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Chapter 1 Introduction

* Sources of Uncertainty
- randomness: inherent unexplainable variability of nature
- lack of information/understanding: parameter uncertainty, modeling uncertainty,
sampling uncertainty (# data uncertainty)

- error/inaccuracy: data uncertainty, operational uncertainty

* Definitions of Statistics and Probability
- Statistics: methods for drawing inferences about the properties of a population
based on the properties of a sample from that population
- Probability: methods for calculating the likelihood of an event given known

population characteristics

¢« Random Variables
- Definition

- Discrete or continuous

* Populations vs Samples
- population parameters

- sample statistics

* Graphical Display of Data
- histogram
- box plot
- quantile plot

* Characteristics of Hydrologic Data
- observational, not experimental
- the order of occurrence (and their serial dependence) is often important

- stochastic
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Chapter 2 Probability
< Basic Probability >

* Axioms of Probability
(1) P(S) =1
(i) 0 < PA) = 1
(iii)) P(AUB) = P(A) + P(B) if A & B are mutually exclusive
[note] PAUBUC) =

* Conditional Probability

P(B |a)= A0

P(ANB) = P(A)P(B) if A&B are independent

- Total Probability Theorem

P(B) = P(A)P(BJA)) + ... + P(Ay)P(B|A))
- Bayes Theorem
P(ADP(B |A))

P(Ak | B): O
3 P(A)PG A,

where P(Ay): prior probability
P(AB): posterior probability
[note] PLAMNBNC) =
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< Probability Distribution >

* Cumulative Mass/Density Functions (CMF/CDF)

- discrete r.v.
- continuous r.v. Py(x)=prob(X<x)= fﬁ px(tdt

* Probability Mass/Density Functions (PMF/PDF)

- discrete r.v.

- continuous r.v. dPy(x)=py(x)dx

((note)) the pdf is not a probability and can exceed one.

* Probability Concept for Continuous R.V.

prob(a<X<b)= [ py(t)dt=Py(b)~ Py(a)

prob(X=d) = fddpx(t) dt=Py(d)—Px(d)=0

prob(a<X<b) = prob(a<{X<b) = prob(a<X<b)=prob(a< X<hb)

* Bivariate and Marginal Distributions
DX(X)fomDXY(X,S)dS

((note))

(1) Pxy(x,00) is a cumulative univariate probability function of X only, i.e. the
cumulative marginal distribution of X
(i) Pyy(—00,y)=Pyxy(x,—)=0



S By
* Conditional Distributions
Pxy(XIY=y() =Dxy(x,v,)/Dy(y,)
((note))
(1) independence
Dy (xly) =py(x)
Pxy(X,¥)=px (X)py(y)
(i1)) when the vectors V and W have a joint multivariate normal distribution, the
conditional distribution of a vector V given the value of a vector W is
VIW ~ N [uy + ZVWZW_I(W‘UW), 2y - ZVWZW-IZVWT]
where >yw 1s the covariance matrix of the vectors V and W,
2w 1s the covariance matrix of W with itself, and

>y 1s the covariance matrix of V with itself.

¢ Transformation
py(w) = px(x)|dx/dul
X’

va(uy V):DXY (X9Y)|J(Tz)|

* Return Period
- Definition: the average interval in years between the occurrence of a flood of
specified magnitude and an equal or larger flood (= recurrence interval)

Ty (x)=1/1=Pyx (x)]=1/prob(X = x)=1/p

- the probability that at least one event that equals or exceeds the T-year event

will occur in any series of N years:

L-(-p

- the probability that the first exceedance of the T-year event occurs in year k:

p(1 - p)*!
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Chapter 3 Properties of Random Variables

< Statistics >

* Summary Statistics
- measure of central tendency

(i) arithmetic mean:

n, = E(X)
((note)) E(at+bX) =
E(X+Y) =

(i1) others: median, mode, geometric mean, weighted mean

- measure of dispersion

(i) variance

Var(X) = o> =

sx~ =

((note)) Var(a+bX) =
Var(X+Y) =

(i1) others: standard deviation, coefficient of variation, range

- measure of symmetry: skewness coefficient

- measure of peakness: kurtosis

- measure for jointly distributed random variables

(1) covariance
COV(X,Y) = Oxy =

Sxy =
((note)) Cov(aX+b, cY+d) =

(i1) correlation coefficient
Corr(X,Y) = pxy =

Ixy =
((note)) Corr(aX+b, cY+d) =



Statistical Hydrology
Dr. Kim, Young-Oh

Observed Annual Statistics. The overall sample statistics y, 5% c,, g, and r; are
usually determined for annual hydrologic time series, Coefficients of variation ¢, of
~ annual flows are typically smaller than one, although they may be close to one or
greater than one in streams in arid and semiarid regions. From an analysis of the
annual flows of 126 rivers, McMahon and Mein'"” report a median value of ¢, of
0.25. Coefficients of skewness g of annual flows are typically greater than zero. In
some streams, small values of g arc found, suggesting that annual flows are approxi-
mately normally distributed. On the other hand, in some streams of arid and semi-
arid regions, g can be greater than one. A range of gbetween —0.4 and about 2.0 and a
median value of 0.40 has been reported.'"” Similarly, r, of annual flows are generally
small but positive, although in some cases, because of sample variability, the r,’s are
negative, It is quite typical to find values of ry in the range of +0.0 fo 0.4 for annual
stream-flow series. Yevjevich™ found that, for a large number of rivers worldwide,
the average value of r, was about 0.15, while McMahon and Mein'!” found a range of
r, between —0.2 and 0.8 with a mean value of 0.23. Large values of r, for annual flows
can be found for a number of reasons, including the effect of natural or manmade

surface storage such as lakes, reservoirs, or glaciers, the effect of slow groundwater
storage response, and the effect of nonstationarities. Figure 19.2.2 shows a slow-
decaying correlogram r, for the annual flows of the White Nile River at Mongalla and
a fast decaying 7, for the Blue Nile River at Khartoum, while the r, for the Nile River
at Aswan lies between the other two.
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< Parameter Estimation >

* Precision/Accuracy
- precision: the ability of an estimator to provide repeated estimates that are close
together.
((note)) 1. due to random error
2. measured with the variance of a estimator
- accuracy: precision + unbiasedness

((note)) measured with the MSE

variance + bias’

* Properties of Estimators

unbiasedness: A point estimator © is an unbiased estimator of the population

parameter O if E[B]=6 . If the estimator is biased, the bias = E[B8]—6

consistency: An estimator ©, , based on a sample size n, is a consistent

estimator of a parameter © if, for any positive number e,

lim Pr[| ©, ,<el=1 .

n—oo

- efficiency: An estimator that has minimum MSE among all possible unbiased
estimators is called an efficient estimator.

- sufficiency: Let a sample X;, X, ..., X, be drawn randomly from a population
having a probability distribution with unknown parameter © . Then the
statistic T=f(X;, X5, ..., X;) is said to be sufficient for estimating © if the

distribution of X;, X, ..., X, conditional to the statistic T is independent of
o .
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* Moment Generation Function
M,(t) =E [e¥]
:f e™ f (x)dx for continuous r.v.
- If the m.g.f exists, its m-th derivative at the origin (t=0) is the m-th order

central moment of X.

dM,(0)
a M
d*M(0)
oAz e
d"M,(0) _

- sample moments

M, =0

M,=M,— X*
M,=M,—3XM,+2 X°
etc.

where M, is the r-th sample moment about the origin

M; is the r-th sample moment about the sample mean.

((example))

_11_
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< Parameter Estimation >

* Precision/Accuracy
- precision: the ability of an estimator to provide repeated estimates that are close
together.
((note)) 1. due to random error
2. measured with the variance of a estimator
- accuracy: precision + unbiasedness

((note)) measured with the MSE = variance + bias®

* Properties of Estimators

- unbiasedness: A point estimator © is an unbiased estimator of the population
parameter © if E[B8]=6 . If the estimator is biased,
the bias = E[B]—6 .

consistency: An estimator ©, , based on a sample size n, is a consistent

estimator of a parameter © if, for any positive number e,

lim Pr[| ®, . <el=1 .

n—oo

efficiency: An estimator that has minimum MSE among all possible unbiased

estimators is called an efficient estimator.

sufficiency: Let a sample X, Xs, ..., X, be drawn randomly from a population
having a probability distribution with unknown parameter © . Then the
statistic T=f(X,, Xy, ..., X,) is said to be sufficient for estimating © if the

distribution of X,, X5, ..., X, conditional to the statistic T is independent of
o .

_12_
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* Method of Moments Estimation
- estimates population parameters using the moments of samples

- equates the first m parameters of the distribution to the first m sample moments

- computationally simple

((example))

e Maximum likelihood Estimation

- The best value of a parameter of a probability distribution should be that value

which maximizes the likelihood or joint probability of occurrence of the observed

sample

- likelihood function

- log likelihood function

((example))
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51 A REVIEW OF TERMS RELATED
T BANDOM SAMPLING

A propudsiions comsists of all conceivable abservations of o proces ar alinlats
of o composieal (soch 2 the dessdty of n batch of coscrece Haced in Tabls B 102) A
populaticn may consist of elemams st do nod exiast {in g physicsl sensel; i is then
aaid fo be conceptunl, A sesmgele, such o the values listed in Table BE.L L is 8 sulset
of a populaticn. A rardors sarmple =5 ane DUl is represeatative of the popualation, Loy
satadlowi pariable i o real-volued function defined on o snmple spoce. Whedher o mn-
dom variable is continoeus or discrsie depemids on bosy the ssmple space ks delined.

Ifthe papalation is known orassamed 1o have s dasiribution such s the mormal
diatribuwison discusted o Clhopier 4 bot ilse value of 8 perameter @ is ankoown, then
e need i rancons semple ol observations, sop Xy, Xg, .0 Ko ol siee o, b estimoats
&, The joint distribustins of Xy X, o Xy ix koown s the seapiieg afistribaiog of
Xy Xa .., X Ay Funetion of the abservations Ehat is guantifiabis ancl does ns con-
tain ney nakoown parametes is calbed @ sheishie. A stadisthe |5 a ndom vaciahie that
gives us & means of entimetion. We can determime 8 single pamber 1o represent & ar
s can determine bwo numbers_ which imclucle § within their mags ol o given level af
probabilisy. Thess procedures ars discussed in the neal two sections. 18 ks als) pmpar-
Lot e distanpuishs borween an earirelor i on e srirasse. The Acst is the mube or method
uf esaimation; fov exsnple, the samiple mehn X i5 0 poin estimaior of g, the populn-
tion mesn; the seonned bs the valoe tha the estimacor vialds in 8 partbcular applicatkon.

22 PROPFERTIES OF ESTIMATIMES

A smportos el of stansncal Inferencs 16 the esumanon of perameiars. Alwemative
Lyjpres af eatiootors, which hwwve propaerties that are maore or less desirsble than otbers,
can hie ased for such & purpose, as discussed mdtially in Subsection 3223, In iiis
section we summnarbes and exearplily these pooperises,

521 Unbinsccdness

Given o sample of observntbons, our shjective here ds to eslimote the valoe of n po-
rameler B, The observations are candom varinhbes, sy, X, X bence dn edld-
maobe of the passmeter ohinbned froos thens, wiikoh is a8 gtetsssic and o fonction of the
tibservations, 8 slso o pandom varishie, In most cilses, siecha seatintic czn diffar con-
Abderabdy Genen e e voalue ol he purameter regadbess of the nesthod of estinariion,
However, we seek to find an esmmator that will, on sverape (laal is, afler repenied
samgifing), give satsloctory resolis. Thal ik, the estimator will produce stadiatics dal
are distrinimed secoding w0 oa certhin Les. This law is the sampling disirilsotion m
which we refersed sarlier Some types of these sampling distnbotions will be con-
pideredl in thix chopies, The law mest linve some desarabile adribuies O te esiamaton
1= 10 b pocepeable for our parpose. Por instance, Ui meean valee of dus dastipibution
im A then U estimator s the proparty of unliosedness.

'dlnm fremaly; —'Th'rnn:rrqt in o cssleratiom Xy, Xy, . . Nao ol tandoom sowipibdes 16Eoe Gmmea (e
il b weills l'hl'r L0 AE the pxiiil demtaify Ty welilic e .o akud = il b e foled
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Definitton and propedfics. A poing esthmatog # i an unbissed estisnaior of the pogpu-
Latinn paramesnr @ 1 1} = & I ihe estimnion s beased, te bias — 087 — 8.

Exangsde 5.0, Memn and yarcismee al the sosple mean, s be shown thes ibe
semipde mean N and the sample varinnes

e W E i

are-uphinsed estimator of el oF
Tl fivet result fodlows immediaiely by faking e pectations of o revioe samplie
ol wime o,

X - %n:.:'. Xy s XL,
which yiehls
1 1
E{X) = SOERED = —fmp) = g

P e vasiance fus in g, {1 260 amd (12,73

E[57} = —E[E_E#. ifa’i - ﬁﬁ[iﬂﬂ — = mE— u]‘J
=T

IZ.L’,.—]J.!I’I—J!E X - J.ur'”. ﬂ_] lgl—nwlﬁ_‘”

=k [...,a_,:] =]

Vlalartmnately, muny estimators are hizsed bul have other desimble propesises.
Metlvsids ol currecting or reducing the bims, soch as e jackknife and booostrag, were
dizmssed in Subsection 320 Tisere are alss ihree sher properties that our fdeal
pstimater sloule v, These ane omsisbonoy, efficiency, and sulliclency. concepes
mntrodlisced by the British stotistician Fisher.

522 Consistency
A comadxienl extimador of o parameder & slamintics (hal converge 1w &, in
terms ol profabilite. Tlhus we can diline consvency as follews:
Frefimitirn mnal An chimetur .. based on e samphe sk A, koA comisiiie
estimmtor off o paramoler & (F, Toe any posilive nainber o,

!uallrnﬁ.. W= a]= I (5.2 1)

Chne Fistde, Bewesyer, sl sometbmes s unbinsed estimaion ey not s comsds-
1ol Thiln cade s allugirated s follows:

Example 5.2 Unbbascdoes aml comsistency., A soople exaopls of o consbacnt

esiimaler that does pod necessarily have Ihu-phmi.l:l;' il vum Is lonnld je Sul-
muzqmwgmmnm & yarinpes o~ The

_14_
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estimators are written as random variables, firstly by

a0 e .
L e X — X0,
[ )

fy —
and secondly by

[ T )
=

X¥.

As previously noted, the second equation gives the snbiased estimiator of the variance,
However, 1t can be shown (hy considering the entire population as implied by the orig-
inal Fisher definition of consistency ) that the Arst equation gives i consislent estimator,
Because inconsistency in this case is not considered 1o be a serious shorteoming., we
prefer o use the second equation,

5.2.3 Minimum Variance

In practice we seldom have more than one sample, but il we have a number of sam-
ples with high variablity, we may lind that a single statistic that gives an estimate
of a population parameter f s quite different from the true value even if the esti-
mator is unbiased. So we must seck an estimator that is also comparatively low in
variance. Among unbiased estimators, the one with the smallest variance is called
the nrininnenn variance wnbioased estinaten

Furthermore, it has been found that some types of estimators have a bound
that is exceeded by the variance. This type is known as a4 minimum varance bound
tmvb) estimator. The lower bound is found by what is known as the Cramer-Rao
inequality.” Hence we obtain the following relationship:

lin L

= @B — f
T gt — fol

{5.2.2)
where In L is the log-likelihood function discussed in Section 3.2, (@) and f(#) are
functions independent of the sample of observations, and (f#) is in a simple form
such as f or 8, which is relevant to the sampling distribution. Thus if an eguation
of the form of Eq. (5.2.2) can be obluined, i a2 minimum variance bound estimator
of F{E). It can also be shown from Eyg. (5.2.2) that

Varl@] = £y el
so tha if F(6) = f, '\-"urilf}| = 1./ g(f)

(5.2.3)

Drefinition and propecties, A minimum varianee nnbiased estingtor is the estimi-
tor with the smallest variance ot of all unbiased estimators,
If the derivative of the log-likelihood function Inf. can be pu in the formy
A ln L ,
iyl " =
¥ gOENH — ok
then @ is 8 sminimeen pavianee Booeed extimeater of SR, with variance

Varl#] — () gl

“See, for example, Stuart and Ord (1991, pp, 6146163,
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Example 5.3. Minimum variance bound of the location parameter and the square
of the scale parameter of the normal distribution. The pdt of the normal distribution
is given by
1 I {_, u ] =
LR e AN |~ [ Tor RSN S N
w2 hidmw Pl 2 L
The estimator of the square of the scale parameter b is the variunce as seen from
Example 3.23. Also.
A lm L o
iy i Sl st
Hur ht A
Thus from Bg. (3.2.2), fit) = fla) = o ond X is an mivb estuater of o wilh vanance
&, from Bg. (5.2.3) ] . . I .
To estimate the vananees statsae of b, we use the estimator for ¢ just given.
From Example 3.23 and Bq. (5.2.2), with f{#) = () = b

L] - 3 M . 1
Sl _ _n NI % —RF | ml¥=bee w82
i b b T
Then from Eq, (5.2.2} we o tha
“
5= 1 X, - B
Fl‘_l'

i an mvb estimator of &2, 15 varianée is 26° ‘0 from Eqg. (5.2.3)

5.2.4 Efficiency

The term efficiency is used as a relative measure of the variance of the sampling dis-
tribution. with the efficiency increasing s the variance decreases. One may search
unbigsed estimators to find the one with the smallest variance and call it the most
efficient. It seeimns, however. desirable to combine the properties of unbiasedness and
minimum variance because an estimator can have minimum variance but still be bi-
ased, albeit to & small degree. This combination can be accomplished by means of
the mean square error (mse) criterion, Thus il A is an estimator of #, the mse is

7] = ElA — ELAD — (& — ELADP]
= ElA — ELAD] + (6 — ELA]?
= War[A] + (hias)”.

EltAa

(Note that the terms of the cross-product, 2E[(A — E|AIKE[A] — ). sum o 2ero.)
Thus the estimator becomes more efficient as the mse decreases,

Definition and properfies, An estimator hat s miniimum menn squine error among
all possible unbinsed extimators is called an elficicm estimator, The mean Fguiare error
of an estimator, which i equivalent 1o the swm of its varamce and the square Oflll!i baus,
cun be used s o relative measure of efficiency wihen compuring Pwo O more estimatars.

Example 5.4. Retative efficiencics of the estimators of the mean of concrete den-
sities, From Tables 1.2.1 and 1.2.2, the mean of the densities of 4l concrete test cubes
is 2445 kg/m'. However. it we had only theyfirst five test cubes, the estimated mean

_15_
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would be 2431 ka/m®, Both estimators are unbissed as seen in Example 5,1, Henve the
relative efficiencies. as given by the ratio of the mse values, are equivalent to the ratio
of the varances: that is,

edran 1

i s ]
This result merely confirms what we already knows tha is, the large-sample estimator
for the mean is more efficient than that based on o smaller sample, Also. efficiency iy
mversely proportional o the sample size n.

The outcome of Example 5.4 notwithstanding, the minimization of variunce
will generally give different results from the minimization of mse.

5.2.5 Sufficiency

Properties such as unbiasadness. consistency, and minimum mean square error guide
us 1o select the most suitable estimators, but the discussion is not complete without
an explanation of sufficiency. A sifficient extimator gives as much information as
possible about a4 sample of observations so that oo additional information can be
conveyed by any other estimator. This can also be defined more formally as follows;

Definition and properties. Levasample X, X, 0 X, be drawn randomly foom a poep-
ulation having a probability distribution with unknown parameter 8. Then the stististic
T o= X N3 (o) is said to be sullicient Tor estimating & if the distribution of
Xy Xao oo, Xy conditional o the statistic 1 is independent of #,

We can see, for example, that the median, taken as a measure of mean density or
central tendency as discussed in Subsection 1.2,1. does not contain all the information
in a sample. The median is the middle value of the sample: it any other value is
changed, the mean changes but the median is unaltered. It is therefore not a sufficient
statistic for the purpose, unlike the mean which is discussed in Example 5.5.

Example 5.5. Normal and uniform variates. From Tuble 12,2, the mean and stun-
dard deviation of the compressive strengths are 660, 14 and 502 N/mm® . We also made
the hypothesis (in Example 4.28) that the concrete strengths are normally distributed
twhich is subject to veritication kter in this chapter but is contirmed by numerous other
stuchiesy. If the sample variance is the true value of the variunce o, then the sample
mean X = (1 a) 2000 A s o sufficient statistic for the location parameter of the nor-
mul distribuiion. which is the population mean g, Cn the other hand, if the sample
mican is the true value of g, the sumple varignce 7 = (1 w) 270 (X — XF is a suffi-
wient statistic for the square ol the scale purameter of the normal distribution, which is
= gr*, In practice, both parameters are unknown, However, it X and $7 are cansidered
Jointly, these two statistics are jointly sufficient for pand o, This is because no other
estimators cin provide any more infofmation for the population mean and varbnce,

Alsa consider a uniform (0, #) disiribution. Let us draw o andom sample
Ko Xz, .. o0 Xy from this distribution. Then for estimating &, X = mas]X,, Xz ...,
X, ] is sufficient.®

"W present resulis here without prool. See, for esample, Cisella and Berger | 1990, P 252-254),
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Example 5.6. Poisson variates. Suppose X, Xo ., X, is o random humrr_h: ol Pois-
son {A) random variables, Then it can be shown that T = 207 X, is o sufficient statis-
tic for A,

The joint sampling pdf of the variate is

0 e o I !ﬁl.ll'z' L _1',-.']'|
2

M,

The sum of o Poisson (A) variables is Poisson (eA) distributed. Thus the pdi of

Tis ple | Xy = (mAYe ™ M lore =012, )
If 85, = 1, the comditional pdf of the summed sample values is

. e i = A0 prh .“_',.
(19 JTHE PSSR 58 (Ay e ma g
F i
WM,

Because the result does not depend on AL T is a sufficient statistic for A,

526 Summary of Section 5.2

This formal sumumary of the desirable properties of point estimators discussed orig-
inally in Section 3.2 is intended o provide insight te the various methods of estima-
tion, These were discussed initially in Chaprer 3 and used in Chapter 4, They will
be applied in one form or ather throughout the book.

53 ESTIMATION OF CONFIDENCE
INTERVALS

In Chapters 3 and 4 we discussed and applicd methods of r.:s:imulliug the values of
one or more paramaters of a population: in Section 5.2 we Exu.rmm:d- muore closely
the properties of the resulting estimators, We have seen that point estimates can be
emonecus: in fact the probability thar an estimate is equal w0 an unknown param-
eter is zero. The resulting uncertainty can be guantified by the relative \-'u.rinncu.-..-'.
or mean square errors of the estimators, The next step of inference is mter--_:ﬂ esti-
mation; here we determine two numbers, say. @ and &, that are expected o include
within their range an unknown parameter @ in a specified perceniage of cases uﬁler
repeated experimentation under identical conditions. That is. in place ul’_unc statis-
tie that estimates #, we find a range specified by two statistics, which includes it
at u given level of probability. The end points a and I of this range are known as
conficlence limirs, and the interval (e By is known as the confidence interval. We
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| Supplementary Exercises (31-38)

31. An estimator 8 is said to be consistent if for any equality from Exercise 43 of Chepter 3. (Hint

n.

>0, P(|6 — 8] = & — Dasn—» = Thatis, fis The inequality can be rewritten in the form
nmﬁmﬂ.ummmpulm.imuu Bl - |z 6 = oie®
and less likely that § will be further than efromthe .

true value of . Show that X is & corsistent estima- Now identify ¥ with X.)

tor of ;2 when o? < o by using Chebyshev's in- - \

qu_ >e)=P¥-use) - < —g)=] j?_‘#? - 5 -

. ﬂl ‘) H c}-{-P(f " ﬂs) .a'.r'Jn afJ?_t)+P[ﬂ*f4§ a‘f\‘;}
J— = 1 -1 nslo 1 -2

=f{IZ}T“]+f{Z < dﬂ.ﬂ']! L-‘rEd # dz + l —JEC ¢ 2&

As n—> %0, both integrals — 0 malimrﬁt"t“n&-ﬂ,

chebyshev's inequlity ((hann))p.63

Pr(| ¥—py| =kay) < :

= Pr(| ¥=py| 2e) = —

if Y — z, then By === fi, andaﬁ,-—-::%:

—1 s
Pr(| =— =)= —
(1z—pgl| z¢) =

n— o

Pr( ) =0

_17_
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« Method of Moments Estimation

- estimates population parameters using the moments of samples

Statistical Hydrology
Dr. Kim, Young-Oh

Lecture
Advanced Hydrolog
Dr. Kim, Young-Oh

- equates the first m parameters of the distribution to the first m sample

moments

- computationally simple

((example))

« Maximum likelihood Estimation

- The best value of a parameter of a probability distribution should be that

value which maximizes the likelihood or joint probability of occurrence of

the observed sample
- likelihood function

- log likelihood function

((example))
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value of the quantity to be estimated. The sample mean is an unbiased esti-
mate of yx, because

a L B 1 <&
E[] = E| - > X,J — 2 EIX] = sx (3.38)
The estimator »3 is a biased estimator of g% where [1]
Ef]="1=—1a2 (3.39)

n

Hence if many samples of size » are taken in a simulation experiment and the
resulting values of v} are averaged, the average will approach (n — 1)oi/n
and not % as might be desired. For this reason, the unbiased estimate of the
variance

53 = nry (3.40)

T n—1
is often used instead of ¢}. There is relatively little difference between the
two estimators for moderate size n. Both, however, generally produce biased
estimates of the standard deviation oy [35], although the bias decreases with
increasing n.

The second important statistic often used to assess the accuracy of an
estimator @ is its variance Var(f), which equals E{(§ — E[f])?}. For the mean
of a set of independent observations, the variance of the sample mean is
given by

Var(s) = "_; (3.41)

It is common to call o4/, n the standard error of X rather than its standard
deviation.

The bias measures the difference between the average value of an estimator
and the quantity to be estimated. The variance measures the spread or width
of the estimator’s distribution. Both contribute to the amount by which an
estimate deviates from the quantity to be estimated. These two errors are
often combined into the mean square error, defined as

MSE(#) = E[(@ — 8)*] = {E[f] — 6} + E((6 — E[6)?]
= [Bias)? + Var(§)

where Bias is £(f) — 6. The MSE is the expected or average squared devia-
tion of the estimator from the true value of the parameter. It is a convenient
measure of how closely # approximates 6.

Estimation of the coefficient of skewness y, provides a good example of
the use of the MSE for evaluating the total deviation of an estimate from the
true population value. The sample estimate $, of y, is often biased, has a
large variance, and was shown by Kirby [21] to be bounded so that

(3.42)

1Px] < m”_—_ffm (3.43)

_19_
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where n is the sample size. The bounds do not depend on the true skew y,.
The bias and variance of §, depend on the sample size and the actual distribu-
tion of X. Table 3.2 contains the expected value and standard deviation of
#» when X has either a normal distribution, for which y, = 0, or a gamma
distribution with y, — 0.25, 0.50, 1.00, 2.00, or 3.00.

TABLE 3.2. Sampling Properties of Estimate of Coefficient
of Skewness

Expected Value of §x

SAMPLE SIZE

Distribution af X i 20 50 &0
Normal yx =0 0.00 0.00 0.00 0.00
Gamma yx = 0.25 0.13 0.18 0.22 0.23

rx = 0.50 0.26 0.36 0.44 0.46
yr = 1.00 0.51 0.70 0.85 0.91
¥y = 2.00 0.97 1.32 1.63 1.74
rx = 3.00 1.34 1.52 225 2.49
Upper bound 2.67 4.13 6.86 8.78
on skew
Standard Deviation of #y
I SAMPLE SIZE

Distriburion of X io 20 50 80
Normal yx =0 0.58 0.47 0.33 0.26
Gamma 7y = 0.25 0.58 0.48 0.34 0.27

yx = 0.50 0.58 0.49 0.36 0.30
rx = 1.00 0.59 0.53 0.43 0.37
yx = 2.00 0.61 0.63 0.60 0.56
¥x = 3.00 0.62 0.70 0.75 0.76

Source: J. R. Wallis, N. C. Matalas, and J. R. Slack, Jusr a
Moment! Appendix, Mational Technical Information Service,
PB-231 816, Springfield, Va., 1974.

To illustrate the magnitude of these errors, consider the mean square error
of $, calculated from a sample of size 50 when X has a gamma distribution
with y, = 0.50, a reasonable value for annual streamflows. The expected
value of $, is 0.44; its variance equals (0.36)?, its standard deviation squared.

Using equation 3.42, the mean square error of §, is

MSE(#,) — (0.44 — 0.50)* -+ (0.36)* = 0.0036 - 0.1296

= (.133

_20_
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An unbiased estimate of y, is (0.50/0.44)7,; the mean square error of this
unbiased estimate of p, is

0.5095\ 0.50 .
MSE _{_ﬁ%_) — (0.50 — 0.50)? [ {n 35}] - 0.167  (3.45)

The mean square error of the unbiased estimate of y, is larger than the mean
square error of the biased estimate. Unbiasing $, results in a larger mean
square error for all the cases listed in Table 3.2 except for the normal distribu-
tion and the gamma distribution with y; = 3.00.

As shown here for the skew coefficient, biased estimators often have
smaller mean square errors than unbiased estimators:; because the mean
square error measures the total average deviation of an estimator from the
quantity being estimated, this result demonstrates that the strict or unques-
tioning use of unbiased estimators is not advisable. Additional information
on the sampling distribution of quantiles and moments is contained in
Appendix 3A.

3.3 DISTRIBUTIONS OF RANDOM
EVENTS

A frequent task in water resources planning is the development of a model
of some probabilistic or stochastic phenomena such as streamflows, flood
flows, rainfall, temperatures, or evaporation. This generally requires that one
fit a probability distribution function to a set of observed values of the
random variable. Sometimes, one’s immediate objective is to estimate a par-
ticular quantile of the distribution, such as the 100-year flood or the 7-day,
10-year low flow. Then the fitted distribution will supply an estimate of this
quantity. In a stochastic simulation model, fitted distributions are used to
generate possible values of the random variable in question.

This section provides a brief introduction to the techniques useful for
estimating the parameters of a probability distribution function and deter-
mining if the fitted distribution provides a reasonable or acceptable model of
the data. Sections are also included on families of distributions based on the
normal and gamma distributions. These two families have found frequent use
in water resource planning.

3.3.1 Parameter Estimation
and Model Adequacy

Given a set of observations to which a distribution is to be fit, one first
selects a distribution function to serve as a model of the distribution of the
data. The choice of distribution may be based on experience with data of
that type, some understanding of the mechanisms giving rise to the data,
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