Basic Chemistry Concepts II

Chemical equilibrium: acid-base equilibria

• Ionization of water: $H_2O + H_2O = H_3O^+ + OH^-$

$$K = \frac{\{OH^{-}\}\{H_{3}O^{+}\}}{\{H_{2}O\}^{2}}$$
$$\{H_{2}O\} = \gamma_{H_{2}O} \cdot [H_{2}O], \quad \gamma_{H_{2}O} \approx 1, \quad [H_{2}O] = 55.6 M$$

• Dissociation constant of water, K_w

$$K_w = K \cdot \{H_2O\}^2 = \{OH^-\} \{H_3O^+\}$$

Chemical equilibrium: acid-base equilibria

$$K_w = \{OH^-\}\{H_3O^+\}$$
 or $K_w = \{OH^-\}\{H^+\}$
 $pK_w = 14$ (at 25°C)
 $pH < 7 \longrightarrow \{H^+\} > \{OH^-\}$, acidic

 $pH > 7 \longrightarrow \{H^+\} < \{OH^-\}, \text{ basic}$

Acid dissociation constant

$$HA = H^+ + A^-$$

• Acid dissociation constant, K_a

$$K_a = \frac{\left[H^+\right]A^-}{\left[HA\right]}$$

- Strong acid = strong tendency to dissociate = high K_a = low pK_a
- Weak acid = only a small fraction dissociates = low K_a = high pK_a

Acid dissociation constant

Acid	Reaction	pK _a	•
Hydrochloric acid	HCl = H ⁺ + Cl ⁻	≈-3	
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-1	Strong
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	≈-3	Strong
Bisulfate	$HSO_4^- = H^+ + SO_4^{2-}$	1.9	
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75	·]
Carbonic acid	$H_2CO_3^* = H^+ + HCO_3^-$ $HCO_3^- = H^+ + CO_3^{2-}$	6.35 10.33	. – Weak
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$ $H_2PO_4^- H^+ + HPO_4^{2^-}$ $HPO_4^{2^-} = H^+ + PO_4^{3^-}$	2.12 7.20 12.32	VVCak

Acid dissociation constant

Q: A solution of HOCl is prepared in water by adding 15 mg HOCl to a volumetric flask, and adding water to the 1.0 L mark. The final pH is measured to be 7.0. What are the concentrations of HOCl and OCl⁻? (T = 25°C)

Chemical equilibrium: gas dissolution

 Henry's Law: partial pressure of a chemical in the gas phase is linearly proportional to the concentration of the chemical in the aqueous phase

```
P_{gas} = kC^*
where P_{gas} = partial pressure in the gas phase
C^* = concentration in the water
k = constant
```

Caveat!

- The equilibrium/solubility product constants do not tell anything about the reaction rate!
- Differentiate <u>equilibrium</u> and <u>kinetics</u>

Reaction kinetics

 Reaction kinetics: study of the speed at which reactions proceed

$$aA + bB \rightarrow cC$$

$$r_A = \frac{d[A]}{dt} = -k[A]^{\alpha}[B]^{\beta}$$

 r_A = reaction rate w.r.t. chemical A [conc./time]

k = reaction rate constant

 $\alpha + \beta$ = reaction order

Reaction kinetics

Reaction order	Rate expression	Units on k	
Zero	$r_A = -k$	(conc.)(time) ⁻¹	
First	$r_A = -k[A]$	(time) ⁻¹	
Second	$r_A = -k[A]^2$	(conc.) ⁻¹ (time) ⁻¹	
Second	$r_A = -k[A][B]$	(conc.) ⁻¹ (time) ⁻¹	

• Half-life $(t_{1/2})$: time required for the concentration to reach ½ of its initial conc.

Concentration units in water

Weight percent, P

$$P = \frac{W}{W + W_0} \times 100\%$$
 $W = \text{mass of substance (g)}$ $W_0 = \text{mass of solute (g)}$

- ppm, ppb, ppt
- Molarity, M
- Normality, N (acid-base reaction)

$$N = nM$$
 $n = no. of protons transferred$

- Buffer: a solution that resists large changes in pH
- A solution of weak acid and its salt is a buffer
- Atmospheric CO₂ produces a natural buffer:

$$CO_2(g) + H_2O = H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$$

 $H_2CO_3^* = \text{sum of true } H_2CO_3(\text{aq}) \text{ and } CO_2(\text{aq})$

Acid dissociation:

$$H_2CO_3^* = H^+ + HCO_3^-$$
, $K_{a1} = 10^{-6.35}$ (at 25°C)

$$HCO_3^- = H^+ + CO_3^{2-}$$
, $K_{a2} = 10^{-10.33}$ (at 25°C)

Define C_T as:

$$C_T = [H_2CO_3^*] + [HCO_3^-] + [CO_3^{2-}]$$

Then:

$$[H_2CO_3^*] = C_T \cdot \left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1}K_{a2}}{[H^+]^2}\right)^{-1}$$

$$[HCO_3^{-}] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^{*}]$$

$$[CO_3^{2-}] = \frac{K_{a1}K_{a2}}{[H^+]^2} \cdot [H_2CO_3^*]$$

If C_T is known, we can obtain the concentration of each species at a certain pH

Now, think of

$$K_{a1} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}^{*}]}$$

$$pH - pK_{a1} = log \frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}^{*}]}$$
If pH < pK_{a1}, [H₂CO₃*] > [HCO₃⁻]
$$(If pH - pK_{a1} = -2, [H_{2}CO_{3}^{*}] = 100[HCO_{3}^{-}])$$
If pH > pK_{a1}, [H₂CO₃*] < [HCO₃⁻]
$$(If pH - pK_{a1} = 2, [HCO_{3}^{-}] = 100 [H_{2}CO_{3}^{*}])$$

This applies to HCO_3^- - CO_3^{2-} relationship as well:

Actually this principle applies to any acids:

If pH < pK_a, <u>associated</u> (protonated) form dominates

If pH > pK_a, dissociated (deprotonated) form dominates

1. Closed system: C_T is constant

Solving for pH < pK_{a1} region as an example

At this pH range, H₂CO₃* dominant:

$$C_T \approx [H_2 C O_3^*]$$

$$log[H_2CO_3^*] \approx logC_T$$

$$[HCO_3^{-}] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^{*}] \qquad | \qquad log[HCO_3^{-}] = logC_T - pK_{a1} + pH$$

$$log[HCO_3^-] = logC_T - pK_{a1} + pH$$

$$\left[CO_3^{2-}\right] = \frac{K_{a1}K_{a2}}{[H^+]^2} \cdot \left[H_2CO_3^*\right] \quad | \quad \log\left[CO_3^{2-}\right] = \log C_T - pK_{a1} - pK_{a2} + 2pH$$

1. Closed system

2. Open system: constant $[H_2CO_3^*]$

$$[H_2CO_3^*] = K_H P_{CO_2} = (10^{-1.47} M/atm)(10^{-3.53} atm)$$

$$= 10^{-5.00} M$$
 (at 25°C), ambient air

$$[HCO_3^-] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^*] \qquad | log[HCO_3^-] = log(K_H P_{CO_2}) - pK_{a1} + pH$$
$$= -11.35 + pH$$

$$[CO_3^{2-}] = \frac{K_{a1}K_{a2}}{[H^+]^2} \cdot [H_2CO_3^*]$$

$$\log[CO_3^{2-}] = \log(K_H P_{CO_2}) - pK_{a1} - pK_{a2} + pH = -21.68 + 2pH$$

2. Open system

Alkalinity

 Alkalinity: sum of all titratable bases to a pH of approximately 4.5

$$Alkalinity = [HCO_3^{-}] + 2[CO_3^{2-}] + \dots + [OH^{-}] - [H^{+}]$$

Include $B(OH)_4$, PO_4^{3-} , HPO_4^{2-} , $SiO(OH)_3$, etc. if significant

Carbonate alkalinity =
$$[HCO_3^-] + 2[CO_3^{2-}]$$

(bicarbonate and carbonate are major contributors of alkalinity in natural waters)

Alkalinity

- Unit of alkalinity
 - Using molarity for each species, we get "eq/L"
 - "eq": equivalent, moles of H⁺ ion in an acid-base solution or electrons in a redox reaction
 - More common unit is "mg/L as CaCO₃"
 - Unit conversion: 1 meq/L = 10^{-3} eq/L = 50 mg/L as $CaCO_3$

Reading assignment

• Textbook Ch2 p. 51-75

Acid dissociation

Slide#6 solution)

MW of HOCl = 52.46 g/mole

Unit conversion - mg/L to molarity:

$$\frac{15 \, mg \, HOCl}{1 \, L \, water} \times \frac{1}{52.46 \, g \, HOCl/mole \, HOCl} \times 10^{-3} \, g/mg = 2.86 \times 10^{-4} \, M$$

$$HOCI = H^+ + OCI^-, pK_a = 7.54$$

weak acid \rightarrow only a fraction dissociates

$$K_a = 10^{-7.54} = \frac{[H^+][OCl^-]}{[HOCl]} = \frac{10^{-7} \cdot [OCl^-]}{[HOCl]}$$

$$[HOCl] = 3.47[OCl^{-}]$$

$$[HOCl] + [OCl^{-}] = 4.47[OCl^{-}] = 2.86 \times 10^{-4} M$$

$$[OCI^{-}] = 0.64 \times 10^{-4} M$$

$$[HOCI] = 2.22 \times 10^{-4} M$$