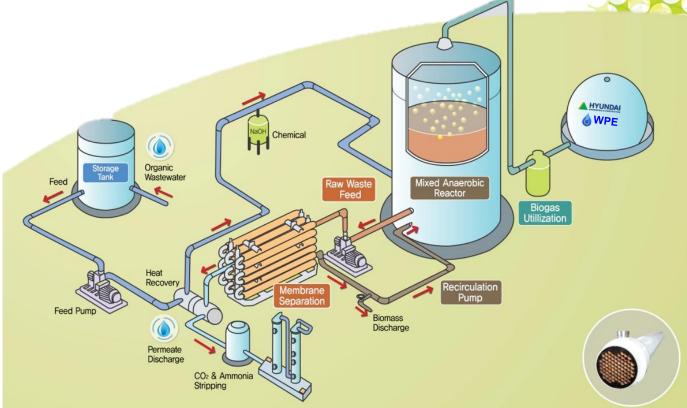


Application of Food Waste to Biogas Energy Plant

YOUNG O KIM 2017. 11. 21



INOVATION for Eco-SUSTAINABILITY

"Harvesting Clean Energy & Clean Water from Wastewater"

Talk outline

- 1. Value of Organic Wastes
- 2. <u>Anaerobic Digestion</u> description.
- 3. <u>Stage</u> of Biogradation
- 4. See Hyundai Biogas Plant (AnMBR; HAnDs)
- 5. Field Application of AnMBR

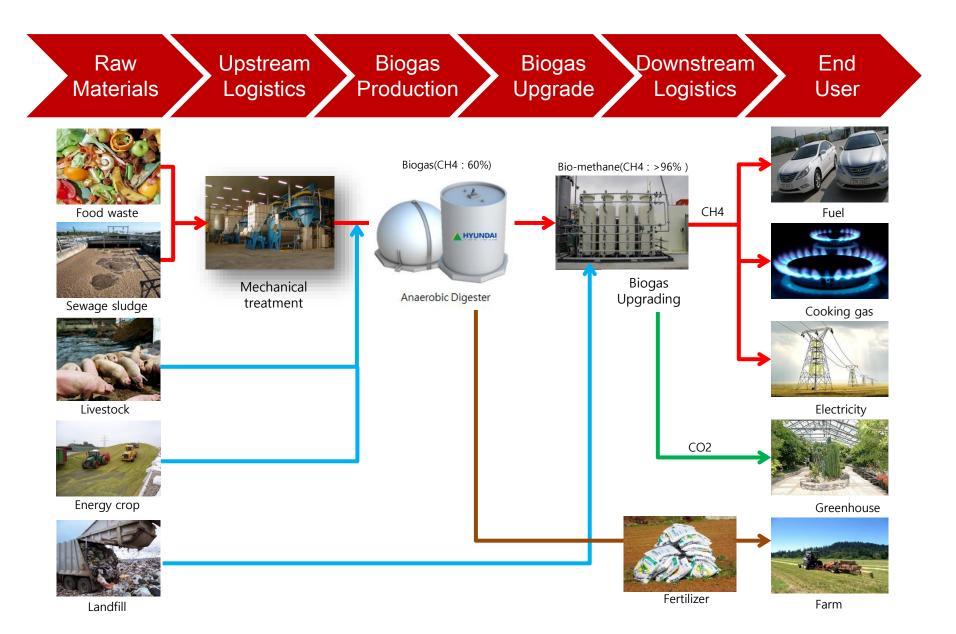
Characteristics of Organic Wastes in Korea

High Volatile Solid Content

High Moisture Contents Hard to apply physical and chemical treatment such as incineration etc.
High cost for management

 \rightarrow Easy corruption

Heterogeneous


- Heterogeneous feedstock

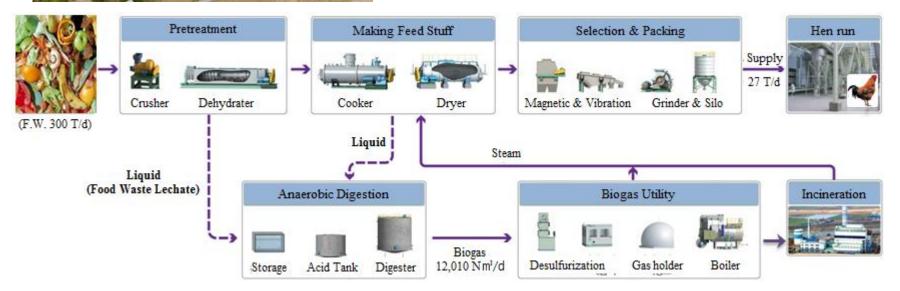
Readily biodegradable

- Renewable energy source

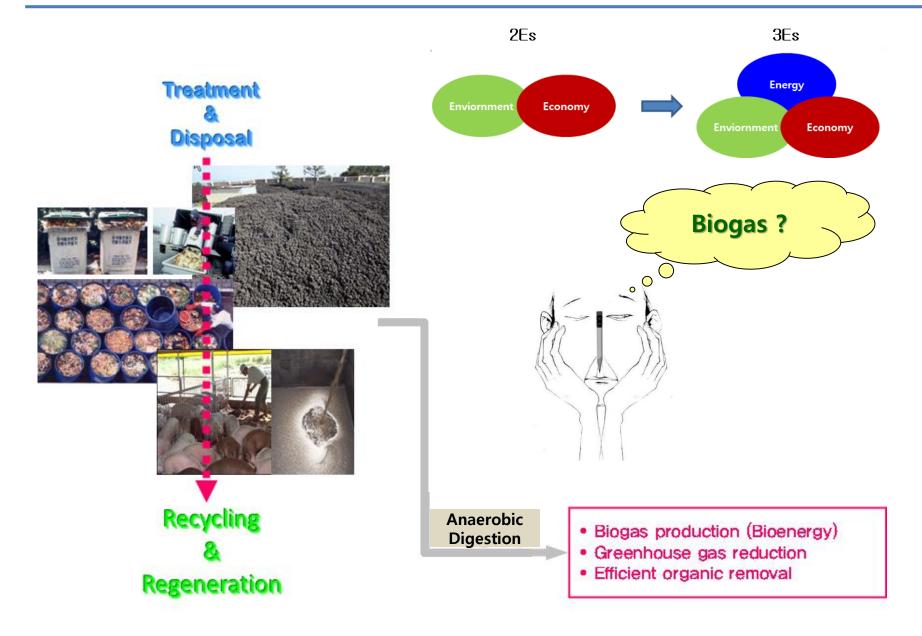
- Necessity of pretreatment
- Hard to apply microbial treatment techniques

Value Chain

Value Chain


1

• Food waste made into feed stuff for hen run, Liquid to biogas digestion


GuangJu (Food Waste 300 t/d)

- Feed stuff facility : 100 t/d
- Anaerobic Digestion : 260 t/d
- AD Type : Conventional Two stage

Paradigm of organic wastes treatment

What is Biogas Digestion

- Reduce
 - Smell
 - Greenhouse gas
 - Pathogen level
- Produce biogas
- Improve fertilizer value of manure
- Protect water resources
- Biogas Digestion is the process of taking biogas to produce electricity, heat, or hot water
- Biogas means a gas formed by carbon dioxide and methane from breakdown of organic materials such as manure.

Basic of digestion

Substrates must be degradable

Substrates must/should be available at a constant mass/volume flow

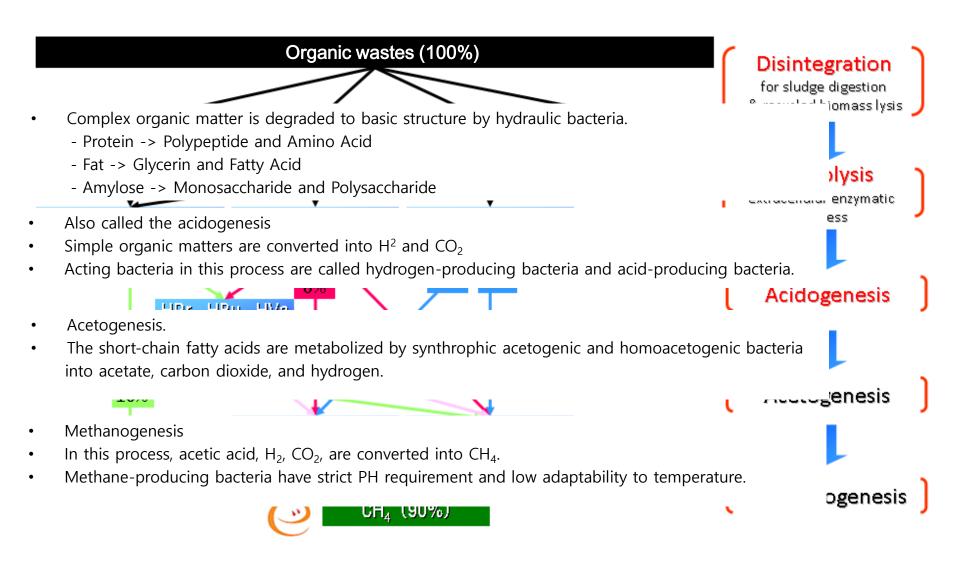
Substrates should have a nearly constant composition

Concentration of organic dry matter should be higher than 2 %

Substrates should be a liquid slurry

Digester volume should be more than about 100m³

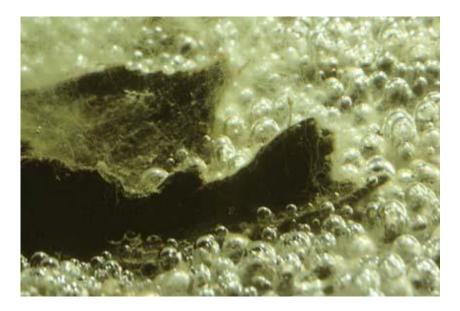
What is a Digester?


- Digester is a vessel or container where the biogas process takes place. Bacteria breaks down waste products to create biogas. Products may be fed into the chamber such as manure and food waste or the container could be used to cover a place that is already giving off biogas such as a swamp or a landfill.
- Biodigester is a system that promotes decomposition of organic matter.
- It produces biogas, generated through the process of anaerobic digestion.
- Biogas generated can be used for cooking, heating, electricity generation, and running a vehicle.

Basic Designs of Digester

- Continuous-fed
- Batch-fed





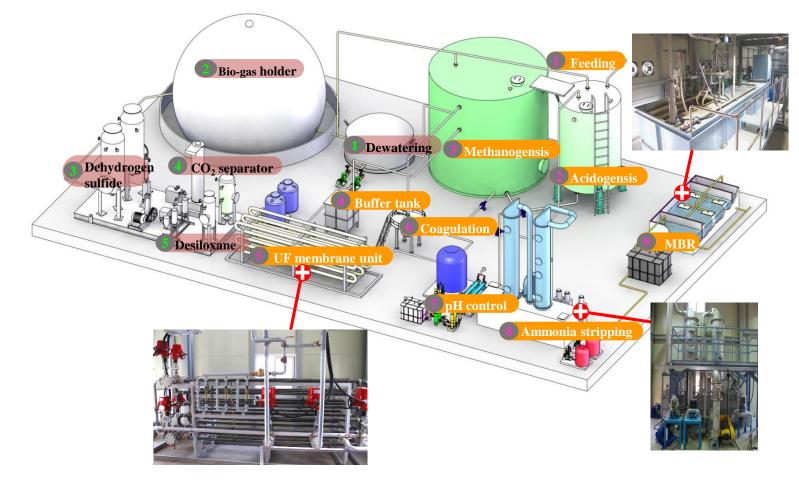
What is Biogas ?

A mixture of methane and carbon dioxide

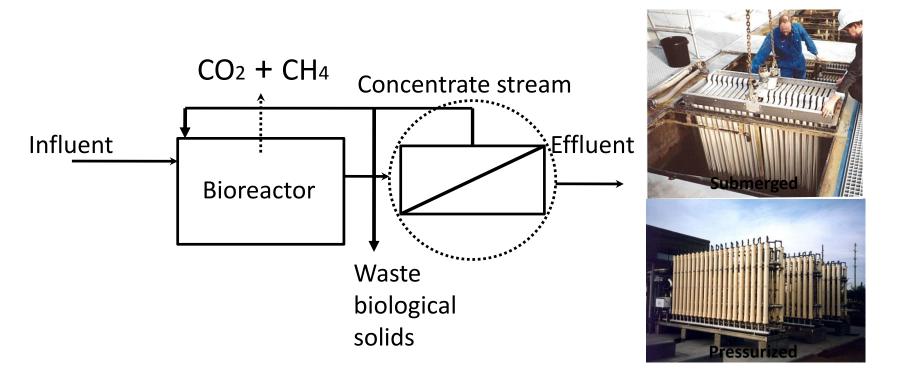
• Methane or 'swamp gas', prod**Vdeat nathraf**ly in swampy ponds

Potential of Biogas

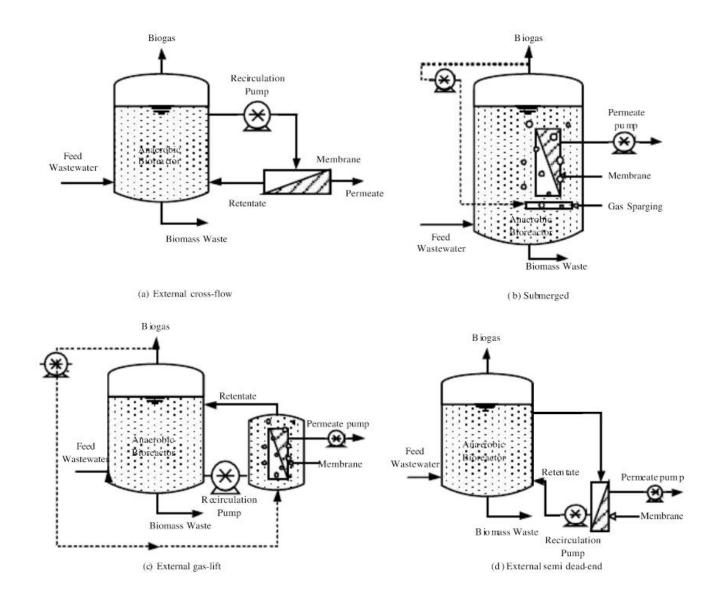
5	
U	


0.05	0.15
0.15	0.5
2	5 to 10
8	20 to 30
6 to 8	30 to 50
15 to 20	100 to 120
6 to 14	30 to 60
	2 8 6 to 8 15 to 20

Pilot-plant of AnMBR : HAnDs


Anaerobic Membrane Bioreactor (AnMBR, Korean NET No.352)

- Maximizes biogas energy
- Excellent effluent quality
- Easy nutrient recovery as fertilizer


- Odor-free
- Vastly reduces biosolid disposal costs
- Reduces the facility footprint

Anaerobic Membrane Bioreactor(AnMBR)

- Providing long SRT needed while operating at short HRT as required to reduce reactor size
- Pressurized type use more since membrane cleaning is easier to perform

Wastewater	Volume (㎡)	Temp. (°C)	MLSS (g/L)	OLR (g/㎡/d)	Removal (%)	Reference
Sweet factory	0.09	35~37	-	8~9	97~99	Defour et al., 1994
Feed industry	0.4	37	6~8	4.5	81~94	He et al., 2005
Soybean processing	2	30	-	2.5	71	Yushina and Hasegawa, 19 94
Brewery	0.12	36	> 50	>28.5	97~99	Ince et al., 2000, 2001
Potato starch bleaching	4	-	15~100	1.5~5	65~85	Brockmann and seyfried, 19 96, 1997
Palm oil mill	0.05	35	50~57	14.2~21.7	91.7~94.2	Fakhru'l-Razi and Noor, 199 9
Kraft pulp mill	5	53	8	9~28	86~89	Imasaka et al., 1993
Sewage	0.018	24~25	16~22	0.4~11	60~95	Wen et al., 1999
Primary sludge	0.12	35	-	0.4~0.68	25~57	Ghyoot and Verstraete, 199 7
Heat treated sewage	0.2	35~38	10~20	4~16	79~83	Kayawake et al., 1991
Swine manure	0.006	37	20~40	1~3	-	Padmasiri et al., 2007

Operating Conditions of Membrane system

Туре					Membrane		linear			
of		Temp.		Pore	area	TMP	velocity	Initial flux	Final flux	
wastewater	Scale ^a	(°C)	Material	size ^c	(m²)	(kPa)	(m. s ⁻¹)	(L. m ⁻² . h ⁻¹)	(L. m ⁻² . h ⁻¹)	Reference
Wheat starch	Ρ	40	-	18,000 D	144	690	_d	-	14~25	Butcher et al, 1989 Choate et al, 1983
Brewery effluent	Ρ	35	Poly-ethersulfone	40,000 D	0.44	140~340	1.5~2.6	-	7~50	Strohwald et al, 1992
Maize processing	Ρ	-	Poly-ethersulfone	20,000~80,000	668	450	1.6	-	8~37	Ross et al, 1992
				D						
Wool scouring	Р	40~47	Poly-acrylonitrile	13,000 D	3.1	2~2.2 ^e	-	30~45	17~25	Hogetsu et al, 1992
Glucose, peptone	L	35~38	Ceramic	0.2	0.4	30~200	0.5~4	-	12.5~125	Shimizu et al, 1992
Kraft mill effluent	Ρ	48.4	Ceramic,	0.16	1×24	60	1.75	50	27	Imasaka et al, 1993
			aluminum oxide							
Acetate	L	35	Ceramic	0.2	0.20	25~150	0~3.5	-	18~127	Beaubien et al. 1996
Sewage sludge	L	30~35	Poly-ether sulfone	60,000 D	0.3	375	0.75	31	19	Ghyoot et al, 1997
Molasses ^f	L	20	Polypropylene	10	0.051	-	-	100~160	10~80	Hernandez et al, 2002
Sewage	Ρ	10~28	Ceramic	13,000 D	13.6	1~2 ^e	2	-	15~20	Tanaka et al, 1987
Heat-treated liquor from sewage sludge ^f	Ρ	35~38	Ceramic	0.1	1.06	200 ^g	0.2~0.3	8~13	3~8	Kayawake et al, 1991
Food waste leachate	Р	55	Polyvinylidene	0.04	13.1	100~300	1~3	-	15	Kim et al, 2011
			fluoride							

^aAll membranes were external cross-flow unless otherwise noted. ^bL = laboratory/bench scale, P = pilot scale.

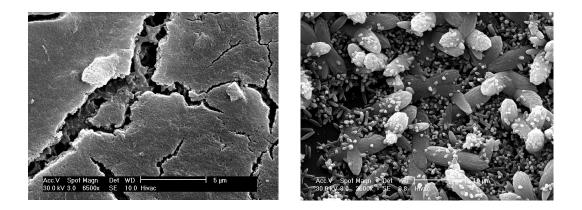
^cD = Daltons (molecular weight cutoff).^d-Indicates value not reported.

^ePressure reported as kg/cm².^fSubmerged membrane.

g-Indicates value not reported

Picture of Plant

Specifications of Membrane Unit

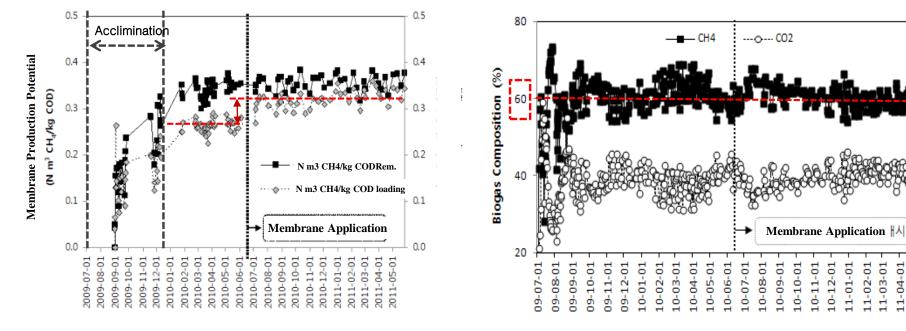


	Shape	Tubular	
	Material	PVDF	
Spec.	Diameter	11 mm	
	MWCO	100 k Dalton	
	Max. working Temp.	90 °C	
	Total membrane area	13.1 m ²	1-00
Operating condition	Operating pressure	1~3 kgf/cm ² (In-Out)	
	Cross-flow velocity	1~2 m/sec	

Why Crossflow Membrane ?

- Flat-sheet membranes can only be installed in a submerged tank, which client pays to build
- For membrane cleaning, the entire membrane tank must be drained, halting treatment of wastewater
- Crossflow membranes are installed on skids with minimal footprints, and require no storage tank of any kind
- Much easier cake-fouling control just by adjusting the crossflow velocity
- Possible clean-in-place, meaning any individual membrane can be bypassed and removed from the system for cleaning without even pausing treatment

- Membrane fouling is an inevitable and complex phenomena
- Biogas sparging, fluidized media for submerged system
- TMP, cross-flow velocity for pressurized system Effectiveness varies depending upon foulant materials (e.g., particle size distribution) and module design (e.g., channel height etc)



Water Quality through HAnDS[®] process

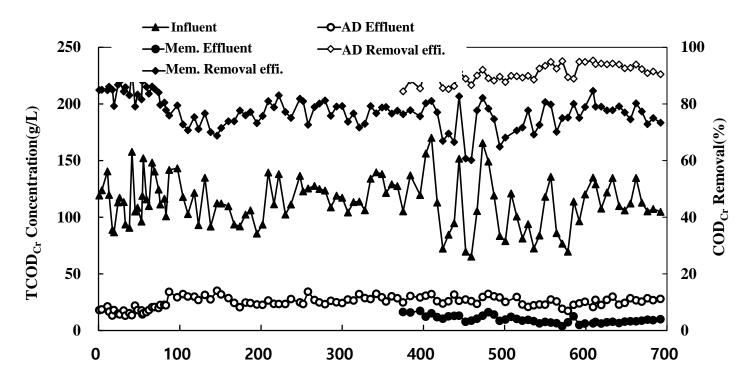
(Unit : mg/L)	Food Waste Leachate	Anaerobic Digestion	Ultrafiltration	Aerobic MBR*
BOD ₅	51,000	9,000	6,000	<3.0
COD _{Cr}	120,000	25,000	10,000	300
TN	3,000	4,000	2,000	<60
TS (g/L)	65	25	<10	-
n-Hexane	11,000	380	350	-

(*After ammonia stripping process)

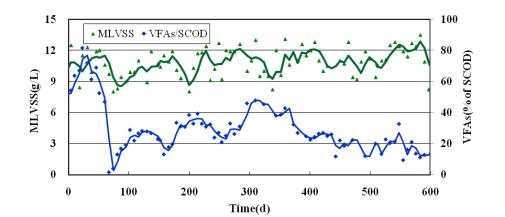
Biogas Production Potential and Compostion

(단위 : Nm³ CH₄/kg CO)D)
---------------------	-----

	Before	After	Variation
CH ₄ production/	0.28	0.32	∆22.1%
CODloading	(0.25~0.29)	(0.29~0.36)	
CH ₄ production/	0.34	0.36	∆6.0%
COD _{Rem.}	(0.30~0.38)	(0.32~0.38)	


Compositio	CH₄	CO ₂	H ₂ S
n	(%)	(%)	(ppm)
Content	63	37	1,582
	(56~68)	(32~44)	(1,100~2,360)

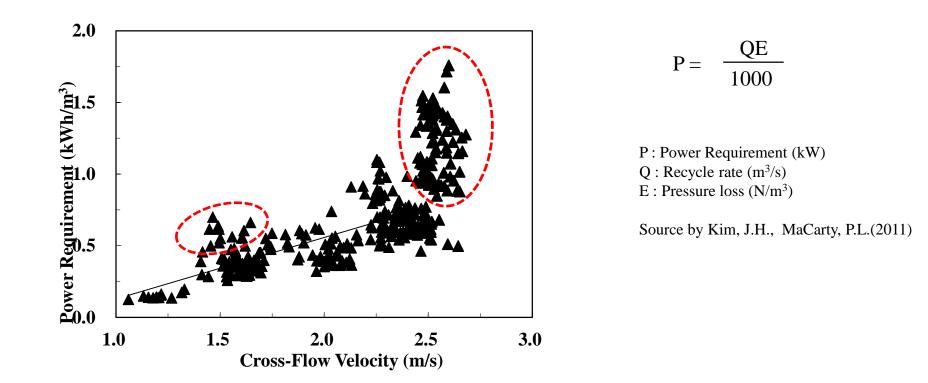
1. Biogas Production : 567 Nm³/ton_COD_{Rem}


2. Methane Yield : 359 Nm³/ton_COD_{Rem}

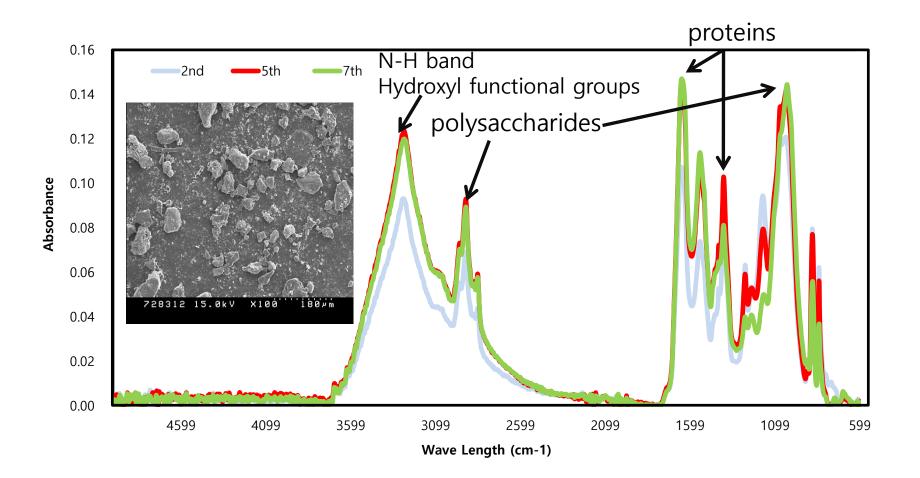
11-05-01

COD Removal Efficiency

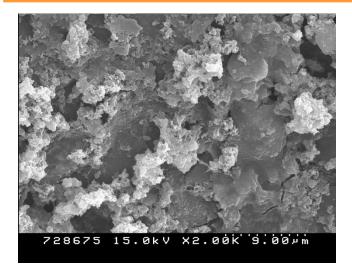
Operating Time(days)



MLVSS has been increasing continuously since the digester was integrated with UF membrane


Operating time (days)

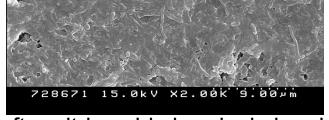
Relationship between Cross-flow velocity and Power Requirement in AnMBR



• The more fouling progressed, the more required electrical power to get the constant flux

Membrane Autopsy Works-FTIR Observation on Membrane Surface

Cake Layer after chemical cleaning

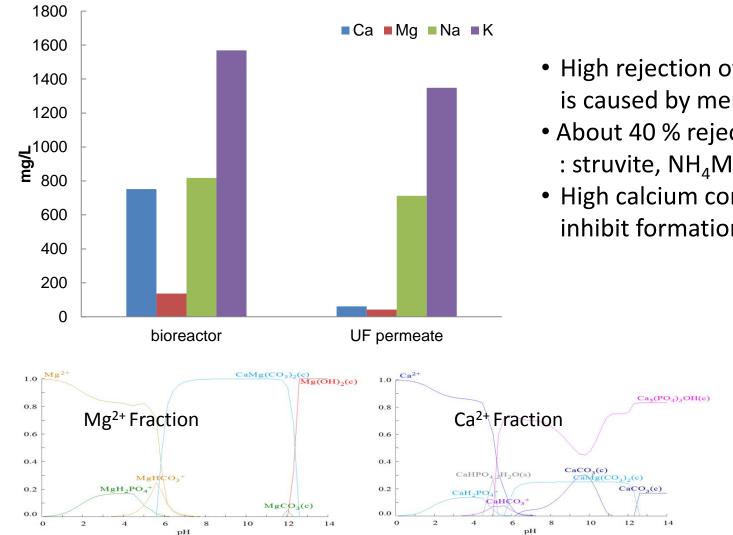


after NaOCI chemical cleaning

	Foodwaste Leachate	Methanogenic Sludge			
Ca ²⁺ (mg/L)	>1,000	> 800			
рН	< 4.0	> 7.5			
Alkalinity (mg CaCO ₃ /L)	-	>10,000			
LSI	< - 4.0	>+4.0			

after NaOH chemical cleaning

- At an LSI value greater than zero, the concentrate stream is supersaturated with calcium carbonate and would likely scale membrane surface as cake layer formation
- Strong binding and solidification can lead to pronounced cake resistance



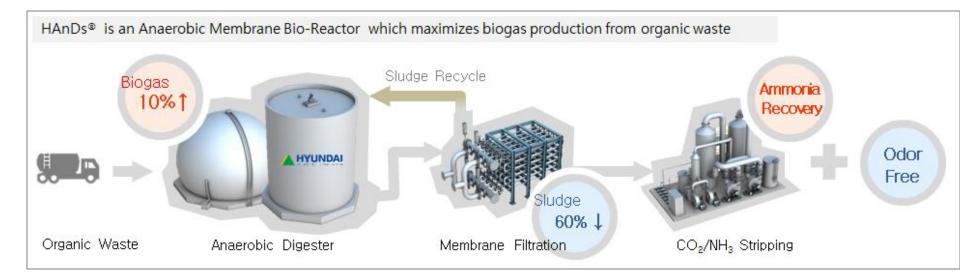
after citric acid chemical cleaning

rate?

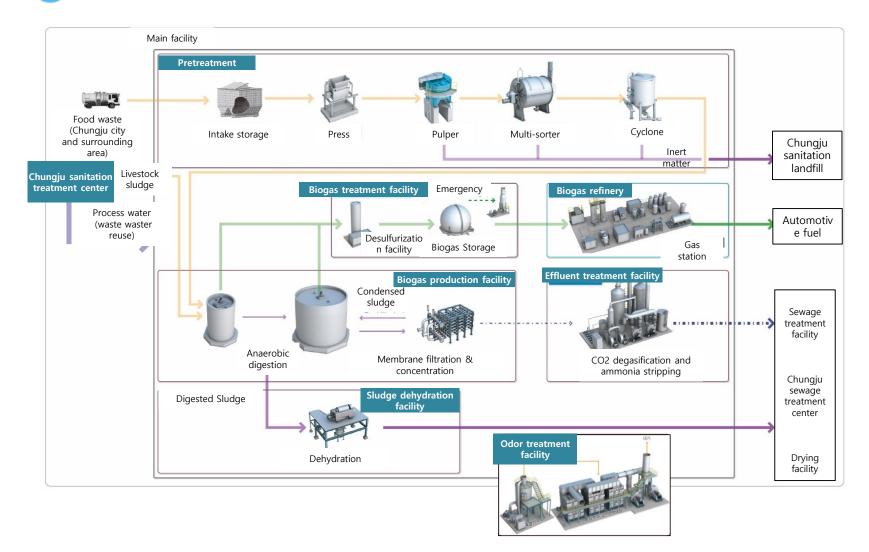
Cross-flow velocity = 3 m/s TMP= 0.8 bar

Membrane Scale and Rejection

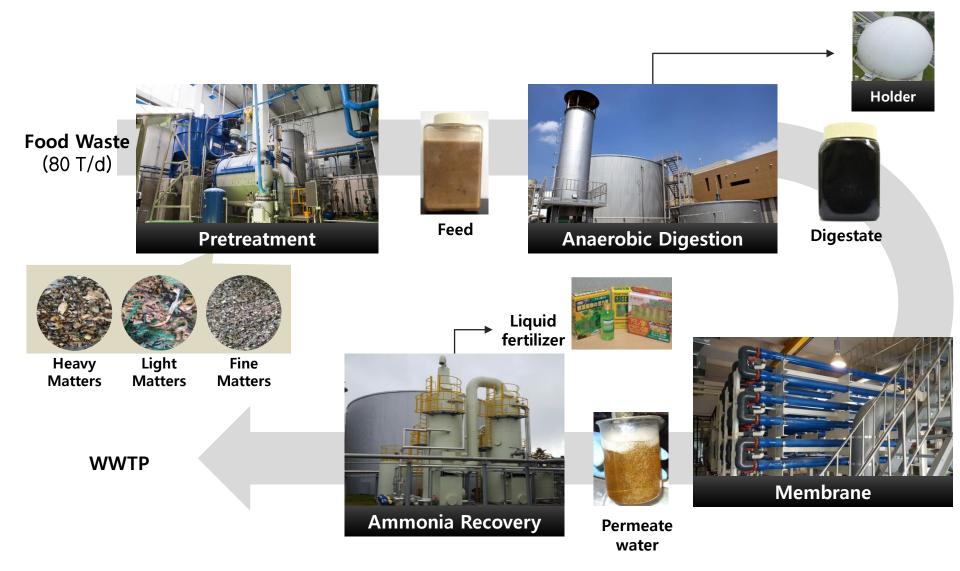
- High rejection of calcium (>95 %) is caused by membrane scale
- About 40 % rejection of Mg : struvite, NH₄MgPO₄·6H₂O?
- High calcium content may inhibit formation of struvite


 $[Ca^{2+}]_{tot}=20 \text{ mM},$ $[NH_3]_{tot}=200 \text{ mM}$ $[CO_3^{2-}]_{tot}=200 \text{ mM}$ [PO₄³⁻]=10mM $[Mg^{2-}]_{tot} = 5 \text{ mM},$ [K⁺]_{tot}=40 mM

• Biogas energy plant (80 ton/day), Chung-ju, Korea


CO2/NH SI Biogas upgrading Organic Anaerobic Digestion wastes delivery CNG Station Membrane filtra concentratio - Location : Chung-ju, Korea Malodor treating - Capacity : 80 ton/day (food waste) - Construction period : 2014. 07. ~ 2016. 07 - Operation period : 2016. 08. ~ 2026. 05.

Characteristics of Process



O Process Flow

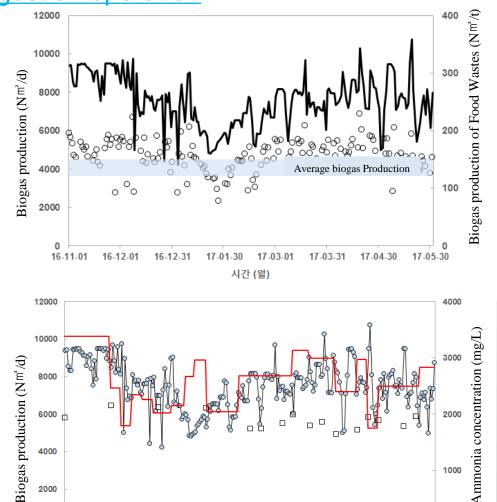
Process Flow of Biogas Production & Water Treatment

4000

2000

0 16-11-01

16-12-01


16-12-31

17-01-30

17-03-01 시간 (윌)

Results of Anaerobic digestion operation

- OLR : 2.4~3.2 kg/ m³/d 0
- **Biogas Prodcution :** 0 7,760 Nm³/d (110 ~ 135 Nm³/t)
- **Biogas Composition :** 0 CH₄ 60~64%, CO₂ 36%, H₂S 1,300 ppm

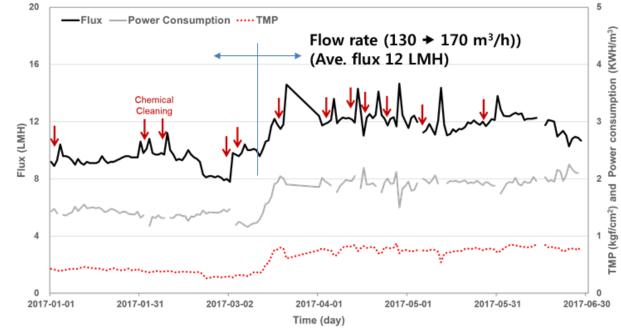
17-04-30

17-03-31

17-05-30

Organic Loading Rate (kg $VS/m^3/d$)

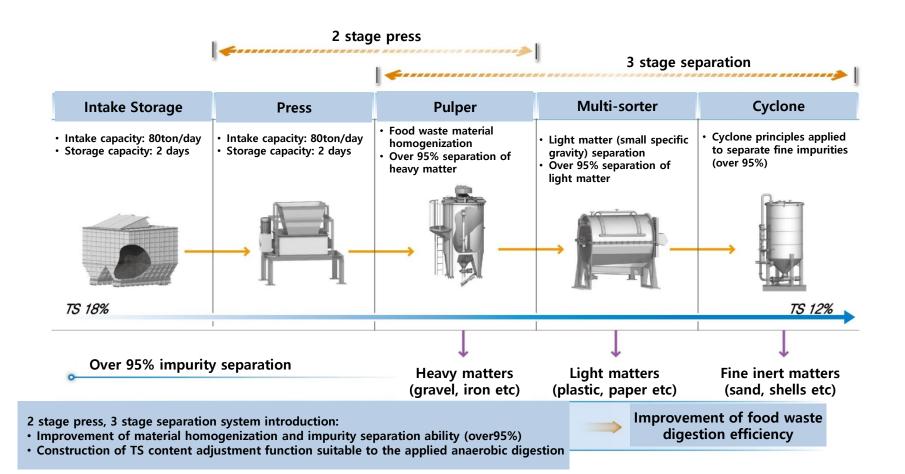
1000


17-06-29

Membrane System Conditions & Performance

Item	Conditions	Note
Input SS	1.5%	
FLUX	11~13 LMH	
Time	18 h	 Stop to discharge from center to WWTP in night time
Cleaning	Water : 2 time/d Chemical : 1 time/10d	Chemical : Citric acid (0.1M)

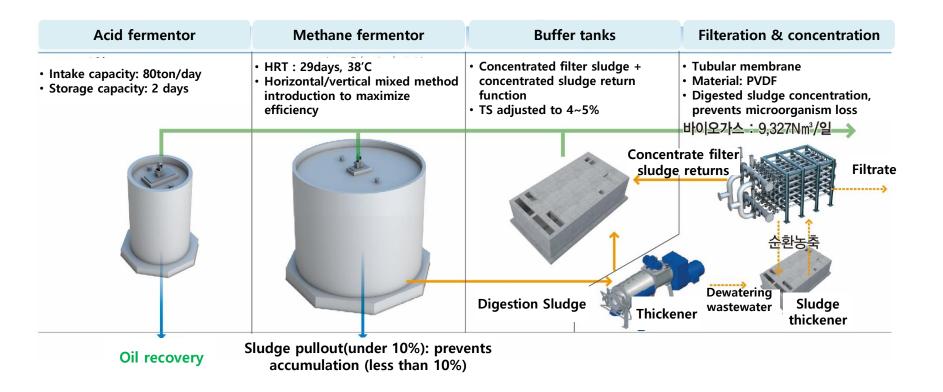
CFV = 1.3 m/sec CFV = 2 m/sec


Water Quality

	Food Waste	Digestate	After Membrane	After NH₃ Stripping
BOD (mg/L)	145,000	2,630	-	-
COD _{Cr} (mg/L)	252,000	22,797	6,000	750
TS (mg/L)	177,000	33,912	3,300	3,000
VS (mg/L)	156,000	25,682	607	-
SS (mg/L)	-	13,600	< 100	< 100
T-N (mg/L)	6,300	4,634	2,015	3,090
T-P (mg/L)	2,200	441	< 100	< 100

How to apply ?

Pretreatment facility

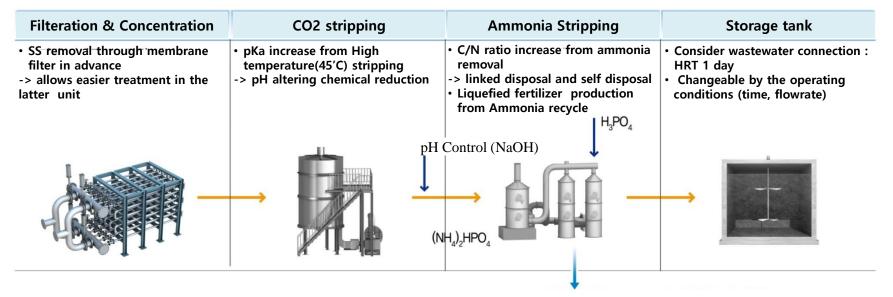


6

How to apply ?

Biogas Production

 Sludge recycle → Providing long SRT needed while operating Biogas more production, reduce sludge discharge


How to apply ?

Wastewater treatment facility

Planning of connecting wastewater to STP and recovery of valuable resources

Reduce Nitrogen loading rate by collection ammonia

Planning of connecting wastewater to STP, cost saving

Liquid fertilizer ((NH₄)H₂PO₄), Supply to farm