
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Deep Feedforward Networks

U Kang
Seoul National University

U Kang 2

In This Lecture

 Overview of deep feedforward networks
 Cost function
 Output units
 Hidden units
 Architecture design

U Kang 3

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models
 Also called feedforward neural networks or multi-layer

perceptrons (MLP)
 Goal: approximate some function f*

 E.g., a classifier y = f*(x) maps an input x to a category y

 A feedforward network defines a mapping 𝑦𝑦 =
𝑓𝑓(𝑥𝑥;𝜃𝜃) and learns the value of 𝜃𝜃

U Kang 4

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models
 These models are called feedforward because

information flows through the function from x to f to
output y

 These models are called networks because they are
typically represented by composing together many
different functions
 E.g., three functions 𝑓𝑓(1),𝑓𝑓(2),𝑓𝑓(3) connected in a chain to

form 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 3 (𝑓𝑓 2 (𝑓𝑓 1 (𝑥𝑥)))

output
layer

first
layer

second
layer

input
layer

U Kang 5

Learning XOR

 XOR function: an operation on two binary values
 XOR outputs 1 only when exactly one of the two values is 1

U Kang 6

Learning XOR

 Our model provides 𝑦𝑦 = 𝑓𝑓(𝑥𝑥; 𝜃𝜃), and our learning algorithm
learns 𝜃𝜃 such that 𝑓𝑓 outputs the same value as the target XOR
function 𝑓𝑓*
 Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}
 MSE loss function: 𝐽𝐽 𝜃𝜃 = 1

4 ∑𝑥𝑥∈𝑋𝑋(𝑓𝑓∗ 𝑥𝑥 − 𝑓𝑓 𝑥𝑥;𝜃𝜃)2

 First model: 𝑓𝑓 𝑥𝑥;𝑤𝑤, 𝑏𝑏 = 𝑥𝑥𝑇𝑇𝑤𝑤 + 𝑏𝑏
 Solving the normal equation, we obtain w = 0 and b = ½
 That is, it outputs 0.5 everywhere
 Linear models always fail for XOR!

U Kang 7

Feedforward Network for XOR

 Feedforward network with one hidden layer with two hidden
units
 The vector of hidden units are computed by 𝒉𝒉 = 𝑓𝑓(1) 𝒙𝒙;𝑾𝑾, 𝒄𝒄
 The output unit is computed by 𝑦𝑦 = 𝑓𝑓(2) 𝒉𝒉;𝒘𝒘,𝒃𝒃
 The complete model is 𝑓𝑓 𝒙𝒙;𝑾𝑾, 𝒄𝒄,𝒘𝒘,𝒃𝒃 = 𝑓𝑓 2 (𝑓𝑓 1 𝒙𝒙)

U Kang 8

Feedforward Network for XOR

 Assume we use linear regression model for 𝑓𝑓(2)

 I.e., 𝑓𝑓 2 𝒉𝒉 = 𝒉𝒉𝑻𝑻𝒘𝒘

 What function should 𝑓𝑓(1) compute?
 What if 𝑓𝑓(1) is linear?

U Kang 9

Feedforward Network for XOR

 We need a non-linear function to describe features
 Most neural networks do so using an affine transformation by

a fixed, nonlinear function called an activation function
 𝒉𝒉 = 𝑔𝑔(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒄𝒄)
 𝑔𝑔 is typically chosen to be a function applied elementwise with

ℎ𝑖𝑖 = 𝑔𝑔(𝒙𝒙𝑇𝑇𝑾𝑾:,𝑖𝑖 + 𝑐𝑐𝑖𝑖)
 The default activation function is rectified linear unit or ReLU:

g(z) = max{0,z}

U Kang 10

Feedforward Network for XOR

 Feedforward network with ReLU
 𝑓𝑓 𝒙𝒙;𝑾𝑾, 𝒄𝒄,𝒘𝒘,𝒃𝒃 = 𝒘𝒘𝑇𝑇 max 0,𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒄𝒄 + 𝑏𝑏

 Solution to the XOR problem

 𝑊𝑊 = 1 1
1 1 , 𝑐𝑐 = [0 − 1]𝑇𝑇 ,𝑤𝑤 = [1 − 2]𝑇𝑇 , 𝑏𝑏 = 0

 From input to output

 𝑿𝑿 =
0
0

0
1

1
1

0
1

, 𝑿𝑿𝑿𝑿 =
0
1

0
1

1
2

1
2

, adding 𝒄𝒄 →
0
1

−1
0

1
2

0
1

 Applying ReLU →
0
1

0
0

1
2

0
1

, multiplying by the weight vector 𝒘𝒘 →
0
1
1
0

U Kang 11

Solving XOR

U Kang 12

Gradient-Based Learning

 Neural networks are trained by using iterative,
gradient-based optimizers
 The objective function is non-convex
 These optimizers find a sufficiently low value, rather than

global minimum

 Two important components in gradient-based
learning
 Cost functions
 Output units

U Kang 13

Cost Functions

 In most cases, our model defines 𝑝𝑝(𝑦𝑦|𝑥𝑥;𝜃𝜃) and we use
the principle of maximum likelihood
 I.e., minimize cross-entropy between the training data and the

model’s prediction
 𝐽𝐽 𝜃𝜃 = − 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥
 If 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥 = 𝑁𝑁(𝑦𝑦; 𝑓𝑓 𝑥𝑥; 𝜃𝜃 , 𝐼𝐼), then we recover the mean

squared error cost: 𝐽𝐽 𝜃𝜃 = 1
2
𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑| 𝑦𝑦 − 𝑓𝑓 𝑥𝑥; 𝜃𝜃 |2

 The total cost function often is combined with a regularization
term
 E.g., weight decay parameter for linear regression

U Kang 14

Output Units

 In most cases, the cost function is the cross-entropy
between the data distribution and the model
distribution: 𝐽𝐽 𝜃𝜃 = − 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦|𝑥𝑥

 The choice of how to represent the output then
determines the form of the cross-entropy function

 We assume the feedforward network provides a set of
hidden features defined by ℎ = 𝑓𝑓(𝑥𝑥;𝜃𝜃)

 Our loss function is interpreted as − log 𝑝𝑝(𝑦𝑦;ℎ)
 ℎ provides the parameters for distribution of 𝑦𝑦
 I.e., our learning algorithm learns 𝜃𝜃 so that
𝑝𝑝(𝑦𝑦; 𝑓𝑓 𝑥𝑥;𝜃𝜃) is maximized

U Kang 15

Linear Units for Gaussian Output
Distributions

 The output vector 𝒚𝒚 contains real numbers of any range
 Given features 𝒉𝒉, a layer of linear output units

produces a vector �𝒚𝒚 = 𝑾𝑾𝑇𝑇𝒉𝒉 + 𝒃𝒃
 Linear output layers are often used to produce the

mean of a conditional Gaussian distribution
 𝑝𝑝 𝒚𝒚 𝒙𝒙 = 𝑁𝑁(𝒚𝒚; �𝒚𝒚, 𝑰𝑰)
 Maximizing the log-likelihood is equivalent to minimizing the

mean squared error

U Kang 16

Sigmoid Units for Bernoulli Output
Distributions

 The output value y contains 1 or 0
 Use sigmoid function to output the probability in [0,1]
 Given features 𝒉𝒉, a layer of sigmoid output units produces a

number �𝑦𝑦 = 𝜎𝜎(𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏)
 The loss function for maximum likelihood learning of a Bernoulli

parameterized by a sigmoid is
 𝐽𝐽 𝜃𝜃 = − log𝑃𝑃 𝑦𝑦 𝑥𝑥 = − log𝜎𝜎 2𝑦𝑦 − 1 𝑧𝑧 = 𝜁𝜁(1 − 2𝑦𝑦 𝑧𝑧)

where 𝑧𝑧 = 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 and 𝜁𝜁 𝑥𝑥 = log(1 + exp 𝑥𝑥)
 I.e. our learning algorithm learns parameters to maximize

𝑝𝑝 𝑦𝑦; 𝑓𝑓 𝑥𝑥;𝜃𝜃 = �
𝜎𝜎 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑦𝑦 = 1

1 − 𝜎𝜎 𝒘𝒘𝑇𝑇𝒉𝒉 + 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑦𝑦 = 0
Fact:

1 − 𝜎𝜎 𝑥𝑥 = 𝜎𝜎 −𝑥𝑥
log𝜎𝜎(𝑥𝑥) = −𝜁𝜁 −𝑥𝑥

U Kang 17

Softmax Units for Multinoulli Output
Distributions

 Useful to represent a categorical distribution (= a probability
distribution over a discrete variable with n possible values)

 The output vector 𝒚𝒚 contains n probabilities
 Softmax is a generalization of sigmoid for n possible values:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒛𝒛 𝑖𝑖 = exp(𝑧𝑧𝑖𝑖)

∑𝑗𝑗 exp(𝑧𝑧𝑗𝑗)
, where 𝒛𝒛 ∈ 𝑅𝑅𝑛𝑛 and 𝑖𝑖 ∈ 𝑍𝑍𝑛𝑛 𝑖𝑖𝑖𝑖 [0,𝑛𝑛 − 1]

 Given features 𝒉𝒉, a layer of softmax output units produces a
vector �𝒚𝒚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑾𝑾𝑇𝑇𝒉𝒉 + 𝑏𝑏)

 The loss function is 𝐽𝐽 𝜃𝜃 = − log𝑃𝑃 𝑦𝑦 𝑥𝑥 = − log 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒛𝒛 𝑦𝑦
where 𝑧𝑧 = 𝑾𝑾𝑇𝑇𝒉𝒉 + 𝑏𝑏

U Kang 18

Hidden Units

 How to choose the type of hidden unit to use in the
hidden layers of the model?

 Active area of research; not many theoretical results
 It is usually impossible to predict in advance which

types will work best: the design process consists of
trial and error

U Kang 19

Non-differentiable Hidden Units

 Some hidden units are not actually differentiable at all input
points
 E.g., ReLU function g(z) = max{0, z} is not differentiable at z = 0

 However, gradient descent still performs well enough
 Hidden units that are not differentiable are usually non-differentiable at

only a small number of points
 Neural network training algorithms do not usually arrive at a local

minimum of the cost function, but merely reduce its errors significantly
 We don’t expect training to reach a point where gradient is 0; thus it is

acceptable for the minima of the cost function to correspond to points
with undefined gradients

 Software implementations of neural network training usually return one of
the one-sided derivatives
 Justification: the argument of g(0) of ReLU may not be true 0 but a very small number

rounded to 0

U Kang 20

Hidden Units

 Rectified linear units (ReLU)
 g(z) = max{0,z}
 Advantage: simple and effective (no vanishing gradient problem)
 Disadvantage: cannot learn via gradient-based methods on examples for

which their activation is 0
 ReLU are typically used on top of affine transformation: 𝒉𝒉 = 𝑔𝑔(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝒃𝒃)

 Generalizations of ReLU
 Generalizations using non-zero slope 𝛼𝛼𝑖𝑖 when 𝑧𝑧𝑖𝑖 < 0: ℎ𝑖𝑖 = max 0, 𝑧𝑧𝑖𝑖 +

𝛼𝛼𝑖𝑖min(0, 𝑧𝑧𝑖𝑖)
 Absolute value rectification: use 𝛼𝛼𝑖𝑖 = −1 to obtain g(z)=|z|
 Leaky ReLU: fixes 𝛼𝛼𝑖𝑖 to a small value like 0.01
 PReLU (parametric ReLU) treats 𝛼𝛼𝑖𝑖 as a learnable parameter

U Kang 21

Hidden Units

 Logistic sigmoid and hyperbolic tangent
 Famous hidden units before the introduction of ReLU
 Sigmoid function 𝜎𝜎(𝑧𝑧)
 Hyperbolic tangent function tanh 𝑧𝑧 = 2𝜎𝜎 2𝑧𝑧 − 1

 Problems: saturate to a high value when z is very positive, and to a low
value when z is very negative
 Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is

near 0

𝜎𝜎(𝑧𝑧) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧)

U Kang 22

Architecture Design

 Architecture refers to the overall structure of the network: how
many units it should have and how these units should be
connected to each other

U Kang 23

Architecture Design

 Most neural networks are organized into groups of units called
layers; these layers are typically arranged in a chain structure
 The first layer is given by 𝒉𝒉(1) = 𝑔𝑔 1 (𝑾𝑾 1 𝑇𝑇𝒙𝒙 + 𝒃𝒃(1))
 The second layer is given by 𝒉𝒉(2) = 𝑔𝑔 2 (𝑾𝑾 2 𝑇𝑇𝒙𝒙 + 𝒃𝒃(2))
 In these chain-based architectures, the main architectural considerations

are to choose the depth of the network and the width of each layer
 A network with even one hidden layer is sufficient to fit the training set
 Deeper networks often use far fewer units per layer and far fewer

parameters, and often generalize well, but also often harder to optimize
 The ideal network architecture for a task must be found via

experimentation guided by monitoring the validation set error

U Kang 24

Architecture Design

 Universal approximation theorem (Hornik et al. 1989, Cybenko
1989)
 A feedforward network with a linear output layer and at least one hidden

layer with any “squashing” activation function (e.g. logistic sigmoid) can
approximate any continuous function with any desired non-zero amount
of error

 This means that regardless of what function we are trying to learn, a large
MLP will be able to represent this function

 However, we are not guaranteed that the training algorithm will be able
to learn that function
 The optimization algorithm may not be able to find the parameters that correspond to

the desired function
 The training algorithm might choose the wrong function due to overfitting

U Kang 25

Exponential Advantage of Depth

 Piecewise linear networks (which can be obtained from rectifier
nonlinearities) can represent functions with a number of regions
that is exponential in the depth of the network

 Using deeper models can reduce the number of units required to
represent the desired function, and can reduce the
generalization error

 Empirical results for transcribing multi-digit numbers from
photographs of addresses

U Kang 26

Shallow Models Overfit More

U Kang 27

What you need to know

 Deep feedforward networks: enable non-linear
mapping inputs to outputs
 Cost function: cross-entropy
 Output units: linear, sigmoid, softmax
 Hidden units: ReLU and its variants
 Architecture design: deep architecture is preferred

despite the universal approximation theorem

U Kang 28

Questions?

	슬라이드 번호 1
	In This Lecture
	Deep FeedForwad Networks
	Deep FeedForwad Networks
	Learning XOR
	Learning XOR
	Feedforward Network for XOR
	Feedforward Network for XOR
	Feedforward Network for XOR
	Feedforward Network for XOR
	Solving XOR
	Gradient-Based Learning
	Cost Functions
	Output Units
	Linear Units for Gaussian Output Distributions
	Sigmoid Units for Bernoulli Output Distributions
	Softmax Units for Multinoulli Output Distributions
	Hidden Units
	Non-differentiable Hidden Units
	Hidden Units
	Hidden Units
	Architecture Design
	Architecture Design
	Architecture Design
	Exponential Advantage of Depth
	Shallow Models Overfit More
	What you need to know
	슬라이드 번호 28

