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Overview

 Machine learning:

- Predictive Learning

- Representation Learning

 What makes one representation better than another?

 Example:

Division of CCX by VI ?
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Overview

 Example:

Division of CCX by VI ? Division of 210 by 6

 Processing tasks can be very easy/difficult depending
on how the information is represented.
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Representation Learning (RL)

 Most widely used unsupervised learning techniques 
and the representations they produce:

 Clustering: maps data points to a discrete set where 
the only meaningful operation is equality.
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Representation Learning (RL)

 Nonlinear dimensionality reduction algorithms:

map data points to a low-dimensional space where
Euclidean distance is meaningful.

 Linear dimensionality reduction algorithms like
PCA: map data points to a low-dimensional space
where Euclidean distance, linear combination,
and dot products are all meaningful.
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Representation Learning (RL)

 A good representation is one that makes a subse
quent learning task easier

 Trade-off between preserving as much information
as possible and attaining nice properties

 RL provides one way to perform unsupervised lear-
ning. We often have

- Large amounts of unlabeled data

- Relatively little labeled training data
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Representation Learning (RL)

 Why RL is interesting:

- Learn good representations for the unlabeled data

- Use these representations to solve the supervised 
learning task.

 Unsupervised deep learning algorithm learns a
representation as a side effect.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP) 

 Unsupervised learning: allowed researchers for the
1st time to train a deep supervised network
without requiring architectural specializations (like
convolution or recurrence).

 This procedure is called Unsupervised Pretraining;
or GLWUP.
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Greedy Layer-Wise
Unsupervised Pretraining (GLWUP) 

 GLWUP: canonical example of how a representation
learned for one task can be useful for another task

• Example: Trying to capture the shape of the input distribution
(unsupervised task) useful for supervised learning with the same
input domain.

 Used to sidestep the difficulty of jointly training the
layers of a deep neural net for a supervised task.
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GLWUP: Explanation of the terms

 Greedy Algorithm:

 Break a problem into many components

 Solve the optimal version of each component in
isolation

 It optimizes each piece of the solution indepen-
dently, one piece at a time, rather than jointly
optimizing all pieces.
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GLWUP: Explanation of the terms

 Greedy Algorithm:

 Example:

 Problem: not guaranteed to yield an optimal com-
plete solution
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GLWUP: Explanation of the terms

 Greedy Algorithm:

 But computationally much cheaper than algorithms
that solve for the best joint solution

 The quality of a greedy solution is often acceptable,
if not optimal.
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GLWUP: Explanation of the terms

 Layer-Wise: these independent pieces are the lay
er of the network.

 Greedy Layer-Wise pretraining:

 Proceeds one layer at a time

 Training the k-th layer while keeping the previous
ones fixed

 The lower layers (trained first) are not adapted
after the upper layers are introduced.
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GLWUP: Explanation of the terms

 Unsupervised: Each layer is trained with an
unsupervised representation learning algorithm

 Differences between unsupervised and supervised?

• Example:

• There is a bunch of different fruits:

 Supervised: Based on its color/shape weight, is that fruit an apple? 
> Boolean

• Unsupervised: How the different fruits can be clustered inside your 
grocery store?
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Unsupervised vs Supervised

 Supervised: 

 Data is labelled with a class 
or value

 Goal: predict class or value 
label

 Example: Neural Network, SVM, 
Decisions Trees, Bayesian Classi
fiers

 Unsupervised: 

 Trying to “understand” the 
data

 Data is unlabeled or value    
unknown

 Goal: try to find correlations 
without any external inputs 
other than the raw data

 Example: clustering
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GLWUP: Explanation of the terms

 Pretraining:

 Supposed to be only a first step before a joint
training algorithm is applied, to fine-tune all the
layers together.

 It is common that the word “pretraining” refers
to the two-phase protocol: pretraining phase and
supervised learning phase.
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GLWUP: Explanation of the terms

 Pretraining:

 It can be viewed as a regularizer and a form of parame
ter initialization.
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(GLWUP) Greedy Layer-Wise
Unsupervised Pretraining

 GLWUP can be used as initialization for other
unsupervised learning algorithms, such as deep
autoencoders and probabilistic models with many
layers of latent variables.
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GLWUP: Algorithm

 GLWUP relies on a single-layer representation
learning algorithm such as:

- an RBM (Restricted Boltzmann Machine)

- a single-layer autoencoder

- a sparse coding model

- another model that learns latent represen-
tations
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GLWUP: Algorithm

 GLWUP Protocol: 
 Unsupervised feature learning

algorithm L, which takes a
training set of examples and
returns an encoder or feature
function f.

 The raw input data is X, with
one row per example, and
f(1)(X) is the output of the first
stage encoder on X.

 Y: associated targets
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GLWUP: Algorithm

 Basic pictorial representation of the training
procedure for deep learning architecture:
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GLWUP: Algorithm

 Step 1: Train the first hidden layer of the DNN and
reconstruct the input based upon the hidden layers
weight
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GLWUP: Algorithm

 Step 2: We now take the next hidden layer of
“Additional Features” and train the layer using the
inputs from the “Features” and reconstruct the
Feature layer from the inputs.
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GLWUP: Algorithm

 Step 3: We continue to go through each hidden
layer as described in step 2 until we reach the final
output layer.
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GLWUP: Algorithm

 Each layer is pretrained using unsupervised training,
taking the output of the previous layer and producing
as output a new representation of the data.
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GLWUP Benefits

 Allows abstraction to develop naturally from one
layer to another

 Help the network initialize with good parameters

 Refine the features (intermediate layers) so they
become more relevant for the task
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When and Why does Unsupervised 
Pretraining work?

 Unsupervised pretraining is sometimes helpful but
often harmful.

 Two different ideas for UP:
 1st idea: the choice of initial parameters for a deep neural

network can have a significant regularizing effect on the
model (can improve optimization)

 2nd idea: Learning about the input distribution can help
with learning about the mapping from inputs to outputs

 Many complicated interactions that are not
entirely understood.
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When and Why does Unsupervised 
Pretraining work?

 1st idea (the least understood):

- Initializing the model in a location that would cause it to
approach one local minimum rather than another.

- Local minima are no longer considererd to be a serious
problem for neural network optimization (neural
network training procedures usually do not arrive at a
critical point)
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When and Why does Unsupervised 
Pretraining work?

 2nd idea:

- Some features that are useful for the unsupervised
task may also be useful for the supervised learning
task.

- Not yet understood at a mathematical, theoretical
level, not always possible to predict which tasks will
benefit from unsupervised learning.
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When and Why does Unsupervised 
Pretraining work?

 Point of view of UP as a regularizer

- Most helpful when the number of labeled examples
is very small.

- Most useful when the function to be learned is
extremely complicated.
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When and Why does Unsupervised 
Pretraining work?

 Where UP is known to cause an improvement:

Reducing test set error: may be explained in terms of
unsupervised pretraining taking the parameters into a
region that would otherwise be inaccessible.
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When and Why does Unsupervised 
Pretraining work?

 Disadvantages: UP operates with 2 separate
training phases:

- Pre-training with unsupervised data (e.g.: RBMs)

- Fine-tuning parameters with supervised data

- UP does not offer a clear way to adjust the strength
of the regularization arising from the unsupervised
stage.

- Each phase has its own hyperparameters.
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Greedy Layer-Wise
Supervised Pretraining

 Each added hidden layer is pretrained as part of a
shallow supervised MLP, taking as input the output
of the previously trained hidden layer.

 Very common approach for transfer learning
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Transfer Learning

 Main idea

 What has been learned in one setting (distribution 𝑃1) 
is exploited to improve generalization in another 
setting (distribution 𝑃2).

 Assumption: many factors that explain the variations 
in 𝑃1 are relevant to the variations that need to be 
captured for learning 𝑃2.
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Transfer Learning

 Example

 Source task has a large amount of data.

 Target task has a small amount of data.

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN
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How transferable are features?

 Motivation

 The core idea of transfer learning is that same 
representation may be useful in both source setting 
and target setting.

 How can we find common representation?

 In deep learning model

 Lower layers: extract more general representation (e.g. 
edges, visual shapes)

 Higher layers: extract more task specific representation (e.g. 
effects of geometric, lightning)
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How transferable are features?

 Visualization of a fully trained CNN model

"Visualizing and understanding convolutional networks." ECCV 2014
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How transferable are features?

 Visualization of a fully trained CNN model

"Visualizing and understanding convolutional networks." ECCV 2014
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Off-the-shelf

 Idea

 Idea is that transfer some layers of a network trained 
on a different task to target model.

"Deep Learning for Computer Vision." Summer seminar UPC TelecomBCN
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Off-the-shelf

 Result

 Off-the-shelf outperforms other methods.

"CNN features off-the-shelf: an astounding baseline for recognition.” IEEE CVPR 2014
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Fine-tuning

 Idea

 Cut-off the top layers and replace with target task 
dependent layers. (off-the-shelf)

 Fine-tune whole network using back-propagation.

 Freezing or Fine-tuning is optional.

 Freeze: target task data are scarce, and we want to avoid 
overfitting

 Fine-tune: target task data are enough

 In general, each layer is set to have a different learning rate. 
(The learning rate of the lower layer is close to zero.)
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Fine-tuning

 Idea

 The blue layers are 
transferred from source 
task.

 Different learning rate 
could be set to each layer.

"Deep Learning for Computer Vision."

Summer seminar UPC TelecomBCN
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Fine-tuning

 Experimental test

 Transfer learning and 
fine-tuning often lead 
to better performance 
than training from 
scratch on the target 
dataset.

"How transferable are features in 

deep neural networks?" NIPS 2014
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Domain Adaptation

 Domain adaptation is a major area of research in 
transfer learning.

 Definition

 Source domain distribution and target domain 
distribution are different.

 Task is same. (e.g. sentiment classification)

 Labeled data are available only in source domain.

 Example

 Sentiment classification

 (sentiment review for food)  (sentiment review for 
electronics)
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Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Sentiment classification for reviews.

 Data: Amazon review dataset

 Domain: toys, software, food, electronics, etc.

 Purpose

 Transfer knowledge of sentiment classification from the 
source domain (e.g. food) to the target domain (e.g. 
electronics).
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Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Proposed method
1. A Stacked Denoising Autoencoder (SDAE) is trained for all the available 

domains. (All domains have a common embedding space)

2. Support Vector Machines (SVM) is trained on the source task.

3. The classifier (SVM) which is trained at step 2 is transferred to the target 
domain.



U Kang 51

Domain Adaptation

 “Domain Adaptation for Large-Scale Sentiment 
Classification: A Deep Learning Approach”, ICML 
2011.

 Results (lower is better) Proposed method
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Semi-supervised learning

 Definition

 Using labeled data and unlabeled data for supervised 
learning (typically a small amount of labeled data with 
a large amount of unlabeled data)

 Influence of unlabeled data in semi-supervised 
learning
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Modifying Definition of Saliency

 Emerging strategy for unsupervised learning is to 
modify the definition of which underlying causes 
are most salient.

 Autoencoders and generative models usually 
optimize a fixed criterion (e.g. MSE)

 These fixed criteria determine which causes are 
considered salient.

 MSE in image reconstruction implies that an 
underlying cause is salient only if data significantly 
changes the brightness of a large number of pixels.
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Modifying definition of Saliency

 An autoencoder trained with MSE has failed to 
reconstruct a small ball.
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Modifying definition of Saliency

 If a group of pixels follows a highly recognizable 
pattern then that pattern could be considered 
salient. (even if that pattern does not involve 
extreme brightness or darkness)

 GAN detects saliency (chapter 20)

 A generative model is trained to fool a discriminator.

 The discriminator attempts to recognize all samples 
from the generative model as being fake and samples 
from the training set as being real.

 Therefore, the network learns how to determine what 
is salient.
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Modifying definition of Saliency

 MSE based model neglects to generate the ears 
because the ears do not cause an extreme 
difference in brightness.

 GAN generates ears.
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Nondistributed Representation

 Definition

 Simple representation: 1 
neuron dedicated to each 
thing

 Easy to learn 

 Easy to associate with other 
representations

 BUT inefficient with 
componential structured data
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Nondistributed Representation

 Generalization
 Term used to describe a model’s ability to react to new data. 

After being trained on a training set it can digest new data and 
make accurate predictions

 It is central to the success of a model

 If the model was trained too well on the training set it could 
cause overfitting

 The inverse could also happen and is called underfitting
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Nondistributed Representation
 Generalization in nondistributed representations

 Some traditional nondistributed learning algorithms generalize 
only due to the smoothness assumption that states that:             
If u ≈ v then the target function f has the property : f(u) ≈ f(v)

 The end result of this assumption is that if  we have ( x, y ) for 
which we know that f(x) ≈ y then we choose an estimator መ𝑓
that approximately satisfies these constraints while changing 
as little as possible when moving to a nearby input x + 𝜀

 However this assumption causes the recurring problem of 
dimensionality: we may need at least as many examples as the 
number of regions.
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Distributed Representation

 What is a distributed representation ?

 Each concept is represented by many neurons and 
each neuron participates in the representation of 
many concepts

 Very useful in representation learning

 It can use n features with k values to describe 𝑘𝑛

different concepts
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Distributed Representation

 What is a distributed representation ?

Nondistributed Representation           VS                Distributed Representation
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Distributed Representation

 What is a distributed representation ?

 Nondistributed Representation: new shape 
would mean an increase in the dimensionality 

 Distributed Representation: we keep the same

dimensionality 
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Distributed Representation
 Example : Learning 

algorithm based on 
distributed representation

 3 binary features ℎ1, ℎ2, ℎ3
that each divides ℝ2 into 2 
half-planes.

 Each line represents the 
decision boundary for ℎ𝑖
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Distributed Representation
 Example : Learning algorithm based on distributed 

representation

General case of d input dimensions:

 For n features (for each dimension) it assigns unique codes to 

𝑂 𝑛𝑑 different regions, while nearest neighbor with m 

examples assigns unique codes to only m regions



U Kang 67

Advantages of Distributed 
Representation

 Generalization in distributed representations

 Generalization arise due to shared attributes between 
different concepts

 Neural language models that operate on distributed 
representations of words generalize much better than 
other models.
Example: “cat” and “dog” in nondistributed representation are as 
far as each other as any other symbols. However if we now have 
a distributed representation that contains for instance “has_fur”  
or “number_of_legs” those would have the same values for both 
“cat” and “dog”

 Distributed representations induce a rich similarity space in 
which semantically close concepts are close in distance
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Advantages of Distributed 
Representation

 Statistical Advantage

 Distributed representations can 
have a statistical advantage when 
a complicated structure can be 
compactly represented using a 
small number of parameters.

 In the particular case depicted in 
the figure, the number of regions 
this binary feature 
representation can distinguish is  
𝑂(2𝑑)
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Advantages of Distributed 
Representation

 Statistical Advantage

 This provides geometric argument to explain the 
generalization power of distributed representation: 

With 𝑂(𝑑) parameters we can distinctly represent 𝑂(2𝑑)
regions in input space.

While if we had used one symbol for each region specifying 
𝑂(2𝑑) regions would require 𝑂(2𝑑) examples.
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Advantages of Distributed 
Representation

 Exponential Gains from Depth

 Compositions of nonlinearity can give an exponential 
boost to statistical efficiency

 Many networks with saturating nonlinearities with a single 
layer can be shown to be universal approximators (can 
approximate a large class of functions). However the 
required number of hidden units may be very large.
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Providing clues to discover 
underlying causes

 Regularization

 Reduces overfitting by adding a complexity penalty to the loss 
function. The idea behind is that models that overfit the data 
are complex models that have for example too many 
parameters

 To find the best model, a common method is to define a loss 
function or cost function that describes how well the model fits 
the data

 The goal is to find the model that minimizes the function

 Regularization can be motivated as a technique to improve the 
generalizability of a learned model
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Providing clues to discover 
underlying causes

 What makes one representation better ?

 An ideal representation disentangles the underlying causal 
factors of variation that generated the data.

 Strategy = Introducing clues that help the learning to find these 
underlying causal factors of variation (e.g. supervised learning 
provide a label y to each x)

 It has been shown that regularization strategies are necessary to 
obtain a good generalization

 It is impossible to find a universally superior regularization 
strategy; a goal of deep learning is to find a set of generic 
regularization strategies that are applicable to a wide variety of 
AI tasks
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Providing clues to discover 
underlying causes

 List of generic regularization strategies
 Ways that learning algorithms can be encouraged to 

discover features that correspond to underlying factors

 Smoothness: 
 Assumption that f(x + d𝜀) ≈ f(x) , d unit and small 𝜀
 Allows the learner to generalize from training examples to 

nearby points in input space
 Insufficient in terms of dimensionality

 Linearity:
 Allows predictions even very far from the observed data
 Can lead to overly extreme predictions (e.g., in regression)
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Providing clues to discover 
underlying causes

 List of generic regularization strategies

 Causal factors 
 Factors of variation described by the learned 

representation h are treated as the causes of observed 
data x.

 Advantageous for semi-supervised learning

 Depth or a hierarchical organization of explanatory 
factors
 Expresses our belief that ml task should be accomplished 

via a multi-step program, with each step referring back to 
the output of the processing accomplished via previous 
steps
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Providing clues to discover 
underlying causes

 List of generic regularization strategies
 Shared factors across tasks: sharing of statistical strength between 

the tasks

 Manifolds: area of low-dimensionality where data lives

 Natural Clustering: each connected manifold in the input space may 
be assigned to a single class

 Temporal and spatial coherence: most important explanatory 
factors change slowly over time

 Sparsity: impose a prior that any feature that can be interpreted as 
“present” or “absent” should be absent most of time

 Simplicity of factor dependencies: in good high-level 
representations, the factors are related to each other through 
simple dependencies (e.g., factorial distributions)
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What you need to know

 Greedy Layer-Wise Unsupervised Pretraining

 Transfer Learning and Domain Adaptation

 Semi-Supervised Disentangling of Causal Factors

 Distributed Representation

 Exponential Gains from Depth

 Providing Clues to Discover Underlying Causes
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Questions?


