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In This Lecture

 Overview of deep feedforward networks
 Cost function
 Output units
 Hidden units
 Architecture design
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Deep FeedForwad Networks

 Deep feedforward networks are the key deep 
learning models
 Also called feedforward neural networks or multi-layer 

perceptrons (MLP)
 Goal: approximate some function f*

 E.g., a classifier y = f*(x) maps an input x to a category y

 A feedforward network defines a mapping 𝑦𝑦 =
𝑓𝑓(𝑥𝑥;𝜃𝜃) and learns the value of 𝜃𝜃
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Deep FeedForwad Networks

 Deep feedforward networks are the key deep 
learning models
 These models are called feedforward because 

information flows through the function from x to f to 
output y

 These models are called networks because they are 
typically represented by composing together many 
different functions
 E.g., three functions 𝑓𝑓(1),𝑓𝑓(2),𝑓𝑓(3) connected in a chain to 

form 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 3 (𝑓𝑓 2 (𝑓𝑓 1 (𝑥𝑥)))
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Learning XOR

 XOR function: an operation on two binary values
 XOR outputs 1 only when exactly one of the two values is 1
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Learning XOR

 Our model provides 𝑦𝑦 = 𝑓𝑓(𝑥𝑥; 𝜃𝜃), and our learning algorithm 
learns 𝜃𝜃 such that 𝑓𝑓 outputs the same value as the target XOR 
function 𝑓𝑓*
 Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}
 MSE loss function: 𝐽𝐽 𝜃𝜃 = 1

4 ∑𝑥𝑥∈𝑋𝑋(𝑓𝑓∗ 𝑥𝑥 − 𝑓𝑓 𝑥𝑥;𝜃𝜃 )2

 First model: 𝑓𝑓 𝑥𝑥;𝑤𝑤, 𝑏𝑏 = 𝑥𝑥𝑇𝑇𝑤𝑤 + 𝑏𝑏
 Solving the normal equation, we obtain w = 0 and b = ½
 That is, it outputs 0.5 everywhere
 Linear models always fail for XOR!
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Feedforward Network for XOR

 Feedforward network with one hidden layer with two hidden 
units
 The vector of hidden units are computed by 𝒉𝒉 = 𝑓𝑓(1) 𝒙𝒙;𝑾𝑾, 𝒄𝒄
 The output unit is computed by 𝑦𝑦 = 𝑓𝑓(2) 𝒉𝒉;𝒘𝒘,𝒃𝒃
 The complete model is 𝑓𝑓 𝒙𝒙;𝑾𝑾, 𝒄𝒄,𝒘𝒘,𝒃𝒃 = 𝑓𝑓 2 (𝑓𝑓 1 𝒙𝒙 )
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Feedforward Network for XOR

 Assume we use linear regression model for 𝑓𝑓(2)

 I.e., 𝑓𝑓 2 𝒉𝒉 = 𝒉𝒉𝑻𝑻𝒘𝒘

 What function should 𝑓𝑓(1) compute?
 What if 𝑓𝑓(1) is linear?
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Feedforward Network for XOR

 We need a non-linear function to describe features
 Most neural networks do so using an affine transformation by 

a fixed, nonlinear function called an activation function
 𝒉𝒉 = 𝑔𝑔(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒄𝒄)
 𝑔𝑔 is typically chosen to be a function applied elementwise with        

ℎ𝑖𝑖 = 𝑔𝑔(𝒙𝒙𝑇𝑇𝑾𝑾:,𝑖𝑖 + 𝑐𝑐𝑖𝑖)
 The default activation function is rectified linear unit or ReLU:             

g(z) = max{0,z}
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Feedforward Network for XOR

 Feedforward network with ReLU
 𝑓𝑓 𝒙𝒙;𝑾𝑾, 𝒄𝒄,𝒘𝒘,𝒃𝒃 = 𝒘𝒘𝑇𝑇 max 0,𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒄𝒄 + 𝑏𝑏

 Solution to the XOR problem

 𝑊𝑊 = 1 1
1 1 , 𝑐𝑐 = [0 − 1]𝑇𝑇 ,𝑤𝑤 = [1 − 2]𝑇𝑇 , 𝑏𝑏 = 0

 From input to output

 𝑿𝑿 =
0
0
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1
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Solving XOR
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Gradient-Based Learning

 Neural networks are trained by using iterative, 
gradient-based optimizers
 The objective function is non-convex
 These optimizers find a sufficiently low value, rather than 

global minimum

 Two important components in gradient-based 
learning
 Cost functions
 Output units
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Cost Functions

 In most cases, our model defines 𝑝𝑝(𝑦𝑦|𝑥𝑥;𝜃𝜃) and we use 
the principle of maximum likelihood
 I.e., minimize cross-entropy between the training data and the 

model’s prediction
 𝐽𝐽 𝜃𝜃 = − 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥
 If 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥 = 𝑁𝑁(𝑦𝑦; 𝑓𝑓 𝑥𝑥; 𝜃𝜃 , 𝐼𝐼), then we recover the mean 

squared error cost: 𝐽𝐽 𝜃𝜃 = 1
2
𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑| 𝑦𝑦 − 𝑓𝑓 𝑥𝑥; 𝜃𝜃 |2

 The total cost function often is combined with a regularization 
term
 E.g., weight decay parameter for linear regression
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Output Units

 In most cases, the cost function is the cross-entropy 
between the data distribution and the model 
distribution: 𝐽𝐽 𝜃𝜃 = − 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥

 The choice of how to represent the output then 
determines the form of the cross-entropy function

 We assume the feedforward network provides a set of 
hidden features defined by ℎ = 𝑓𝑓(𝑥𝑥;𝜃𝜃)

 Our loss function is interpreted as − log 𝑝𝑝(𝑦𝑦;ℎ)
 ℎ provides the parameters for distribution of 𝑦𝑦
 I.e., our learning algorithm learns 𝜃𝜃 so that 
𝑝𝑝(𝑦𝑦; 𝑓𝑓 𝑥𝑥;𝜃𝜃 ) is maximized
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Linear Units for Gaussian Output 
Distributions

 The output vector 𝒚𝒚 contains real numbers of any range
 Given features 𝒉𝒉, a layer of linear output units 

produces a vector �𝒚𝒚 = 𝑾𝑾𝑇𝑇𝒉𝒉 + 𝒃𝒃
 Linear output layers are often used to produce the 

mean of a conditional Gaussian distribution
 𝑝𝑝 𝒚𝒚 𝒙𝒙 = 𝑁𝑁(𝒚𝒚; �𝒚𝒚, 𝑰𝑰)
 Maximizing the log-likelihood is equivalent to minimizing the 

mean squared error
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Sigmoid Units for Bernoulli Output 
Distributions

 The output value y contains 1 or 0
 Use sigmoid function to output the probability in [0,1]
 Given features 𝒉𝒉, a layer of sigmoid output units produces a 

number �𝑦𝑦 = 𝜎𝜎(𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏)
 The loss function for maximum likelihood learning of a Bernoulli 

parameterized by a sigmoid is
 𝐽𝐽 𝜃𝜃 = − log𝑃𝑃 𝑦𝑦 𝑥𝑥 = − log𝜎𝜎 2𝑦𝑦 − 1 𝑧𝑧 = 𝜁𝜁( 1 − 2𝑦𝑦 𝑧𝑧)

where 𝑧𝑧 = 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 and 𝜁𝜁 𝑥𝑥 = log(1 + exp 𝑥𝑥 )
 I.e. our learning algorithm learns parameters to maximize

𝑝𝑝 𝑦𝑦; 𝑓𝑓 𝑥𝑥;𝜃𝜃 = �
𝜎𝜎 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑦𝑦 = 1

1 − 𝜎𝜎 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑦𝑦 = 0
Fact:

1 − 𝜎𝜎 𝑥𝑥 = 𝜎𝜎 −𝑥𝑥
log𝜎𝜎(𝑥𝑥) = −𝜁𝜁 −𝑥𝑥
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Softmax Units for Multinoulli Output 
Distributions

 Useful to represent a categorical distribution (= a probability 
distribution over a discrete variable with n possible values)

 The output vector 𝒚𝒚 contains n probabilities
 Softmax is a generalization of sigmoid for n possible values: 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒛𝒛 𝑖𝑖 = exp(𝑧𝑧𝑖𝑖)

∑𝑗𝑗 exp(𝑧𝑧𝑗𝑗)
, where 𝒛𝒛 ∈ 𝑅𝑅𝑛𝑛 and 𝑖𝑖 ∈ 𝑍𝑍𝑛𝑛 𝑖𝑖𝑖𝑖 [0,𝑛𝑛 − 1]

 Given features 𝒉𝒉, a layer of softmax output units produces a 
vector �𝒚𝒚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑾𝑾𝑇𝑇𝒉𝒉 + 𝑏𝑏)

 The loss function is 𝐽𝐽 𝜃𝜃 = − log𝑃𝑃 𝑦𝑦 𝑥𝑥 = − log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒛𝒛 𝑦𝑦
where  𝑧𝑧 = 𝑾𝑾𝑇𝑇𝒉𝒉 + 𝑏𝑏
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Hidden Units

 How to choose the type of hidden unit to use in the 
hidden layers of the model?

 Active area of research; not many theoretical results
 It is usually impossible to predict in advance which 

types will work best: the design process consists of 
trial and error



U Kang 19

Non-differentiable Hidden Units

 Some hidden units are not actually differentiable at all input 
points
 E.g., ReLU function g(z) = max{0, z} is not differentiable at z = 0

 However, gradient descent still performs well enough 
 Hidden units that are not differentiable are usually non-differentiable at 

only a small number of points
 Neural network training algorithms do not usually arrive at a local 

minimum of the cost function, but merely reduce its errors significantly
 We don’t expect training to reach a point where gradient is 0; thus it is 

acceptable for the minima of the cost function to correspond to points 
with undefined gradients

 Software implementations of neural network training usually return one of 
the one-sided derivatives
 Justification: the argument of g(0) of ReLU may not be true 0 but a very small number 

rounded to 0
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Hidden Units

 Rectified linear units (ReLU)
 g(z) = max{0,z}
 Advantage: simple and effective (no vanishing gradient problem)
 Disadvantage: cannot learn via gradient-based methods on examples for 

which their activation is 0
 ReLU are typically used on top of affine transformation: 𝒉𝒉 = 𝑔𝑔(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

 Generalizations of ReLU
 Generalizations using non-zero slope 𝛼𝛼𝑖𝑖 when 𝑧𝑧𝑖𝑖 < 0: ℎ𝑖𝑖 = max 0, 𝑧𝑧𝑖𝑖 +

𝛼𝛼𝑖𝑖min(0, 𝑧𝑧𝑖𝑖)
 Absolute value rectification: use 𝛼𝛼𝑖𝑖 = −1 to obtain g(z)=|z|
 Leaky ReLU: fixes 𝛼𝛼𝑖𝑖 to a small value like 0.01
 PReLU (parametric ReLU) treats 𝛼𝛼𝑖𝑖 as a learnable parameter
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Hidden Units

 Logistic sigmoid and hyperbolic tangent
 Famous hidden units before the introduction of ReLU
 Sigmoid function  𝜎𝜎(𝑧𝑧)
 Hyperbolic tangent function  tanh 𝑧𝑧 = 2𝜎𝜎 2𝑧𝑧 − 1

 Problems: saturate to a high value when z is very positive, and to a low 
value when z is very negative
 Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is 

near 0

𝜎𝜎(𝑧𝑧) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧)
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Architecture Design

 Architecture refers to the overall structure of the network: how 
many units it should have and how these units should be 
connected to each other
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Architecture Design

 Most neural networks are organized into groups of units called 
layers; these layers are typically arranged in a chain structure
 The first layer is given by 𝒉𝒉(1) = 𝑔𝑔 1 (𝑾𝑾 1 𝑇𝑇𝒙𝒙 + 𝒃𝒃(1))
 The second layer is given by 𝒉𝒉(2) = 𝑔𝑔 2 (𝑾𝑾 2 𝑇𝑇𝒙𝒙 + 𝒃𝒃(2))
 In these chain-based architectures, the main architectural considerations 

are to choose the depth of the network and the width of each layer
 A network with even one hidden layer is sufficient to fit the training set
 Deeper networks often use far fewer units per layer and far fewer 

parameters, and often generalize well, but also often harder to optimize
 The ideal network architecture for a task must be found via 

experimentation guided by monitoring the validation set error
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Architecture Design

 Universal approximation theorem (Hornik et al. 1989, Cybenko
1989)
 A feedforward network with a linear output layer and at least one hidden 

layer with any “squashing” activation function (e.g. logistic sigmoid) can 
approximate any continuous function with any desired non-zero amount 
of error

 This means that regardless of what function we are trying to learn, a large 
MLP will be able to represent this function

 However, we are not guaranteed that the training algorithm will be able 
to learn that function
 The optimization algorithm may not be able to find the parameters that correspond to 

the desired function
 The training algorithm might choose the wrong function due to overfitting
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Exponential Advantage of Depth

 Piecewise linear networks (which can be obtained from rectifier 
nonlinearities) can represent functions with a number of regions 
that is exponential in the depth of the network

 Using deeper models can reduce the number of units required to 
represent the desired function, and can reduce the 
generalization error

 Empirical results for transcribing multi-digit numbers from 
photographs of addresses
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Shallow Models Overfit More
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What you need to know

 Deep feedforward networks: enable non-linear 
mapping inputs to outputs
 Cost function: cross-entropy
 Output units: linear, sigmoid, softmax
 Hidden units: ReLU and its variants
 Architecture design: deep architecture is preferred 

despite the universal approximation theorem
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Questions?
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