Basic Chemistry Concepts

Great medical advances in modern age

- Sanitation (clean water and sewage disposal)
 15.8%
- 2. Antibiotics 15%
- 3. Anaesthesia 14%
- 4. Introduction to vaccines 12%
- 5. Discovery of the structure of DNA 9%

(British Medical Journal, 2007)

Basic chemistry concepts

- Chemistry basics of the basics
- Chemical reactions
- Equilibrium chemistry

Mole & molarity

- Mole = Avogadro's number (6.02×10²³) of molecules
- Molarity (M) = number of moles per <u>liter</u> of <u>solution</u> (mole/L)
 - cf) molality (m) = number of moles per <u>kg</u> of solvent

Activity

- Determines the tendency for a reaction to occur
- Represented by { } (cf. molarity by [])
- In dilute aqueous solutions, the ions do not significantly interact with one another:

$$\{i\} \approx [i]$$

 As concentration increases, the ion-ion interaction becomes more significant:

$$\{i\} = \gamma_i \cdot [i]$$
 where γ_i = activity coefficient

Balancing chemical reactions

$$Ca(HCO_3)_2 + NaOH = Ca(OH)_2 + NaHCO_3$$

Types of chemical reactions

Precipitation-dissolution reactions

ex)
$$CaCl_2 + Na_2CO_3$$
 $\xrightarrow{\text{precipitation}}$
 $CaCO_3(s) + 2Na^+ + 2Cl^ \xrightarrow{\text{dissolution}}$

Usage: softening, phosphorous removal, heavy metal removal

Acid-base reactions

 Brønsted-Lowry acid: any substance that can donate a proton (i.e., proton donor)

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$
acid base conjugate conjugate acid base

 Brønsted-Lowry base: any substance that can accept a proton (i.e., proton acceptor)

$$B^- + H_3O^+ \longrightarrow HB + H_2O$$
base acid conjugate conjugate acid base

Acid-base reactions

 Water is amphoteric – can be either an acid or a base

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$
acid base conjugate conjugate acid base

•
$$pH = -log\{H^+\}$$
 ("p" denotes "-log")

Complexation reactions

 Coordination of two or more atoms, molecules, or ions resulting in the formation of a more stable product

ex)
$$Fe^{2+} + 6H_2O = Fe(H_2O)_6^{2+}$$

 $Cu^+ + 4CN^- = Cu(CN)_4^{3-}$

 Complex ion = a metal ion (Lewis acid) coordinated with ligands (Lewis bases)

Complexation reactions

 Many metal ions exist as complex ions in water (metal aquo complex)

ex)
$$[Cr(H_2O)_6]^{2+}$$
, $[Cr(H_2O)_6]^{3+}$, $[Fe(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{2+}$, $[Cu(H_2O)_6]^{2+}$

 Environmental significance: complexation of metals affects the uptake, biodegradability, toxicity, and mobility of the metal

Oxidation-reduction (redox) reactions

- Involves changes in the oxidation state
- Essential for life: photosynthesis and respiration are redox reactions!
 ex) respiration: C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O

Oxidation-reduction (redox) reactions

 Balancing redox reactions: have to consider electron balance in addition to atom balance!

ex)
$$SO_2 + O_2 + H_2O \rightarrow H_2SO_4$$

Chemical equilibrium

For a reversible reaction

Equilibrium constant, K

$$K = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

For pure solid, activity = 1 For gases, activity = partial pressure

Chemical equilibrium: solubility

For a precipitation-dissolution reaction

$$A_aB_b(s) \iff aA^{x+} + bB^{y-}$$

$$K = \frac{\{A^{x+}\}^a \cdot \{B^{y-}\}^b}{\{A_a B_b\}}$$

as
$$\{A_aB_b\} = 1$$
 (pure solid), $K = \{A^{x+}\}^a \{B^{y-}\}^b$

• Solubility product, $K_s = \{A^{x+}\}^a \{B^{y-}\}^b$

Ionic strength

• Recall that $\{i\} = \gamma[i]$:

$$K_S = \{A^{x+}\}^a \{B^{y-}\}^b = (\gamma_A [A^{x+}])^a \cdot (\gamma_B [B^{y-}])^b$$

 lonic strength, I: measure of interaction among ions in a solution

$$I = \frac{1}{2} \sum C_i z_i^2$$

 C_i = molarity of the ith ion z_i = charge of the ith ion

Calculating activity coefficients

Davies equation (for I < 0.5 M):

$$\log \gamma = -Az^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right)$$

 $A \approx 0.5$ for water at 25°C z = charge of the ion

Selected solubility products (@ 25°C)

Substance	Equilibrium Reaction	pK _s	Application
Aluminum hydroxide	$Al(OH)_3(s) \Longrightarrow Al^{3+} + 3OH^-$	32.9	Coagulation
Aluminum phosphate	$AIPO_4(s) \Longrightarrow AI^{3+} + PO_4^{3-}$	22.0	Phosphate removal
Calcium carbonate (aragonite)	$CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$	8.34	Softening, corrosion control
Ferric hydroxide	$Fe(OH)_3 (s) \Longrightarrow Fe^{3+} + 3OH^{-}$	38.57	Coagulation, iron removal
Ferric phosphate	$FePO_4(s) \Longrightarrow Fe^{3+} + PO_4^{3-}$	21.9	Phosphate removal
Magnesium hydroxide	$Mg(OH)_2(s) \Longrightarrow Mg^{2+} + 2OH^{-}$	11.25	Removal of calcium and magnesium
Dolomite (CaMg(CO ₃) ₂) (ordered)	$CaMg(CO_3)_2 \rightleftharpoons Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$	17.09	Weathering of dolomitic minerals
Kaolinite	$Al_2Si_2O_5(OH)_4 + 6H^+$ $\implies 2Al^{3+} + 2Si(OH)_4 + H_2O$	7.44	Weathering of kaolinite clays
Gypsum	$CaSO_4 \cdot 2H_2O \Longrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O$	4.58	Weathering of gypsum minerals

Chemical equilibrium: solubility

Q: Added 30g of $CaCO_3$ in water of make 1.00 L solution containing 0.01 M NaCl. Assuming Ca^{2+} in solution is at equilibrium with $CaCO_3(s)$, what would be the Ca^{2+} concentration?

 $(T = 25^{\circ}C, pK_s \text{ for } CaCO_3 = 8.48)$

Reading assignment

• Textbook Ch2 p. 32-51