2 into 2 
half-planes.

 Each line represents the 
decision boundary for ℎ𝑖
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Distributed Representation
 Example : Learning algorithm based on distributed 

representation

General case of d input dimensions:

 For n features (for each dimension) it assigns unique codes to 

𝑂 𝑛𝑑 different regions, while nearest neighbor with m 

examples assigns unique codes to only m regions



U Kang 67

Advantages of Distributed 
Representation

 Generalization in distributed representations

 Generalization arise due to shared attributes between 
different concepts

 Neural language models that operate on distributed 
representations of words generalize much better than 
other models.
Example: “cat” and “dog” in nondistributed representation are as 
far as each other as any other symbols. However if we now have 
a distributed representation that contains for instance “has_fur”  
or “number_of_legs” those would have the same values for both 
“cat” and “dog”

 Distributed representations induce a rich similarity space in 
which semantically close concepts are close in distance
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Advantages of Distributed 
Representation

 Statistical Advantage

 Distributed representations can 
have a statistical advantage when 
a complicated structure can be 
compactly represented using a 
small number of parameters.

 In the particular case depicted in 
the figure, the number of regions 
this binary feature 
representation can distinguish is  
𝑂(2𝑑)
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Advantages of Distributed 
Representation

 Statistical Advantage

 This provides geometric argument to explain the 
generalization power of distributed representation: 

With 𝑂(𝑑) parameters we can distinctly represent 𝑂(2𝑑)
regions in input space.

While if we had used one symbol for each region specifying 
𝑂(2𝑑) regions would require 𝑂(2𝑑) examples.
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Advantages of Distributed 
Representation

 Exponential Gains from Depth

 Compositions of nonlinearity can give an exponential 
boost to statistical efficiency

 Many networks with saturating nonlinearities with a single 
layer can be shown to be universal approximators (can 
approximate a large class of functions). However the 
required number of hidden units may be very large.
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Providing clues to discover 
underlying causes

 Regularization

 Reduces overfitting by adding a complexity penalty to the loss 
function. The idea behind is that models that overfit the data 
are complex models that have for example too many 
parameters

 To find the best model, a common method is to define a loss 
function or cost function that describes how well the model fits 
the data

 The goal is to find the model that minimizes the function

 Regularization can be motivated as a technique to improve the 
generalizability of a learned model
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Providing clues to discover 
underlying causes

 What makes one representation better ?

 An ideal representation disentangles the underlying causal 
factors of variation that generated the data.

 Strategy = Introducing clues that help the learning to find these 
underlying causal factors of variation (e.g. supervised learning 
provide a label y to each x)

 It has been shown that regularization strategies are necessary to 
obtain a good generalization

 It is impossible to find a universally superior regularization 
strategy; a goal of deep learning is to find a set of generic 
regularization strategies that are applicable to a wide variety of 
AI tasks



U Kang 74

Providing clues to discover 
underlying causes

 List of generic regularization strategies
 Ways that learning algorithms can be encouraged to 

discover features that correspond to underlying factors

 Smoothness: 
 Assumption that f(x + d𝜀) ≈ f(x) , d unit and small 𝜀
 Allows the learner to generalize from training examples to 

nearby points in input space
 Insufficient in terms of dimensionality

 Linearity:
 Allows predictions even very far from the observed data
 Can lead to overly extreme predictions (e.g., in regression)
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Providing clues to discover 
underlying causes

 List of generic regularization strategies

 Causal factors 
 Factors of variation described by the learned 

representation h are treated as the causes of observed 
data x.

 Advantageous for semi-supervised learning

 Depth or a hierarchical organization of explanatory 
factors
 Expresses our belief that ml task should be accomplished 

via a multi-step program, with each step referring back to 
the output of the processing accomplished via previous 
steps
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Providing clues to discover 
underlying causes

 List of generic regularization strategies
 Shared factors across tasks: sharing of statistical strength between 

the tasks

 Manifolds: area of low-dimensionality where data lives

 Natural Clustering: each connected manifold in the input space may 
be assigned to a single class

 Temporal and spatial coherence: most important explanatory 
factors change slowly over time

 Sparsity: impose a prior that any feature that can be interpreted as 
“present” or “absent” should be absent most of time

 Simplicity of factor dependencies: in good high-level 
representations, the factors are related to each other through 
simple dependencies (e.g., factorial distributions)
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What you need to know

 Greedy Layer-Wise Unsupervised Pretraining

 Transfer Learning and Domain Adaptation

 Semi-Supervised Disentangling of Causal Factors

 Distributed Representation

 Exponential Gains from Depth

 Providing Clues to Discover Underlying Causes
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Questions?


