Hydrologic Time Series Analysis
Lecture 1
Dr. Young-Oh Kim

< INTRODUCTION >

» Deterministic vs. Stochastic
- A variable X is deterministic if the output of X can be predicted with certainty
- A variable X is stochastic (= random) if the output of X cannot be predicted with

certainty. X is governed by laws of probability.

» Time Series (or Process)
: sequential observations (= realizations) of a (deterministic or stochastic) variable X,

i.e. X, Xa, ..., where the subscript represents intervals of time.

« Hydrologic Time Series
: discrete time series of continuous hydrologic variables such as precipitation and

runoff

« Types of Hydrologic Time Series

(1) single vs. multiple (= univariate vs multivariate)

(2) correlated vs. uncorrelated (cf dependent vs independent)
- autocorrelated = serially correlated = temporally correlated = correlated in time
- crosscorrelated = spatially correlated = correlated in space

(3) stationary vs. nonstationary
: a hydrologic time series is stationary if its statistical parameters such as the

mean and variance remain constant through time.

- first order stationary
- second order stationary

(4) others: intermittent time series, counting time series, etc.

« Components of Time Series (see handouts)
X=T I+ 2 +5
where T = trend (gradual change)
I = intervention (sudden change)
P
S

periodicity (astronomic cycles)
stochasticity (ARMA model applied here)

I



Classification of Hydrologic Series.
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TYPES OF ASTRONOMICAL PERIODICITIES OF THE EARTH
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< Statistical Properties of Time Series >

* Overall Sample Statistics
- sample autocorrelation

(i) correlogram

(i1) sample covariance

(i) unbiased estimator

— observed annual statistics

(1) coefficient of variation

(i1) skewness coefficient

(iii) lag-1 autocorrelation

* Seasonal Sample Statistics

— seasonal autocorrelation

- observed seasonal statistics

(1) coefficient of variation

(i) others

Lecture 3&4
Hydrologic Time Series Analysis



Lecture 3&4
Hydrologic Time Series Analysis

* Drought-related Statistics

- resiliency

= vulnerability

— reliability

» Storage-related Statistics

- rescaled range

— Hurst coefficient (1951)

- Hurst phenomenon

: the discrepancy between theoretical result (h = 1/2) and Hurst’s empirical finding (h = 0.73)

- possible reasons of Hurst phenomenon
(1) sampling variability
(ii) nonstationality

(111) long memory



The mean monthly flow for the zmnnmm uzmnnm is
101.1 x 10%°m3; therefore, a 75% draft is 79.6 x 10°m3/month,

The first few months of the nm~n:~mnwon are shown in
Table 4-7. The draft has been subtracted from each aoanrww
flow and the residuals accumulated. The first summed nmmpa¢mﬂ
value is itself a peak (designated :Hv. because the succeeding
values decrease. The next peak is shown as :N. The mnonmmm
required to cover this flow sequence is H; - T, where A— is

the lowest cumulative residual value between the peaks, i.e.,
0 - (-209.0) = 209 x 10°m3.

After traversing through the historical data twice, the
successive H-T values are found to be:

209, 957, 960, 242, 1032, 227, 287, 104, 204, 220, 194,
197, 157, 16, 414, 323, 283, 682, 1107, 957, 960, 242,
10322275287 104; 204, 220, 194; 157, 1b6; &4, 323,
283, 682 (x 105m3).

The required storage capacity is the largest value, say,
1110 x 10%m3.

This example shows the importance of running the
historical flows through twice. If only one sequence had been
used, the maximum storage capacity would not have been found.

4-21 HURST'S PROCEDURE

Hurst was concerned with storages on the wwqmn.zwwm. It
was an wunusual problem in that he was dealing with large
equatorial lakes where a big increase in volume could be
obtained by small structures at lake Oﬁnwmnm.. no:mmncmzﬁww.
storage sizes capable of providing very :mm: wmmzwmwwo:
(approaching 100%) were being examined. Hurst's work : s
1956, 1965) is concerned more with mathematical experiment
rather than theory, but from it, he was able to formulate a
general solution to the reservoir capacity-yield problem.

From an analysis of some 700 mnatural nwamlmm«MWm
including streamflows, rainfalls, temperatures, mnaomvsmﬂwo
pressures, tree rings and lake varves, Hurst found nrmm the
range could be related to the length of record as follows:

£ 75

7 RIs = (N/2)K J (4-42)
where R = range defined as the sum of the cumulative
departures from the mean,
s = standard deviation of the time-series data,
N = length of the time-series, and

Rn\x ,\.w....;.. W& \(Q.NL.& ﬁ\@%rhb \Nu__cm\. and \m®wd\A r

K = exponent, and was found by Hurst to have a mean
value of 0.72 and a standard deviation of 0.09.

As an aside it should be noted that for a purely random

time-series process K tends towards 0.2 (Feller, 1951). ‘The

fact that natural time-series yield on the average values of

K__greater than 0.5 is known as the Hurst phenomenon; this
aspect is considered again in Sec. 6-17.

In developing his general solution to the storage-yield

problem, Hurst (1951) computed K and the storage size to
"guarantee” a uniform draft less than mean X using a mass
curve analysis for records of natural phenomena. The

generalized storage relations (for all observations) are:

(i) for draft = mean (%)
C..= R (4-43)
(ii) for draft < mean
log,q(C/R) = -0.08 - 1.05 (x - B)/s (4-44)
or C/R = 0.94- 0.96 /[(%X - B)/s] (4-45)

where C = required reservoir capacity,
R = range defined by Fig. &5,
B = draft parameter which is defined as
draft = (x-B)/s, (4-46)
s = standard deviation of annual flows, and
X = mean annual flow.

Examining these relationships using only Hurst's river
flow data, Joy (1970) found that the generalized curves were
not lines of best fit and that the results exhibited large
scatter as shown in Fig. 4-28., Hurst admitted the generalized
nature of his results in replying to discussions by Chow
(Hurst, 1951, p. 800). A further limitation of the procedure
is that only the rank | values of storage are considered and
no other estimates of risk of storage failure can be
estimated. Nevertheless, Hurst's work is of monumental
significance because of the importance of the value of K in
stochastic data generation models (Sec. 6-17).

Fathy and Shukry

Fathy and Shukry (1956) agreed with Hurst that for 100%
regulation the equivalent mass curve reservoir capacity was
given by Hurst's range R. But for lower drafts they dis—
agreed, and developed their own method. However, as shown by
Joy (1970) their technique is no more than a mathematical
representation of the minimum flow approach of Waitt (1945)
given in Sec. 4-8.

\retof _A



LONG MEMORY MODELS

6-16 BACKGROUND

Stochastic or synthetic streamflows have become widely
used in the design and operation of water resources systems.
Models for stochastically generating streamflows can be
broadly classified into short- and long-memory types. Short
memory (or high mnmacm:nwu|soam~m are those of the Markovian

type in which the Hurst exponent (h) in Eq. 6-77 approaches

1/2 as n ‘An:m nunber of items in the time series) becomes
large.

= (0.5 ;b (6-77)

n |
I

where R = range of cumulative departures from the mean,
§ = standard deviation of flows, and
n number of items of data.

|

]

Short memory models have been criticized for their inability
to simulate the relatively high values of the Hurst coef-
ficient (say h = 0.7) observed in long time sequences of
streamflow.

As the magnitude of h is related to the size of storage

required for regulation of streamflow, the use of short memory
models may lead to underestimation of storage capacities when_
used in reservoir design. In comparing storage estimates
based on Markovian models and fast fractional Gaussian noise
models that preserve h, Wallis and Matalas (1972) observed
that differences occurred only for drafts greater than 80%.
More recent studies by Klemes et al. (1981) of the reliability
of reservoir systems indicate that, except for very large
storages and high drafts, the effect of the Hurst coefficient
is not of practical importance particularly when considered
in terms of other potential errors in the hydrology (see
Fig. 6-4). We have noted in Sec. 2-3 that errors in storage
estimates would be rarely less than 25 percent. Hence, it is
reasonable that the conclusion reached by Klemes et al. (1981)
is realistic, namely that “... the use_of long—memory models
will, in principle, remain equivalent to the use of a small
safety Ffactor in the intrinsically inaccurate estimate of

reservoir reliability performance".

6-17 PRESERVING h IN TIME SERIES MODELS

For Markov type models, as n in Eq. 6-77 becomes large,

ho=+ 1/2, Thus more complex time series models have been
developed to preserve h at values greater than 1/2 along with
the other  historical parameters. These include the

autoregressive integrated moving average (ARIMA) model

(

(0'Connell, 1971), fractional Gaussian noise process (fGn),

particularly fast fractional Gaussian noise (ffGn)
(Mandelbrot, 1972) and the Broken Line (BL) model
(Mejia et al., 1972). For practical use, we would recommend

the latter model.

An initial problem with respect to preserving h in
Eq. 6-73 relates to estimating its value Ffrom historical
data. Four methods have been proposed:

(i) Hurst's estimate K (Hurst, 1951) (Eq. 2-25);

(ii) Mandelbrot and Wallis (1969) H. (Two versions F Hurst
and G Hurst are given in Wallis and Matalas, 1970). The
usual method is G and is denoted by H.);

(1ii) Comide's estimate YH (Gomide, 1975);
(iv) Maximum likelihood estimate H (McLeod and Hipel, 1978).

Srikanthan (1979) computed the above four estimates for
16 Australian rivers and observed wide variations. Results
for four rivers are given in Table 6-6. From the analysis he
concluded that YH and H were unsatisfactory procedures and
adopted K because it is less variable than H.

Furthermore Srikanthan (1979) carried out a very
extensive study of the three models - ARIMA, ffGn and BL - and
concluded that the BL model produced the most satisfactory
synthetic streamflows. The ARIMA model was the least
satisfactory of the three. Some details of this work are
published in Srikanthan and McMahon (1978a, b, c). Sen (1977)
developed a theoretical procedure for evaluating h 1in small
samples and concluded that both H and K are biased estimators
of h. He also found that H has the smaller bias of the two
estimators.

Table 6—-6 Estimates of Hurst coefficient

River Hurst coefficient
(Australian national -
stream gauge number) C, r K H YH H
South Johnston 0.38 -0.10 0.49 0.37 0.34 0.26
(112101)

South Esk (318001) 0.47  0.01 0.60 0.52 0.43 0.45

Peel (419004) 0.82 0.24 0.71 0.78 0.53 0.65
Wide Bay Creek 1.26 0.28 0.77 0.81 0.58 0.66
(138002)

(Extracted from Srikanthan, 1979) A
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< Testing & Removing Nonstationalities >




* Testing Trends

(1)

(ii)

Parametric Test: Polynomial Fitting Technique

“testing a linear trend if i =1

hypothesis testing for linear trends

Nonparametric Test: Mann-Kendall Test

* Testing Shifts

(i)

(i1)

Parametric Test

split the original sample X

hypothesis testing

Nonparametric Test: Mann-Whitney Test

Lecture 3&4
Hydrologic Time Series Analysis
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) » Hypothesis Test for Differences in Means When the Variances are Not Different

- assumptions
(1) Xi, X2 ~ normal
(i) 01 = 0y
(iii) 0, and o, are unknown
- hypothesis
Ho: Iy = 12
Ha: 1i#
- test statistic

-_— + Hypothesis Test for Differences in Means When the Variances are Not Same

- assumptions
(i) Xy, X2 ~ normal
(i) 0, # 0,
(i) 0; and 0, are unknown
- hypothesis
Ho: i = 12
Ho: = 1
- test statistic
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* Hypothesis Test for Differences in Variances
- assumptions: X; ~ Ni(uj, 01) and X, ~ Na(l, 02)
- hypothesis
Ho: 0/® = 0,2
H,: 012;*5 022

- test statistic

* Hypothesis Test for Goodness of Fit
- Chi-Square Test
- the Kolmogorov-Smirnov Test
- the Filliben test
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< Normality Assumption>

» Testing Normality

* Box & Cox Transformation

* 3 LN Transformation



* Removing Trends & Shifts

» Removing Seasonality

— Seasonal Standardization

— Fourier Series

(1) mean square deviation

(i) cumulative periodogram (P; vs 1)

Lecture 3&4
Hydrologic Time Series Analysis



‘ﬁrmuﬁo”oﬁ ﬂ vs. 1 is called the cumulative periodogram.

A graphical criteria using the cumulative periodogram for Haor -
obtaining the significant harmonics is given below. P, ®/ -

o080} =
e The criteria is based on the concept that the 4m3m:¥m of % _
P, versus i} is composed of the two distinct parts: (1) a _=
‘periodic part of a fast increase of P, with i and A(2) ‘a osal A
sampling part of a slow increase op:vm with i. Two ap- .

1]

1wo ap- i 3
]
|

proaches are feasible for determining those two parts. nm_ﬂmﬂb oaol

the two parts are approximated by smooth curves that inter-
sect at a point, which corresponds to the critical harmonic '
h* that gives the number of significant harmonics. The ozof )
~second)approach is to assume approximate mathematical models !

of "these two parts, o estimate their parameters and to find

mmﬂml.lﬂ_mm.-.mmnao: of two equations. The ordered harmonic o246 sttl s
nearest to the intersecfion point is then the critical harmonic.

¢ In the second approach, “when Nc H. of Eq. (3.25) is an
independent series, the sampling part of the cumulative the periodic part, for both the observed (1) and
periodogram, as referred above, is a straight line, whereas the fitted (3), and the sampling variation part,

. when Zg 1 is a linearly dependent series, the sampling part also for both the observed (2) and the fitted

/mm a curve. (4), in case of a periodic series with an inde-
pendent stochastic component.

Figure 3.1. Separation of the cumulative periodogram into

Figures 3.1 and 3.2 show the intersection point A for a
periodic series with either an independent or a dependnet
stochastic component, respectively. The value of P. at
point A is determined by the sample size, while the valhe of
i is much less affected by the sample size and sampling
variation. Difficulties arise when the point A for a dependent
stochastic component is in such a position that both curves |
(3) and (4) of Fig. 3.2 come out to be nearly one continuous 080
curve, implying that the separation of the two parts of the
cumulative periodogram becomes uncertain. Examples show
that this case is less common in practice. “re

Figures 3.3 through 3.7 show the cumulative periodograms

for five statistical characteristics: mean Yo standard devia- i

tion s_, and the first, second and third serial correlation
ooﬁmnmmam. £y o Ty o and g o for five discrete series:

(1) 69 years of daily precipitation at Fort Collins, Colorado,

from 1898 to 1966, Fig. 3.3; (2) 70 years of 3-day precipita- T w2

tion at Austin, Texas, from 1898 to 1967, Fig. 3.4; (3) 18 or (w=1)/2

years of 7-day precipitation at Ames, Iowa, from 1949 to

1966, Fig. 3.5; (4) 40 years of daily discharge of the Tioga ; ) . )
River near Erwins, New York, from 1921 to 1960, Fig. 3.6; Figure 3.2. Separation of the cumulative periodogram into
and (5) 37 years of 3-day discharge of the McKenzie River at the periodic ?.:.P ocm.ﬁ.wmu (1) and fitted (3),
McKenzie Bridge, Oregon, from 1924 to 1960, Fig. 3.7. The and H.rm mmBu_E.m variation part, .ovmmwwma A.S
harmonic i ranges from 1 to 182 for daily series, from 1 to and fitted (4), in case of a periodic series with
60 for three-day series, and from 1 to 26 for 7-day series. an autoregressive stochastic component.

Because other precipitation and river gaging stations for

( % ( - (




Hydrologic Time Series Analysis
Dr. Young-Oh Kim

< Forecasting and Generation >

* Applicability of Time Series Models in Hydrology
- Forecasting

- Generation

* Forecasting vs. Prediction
- forecasting: the estimate of conditions at a specific future time or during a specific
time interval

- prediction: the estimate of future conditions

* Measure of Forecast Error
(1) bias
(2) variability
(3) mean square error
(4) root mean square error
(5) mean absolute error
(6) relative bias
(7) relative mean absolute error
(8) forecast efficiency
(9) R squared

* Precision vs. Accuracy

- precision: the ability of an forecaster to provide repeated estimates that are close
together.
((note)) 1. due to random error
2. measured with the variability

- accuracy: precisiontunbiasedness

((note)) measured with the MSE = variability + bias’

« Forecast Worth

no forecast

naive forecast

imperfect forecast

perfect forecast



Hydrologic Time Series Analysis
Dr. Young-Oh Kim

» Deterministic vs. Probabilistic Forecasts

* Short-term vs. Long-term Forecating

« Monte Carlo Simulation

- generation of uniform r.v.

- generation of normal r.v.

- generation of correlated inputs

- length of generated samples

- numbers of samples to generate



Simple FORTRAN random number generator adapted from:
Bratley et al,, (1983) A Guide to Simulation
Springer-Yerlag, New York, 383 pp.

-

‘--.Qt.vutlit‘I.IIi‘IC'..l-lI‘.l....‘d’i’i‘O.'l!‘.ll'!Il"IICQ.IintItII.t

acoacaonn

dimension U(5000)
open(Unit:S,FiIez'C:output.rng'}

Citivttt-ttotI.‘lctlcvtttlIttoI.tln-:-l-n--i1.t'i.nvo‘.ttt‘-t'itiitnt‘t!

C Interactive prompt for generator seed. :
C‘"“"""l*"C'lt'l"ﬁii-IO‘""¢t"¢#iUtt.l“ti‘t‘ii.iit.-lln--!intotqol
C .5

600 write(0,700)

700 format(//,10x,’Enter seed (integer between 0 and 2**31-1)",/)
read(0,800) iseed

800 format(I12)
if(iseed.le.0 .or. iseed.gt.214?483547] go to 705
go to 708

705 write(0,707)

707 format(//,10x,'Seed is out of acceptable range; try again’,f)
go to 600

708 continue

C

Cutu1-tittv-tlt-lov;-uctttt-l-tittttttio-oitttt!itti-ttittttttitttt‘ttoo

C Initialize and then call the random number generator unif, 3
Gi-v---i-ou--‘vtnitI-ttltntltttttcto-utnttti-tkti-nii-*tvttt-ltittitttt-

C
dummy = unif(iseed)
do 100 i=1,2000
u(i) = unif(0)
write(6,900) u(i)
100 continue -

- b AR
903 ----.-H--.(;vx,fl.: 2;

stop

end

FUNCTION UNIF(kx)
@
c-i&--titnc-tti--tu--‘suO-Avt-!itiltntvinn-1-nttlntt---ttttcttvttt-titlvn
C
Cc This function generates a random number distributed uniformly
C over the interval [0,1] using the recursion
C
c ufi+1) = 16807 * u(i) mod|(2**31)-1].
C g
c Input: kx is a2 random integer, 0 < kx < (2**31)-1, the first
C time this function is called. Thereafter kx=0,
c
C Output: ix is a new psuedo—random integer,
C unif is a random fraction, 0 < unif < 1.
C
C Notes: (2'*31}—-1 is 2147483647.
C This function is valid only with a 32-bit word.
C IBM uses 8 bits/byte, 2 bytes/word, or 16-bit words.
C Need double precision to achieve 32-bit ‘word on PC.
C
c.--lt'.---.‘II‘"'IlI.IU-'.*'--I‘-l“-"“'..-‘."-"-"--"-'-.“-'.-I
c

if(kx.gt.0) {ix=kx

ix = dmod(16807d0%%), 2147483647d0)
unif = ix/2147483647:0

return

end
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Probabilistic Verification Measures

1. Scalar Measures

Brier Score(BS)

- probabilistic forecas}s of dichotomous events

- the mean square error of the probabilistic forecasts
-0 =BS =1

- perfect forecasts: BS =0
i

BS‘_Z(P. f

i=1

where i a numbering of the n forecast/event pairs
pi: the forecast probability

o;: the verifying observation (1 if the event occurs, 0 if it does not)

Half'B¥ier Score

- an-extension-of the Brier Sme to-the ﬁm&h-ca’ecgory iprobabilistic forecasts

- the mean squate error of the probabilistic |
- a perfect forecast: HBS = 0

- a worst forecast: HBS =2

wns =199, -0,
Y- &
whefe J: the niimber of the forecast caligaties
Py the forecast probabilify that the event will occur in category J
oy the verifying observation




Ranked Probability Score

- an extension of the Brier Score to the multi-category probabilistic forecasts

- the squared error with respect to the cumulative probabilities in the forecast and
observation vectors

- a perfect forecast: HBS = 0

- 2 wovst forecast: HBS =J- |

RPS = }E(P,_ -0,)’

Pu=zp.;’ m=1s ,Js
whiere ek
0.=%0,  m=l..J
Jj=1

* gccurrence of actual streamflows

~

month = 1
51 =50
month = 2
SO AT $=10
a2 . Quz )
g, % ' . *
month = n : 25% ' 65% S S, = 65
QL,J! Qun

Average Hit Score:  §,,, = iz 100 x p,
n

i=l




Skill Score

- a percentage improvement over the reference forecasts
- A = Apery: S8,r=100%

~A = A, 8S,0= 0%

A

—A ;
58, = ———L—x100%
Awf _Aﬂzc’

where A, the value of the accuracy measure of reference forecast

Ayt the value of the accuracy measure of perfect forecast

2. Contingency Table

- categorical forecasts of most-probable event
. [#]5 O Oy
fL ) a b c
fM d e &
Ly . - h I
- a perfect forecast: H=1 ma !
n
whighg n = a+ b+ c+d+e+fegthti
- a unbiaised forkcast: By, By, Bu = |
a+b+c : \ +h+i
B = .+.b id+g+f BH=8 :
a+td+g N beneh c+ f+i



3. Reliability Diagram
- the categories of a forecast variable: low (0~30%), middle (30~70%), high (70%~1 00%)

- the forecasts are considered perfectly reliable if the relative frequency of the observation

equals the forecast probability: _
p(o;=1|p)=p,

1|
I
|
i

fForecasts have no
A .';resoiuti@n for

_ 7 1 predictihg middle.
L | category (40%)

....... it _

Pk 1 Emﬁ,e*manabmi? diiganis desiribing-thic
Lo il Eka 4

pa);tl{eular::i-égmmof e AR axi

-~) 4




aive Frequency of Forcasts

4. Discrimination Diagram

- the conditional distribution of the forecasts given the observed category, p(po;)

- if the p(pio;) equals zero for all possible observations except one, the forecast procedure
is perfectly discriminatory for forecasts of that observation

05 (07T 09
ecast Probability

{ low category " | ~high category
i . .:Zg-e.j L

st Probability

() Nio: i

jation didgraims
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< Introduction to Time Series Modeling >

+» Assumptions of ARMA(AutoRegressive Moving Average) Models
- normality

- the second order stationarity

* General Procedure of ARMA Modeling

(1) preliminary data analysis
- graphical display of data
- summary statistics
- removal of nonstationarities
- transformation to normal

(2) identification for determining p and q of ARMA(p,q)
- ACF
- PACF

(3) parameter estimation
- unconditional/ conditional least square method
- method of moment
- maximum likelihood method

(4) diagnostic check
- parsimony of parameters: AIC
(model with minimum number of parameters which represents or preserves
certain statistics)
- independence of residuals: ACF of residuals, Portemanteau Test
- normality of residuals

(5) application
- forecasting

- generation

* Physical Basis of ARMA(1,1) Models

- Notations
x¢ = the precipitation in the year t
S; = the groundwater storage at the end of year t
z; = the streamflow in the year t

Si1 = the groundwater storage at the beginning of year t
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- Assumptions
(i) the amount ax, infiltrates, percorates, and reaches the groundwater storage

(ii) the amount bx, evaporates from the soil, plants, and surface storage

(iii) the amount (1-a-b)x; = dx; represents the surface runoff reaching the stream

- the streamflow is made up of

- the mass balance equation for the groundwater storage
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< AutoRegressive Modeling: Identification >

 Formulation
- Notations
y: = autocorrelated stationary time series ~ N(u,0%)
g€, = residual series (white noise) ~ N(O,ng)
NOT autocorrelated
NOT crosscorrelated with ye1, ..., Yip
b1, ..., &, = autoregressive coefficients

- AR(p) process

((note)) Fiering & Jackson model

» Parameters

{

- relationship 0 & Oe
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« ACF for AP(p)
- Yule-Waker Equation
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« Partial ACF for AP(p)

- Notations
dj(k) = jth AR coefficient of AR(k) model, j = 1, 2, ..., k
t(k) = the last term in the AR(k)
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« Stationary Condition
: the stationary condition of the AR(p) model is satisfied if the roots of the following

characteristic equation lie inside the unit circle, i.e. |ui] < 1

- AR(1)

- ARQ2)
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< AutoRegressive Modeling: Parameter Estimation >

Say where N observations x, X2, ..., XN.

xt = f(Xe1, Xe2, oo A1y oy Q1) T &
» Moment Estimator: Use the Yule-Walker equation

+ Least Squares Estimator
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« Maximum Likelihood Estimator
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< AutoRegressive Modeling: Diagnostic Checks >

« Test for Normality of Residuals

« Independent Test for Residuals

- residual correlogram

- cummulative periodogram test

- Porte Manteau lack of fit test
For ARMA(p,q) models,
HO: & is a white noise series, i.e. an independent process
Ha: & is not a white noise series.

Dr. Young-Oh Kim
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+ Parameter Parsimony
- Akaike Information Criteria (AIC)
- Among competing ARMA models, select the one which minimize AIC,
AIC(p,q) = N In(0c’) + 2(p+q)

- modified AIC
AICC(p,q) = N In(o¢®) + 2(p+q+1)N/(N-p-g-2)

((note)) Need N/k > 15 ~ 20 where k is th number of parameters

< AutoRegressive Modeling: Forecasting >
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< Moving Average Modeling >

« Formulation of a MA(q) model

« Paramters of MA(q)

+ ACF

- the autocovariance

- the variance

- the autocorrelation coefficient

((note)) The ACF is truncated or cut off at lag q with a "memory" limited to q lags.

« Partial ACF
The PACF are of infinite extent and tail off

« Invertibility Condition
The roots of the following characteristic equation must lie inside the unit circle:



3.1.3 Stationarity and invertibility conditions for a linear process

Stationarity. The convergence of the series (3.1.9) ensures that the process
has a finite variance. Also, we have seen in Section 2.1.3, that the auto-
covariances and autocorrelations must satisfy a set of conditions to ensure
stationarity. For a linear process these conditions can be embodied in the
single condition that the series y(B), which is the generating function of

the i weights, must converge for |B| < 1. That is, on or within the unit circle.
This result is discussed in Appendix A3.1.

Spectrum of a linear stationary process. It is shown in Appendix A3.1
that if we substitute B = ¢~ 2/, where i = ./ —1, in the autocovariance
generating function (3.1.11), we obtain one half of the power spectrum.
Thus the spectrum of a linear process is

p(f) = 262Y(e™ > W(eV)
= 262|Y(e”2)? 0 /<3 (3.1.12)

In fact, (3.1.12) is the well known expression [27], which relates the spectrum
p(f)of the output from a linear system, to the uniform spectrum 207 of a white
noise input by multiplying by the squared gain GA(f) = (e~ 2™)? of the
system.

e——Invertibility. We have’seen above, that the ¢ weights of a linear process
must satisfy the condition that (B) converges on or within the unit circle, if
the process is to be stationary. We now consider a restriction applied to the
weights to ensure what is called “invertibility.” The invertibility condition
is independent of the stationarity condition and is applicable also to the non-
stationary linear models, which we introduce in Chapter 4.

To illustrate the basic idea of invertibility, consider again the model

Z, = (1 — 6B)q, “ (3.1.13)

Expressing the a's in terms of the Z’s, (3.1.13) becomes
a, = (1 — 6B)Y12, = (1 + 0B + 02B2 + -+ + 6<B)(1 — 6+H1B+1)1Z,
that is :

Z, = —Bfr—l = 6221—2 j=e gsz_k + a — akﬂar—k—l (3-1-14)
and, if |6] < 1, on letting k tend to infinity, we obtain the infinite series

2= —0%5_,—02_,— - +a (3.1.15)

and the 7 weights of the model in the form of (3.1.4), are n; = — . Whatever

the value of 8, (3.1.13) defines a perfectly proper stationary process. However,
if |8] > 1, the current deviation Z in (3.1.14) depends on Z;_1, 212, . « - 5 Z1-k
with weights which increase as k increases. Ws avoid this situation by requir-
ing that |6 < 1. We shall then say that the series is invertible. We see that
this condition is satisfied if the series

—

n(B)= (1 —6B)""' = i 0B’
. P

converges for all |B| < 1, that is, on or within the unit circle.

In Chapter 6, where we consider questions of uniqueness of these models,
we shall see that a convergent expansion for a, is possible when |6] > 1, but
only in terms of 2,241, 2425+ (that is in terms of present and future
values of the process). The requirement of invertibility is needed if we are
interested in associating present events with past happenings in a sensible
manner.

In general, the linear process

n(B)Z, = a,
is invertible if the weights m; are such that the series m(B) converges on, or

within the unit circle. I
To sum up, a linear process is stationary if Y(B) converges on, Or within the
unit circle and is invertible if ©(B) converges on, or within the unit circle.




3.2 Autoregressive Processes 59

=2

FiG. 3.2 Typical autocorrelation and partial autocorrelation functions p, and ¢y, for
various stationary AR(2) models

34] Mixed Autoregressive—Moving Average Processes 73

FiG. 3.9 Autocorrelation and partial autocorrelation functions p, and ¢,, for various
MA (2) models
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FiG. 3.11 Autocorrelation and partial autocorrelation functions p, and ¢y, for various
ARMA (1, 1) models
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FiG. 3.12 Admissible regions for the parameters and p,, p, for AR (2), MA (2), and
ARMA (1, 1) processes which are restricted to being both stationary and

invertible
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< AutoRegressive Moving Average Modeling >

» Formulation of a ARMA(p,q) model

+ Paramters of ARMA(p,q)

((notel)) ARMA(1,1) vs. AR(1)

((note2)) ARMA models may come out with a smaller number of parameters to
estimate than the AR models of higher order

* ACF

« Partial ACF
The PACF attenuates as damped waves or exponential decay

« Stationarity & Invertibility Conditions
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« Properties of ARMA(1,1) models

 Forecasting
- L-step ahead forecasting function for ARMA(p,q,)

((example)) ARMA(1,1)
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< Modeling of Single Periodic Series >
« Handling Periodic Series
(1) standardizing --> modeling with ARMA
(2) seasonal differencing --> modeling with ARMA (SARIMA)
(3) modeling with periodic ARMA
« Periodic ARMA

- PAR(p)

((example)) PAR(1)

- PARMA(p,q)

((example)) PARMA(L,1)
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« (Seasonal) AutoRegressive Integrated Moving Average
= SARMA(psd:q)(PsDaQ)S

((example)) ARIMA(2,00)(0,1,1)12
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< Transfer Function Noise (TFN) Models >

» Transfer Function (TF)
- Consider AR(p)

- deterministic Box-Jenkins TF model

Yt = VoXi + ViXe1 T vaxe Tt ..

yi = v(B)xi
where v(B): transfer function
Vo, Vi, V2 ... impulse response function

x¢. forcing function (exogeneous variable)
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» Theory of TFN Models
Nt V(B)Xt + m

- assumption
(i) x; & y; are stationary
(i) x; & n; are independent, so

(iii) X, yi, n, are normal

- estimation of v(B)
To estimate vo, Vi, V2 ...

we will first "prewhiten" the x; series

This will make parameter estimation easier.

Multiply (1) by a.x and take expectation




Hydrologic Time Series Analysis
Dr. Young-Oh Kim

« Identification

(1) prwhiten the input series by a univariate ARIMA model

(2) calculate the sample cross-correlation function (CCF) and the impulse response

weight vy

(3) identify the orders (r,s,b) of the parsimonious equation,

on equating coefficient of B, we find

v =0 if j<b
v = 61\{]‘.1 + 63Vj.g LR 6;\’1'.; + Wy I'f_] =b
vj = 8vja + Bavje + . F OrVir = Wjb if j = bt+l, b+2, ..., bts

vj = 81vja + Bavjz + ...+ Brvis if j > bs

Thus, in general, v; consists of

(i) b zero values vo, Vi, ..., Vb-i

(ii) a further s-r+1 values Vo, Voe1, wos Vbisr following no fixed pattern (but no such
values occur if s < r), and

(iii) for j = b+s-r+1, values vi following the pattern dictated by an rth order

difference equation with r starting values Vp:s, ..., Vbesrel

(4) generate the noise series

(5) identify an univariate ARIMA model for n; by using the general identification
procedure for ARIMA
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» Parameter Estimation

« Diagnostic Checks
- Is at not serially correlated?
. check if ra(k) = 0 by using the univariate PM test.

If not, respecify the noise model.
- Are x; & a; not cross-correlated?
. check if ra(k) = 0 by using the bivariate PM test.

If not, respecify the TF model.

» Forecasting
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< Modeling of Multivariate ARMA Models >

» Formulation

- MAR(1)
Zy = Ay T+ Bey
where Zi=Y: -1
E[StEtT] =1
E[e€w'] = O for all k=0
€ ~ Normal
A; = [n x n]
B = [n X n]
- MARMA(1,1)

Zi = A1Ziy + By - Cign

where Ci = [n x n]
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» Parameter Estimation
Mt = A[Mt.] or Mt . A]Mt—l

where
M1 = E[Z[Zt-kT] =

Al = M]Mo-}
BB" = My - AM;"

((note)) A and B can be solved if M & M satisfy the following condition

(i) M must be positive definite (generally satisfied when the sample sizes for all
sites are the same)

(i) BB" must be positive definite

(See p.19.30 ((T1)) for the details)

« Diagnostic Checks

- normality: & ~ Normal?

|

- independence in space: E[e€:'] =

- independence in time: E[e€u] = 0 for all k=0

((note)) The elements of Mo(¢) & Mi(g) except the diagonal of Mo(g) must be
within the limits of
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< Contemporaneous ARMA Models >

« Formulation

Z, = EAth.j + & - ECjet.j

where A; & C; are diagonals
Zt{i) - zaj(i}Zt.j(i} ds St{i] _ zcj(i)st_j(i)

((note))

(i) p and q do not have to be the same for each site.
(ii) The model components at each site are simply univariate ARMA(p,q) models

where each Etm is uncorrelated in time but correlated in space. Thus

& = B¢
where &; is normal such that
E[&&] =1

E[&&u'] = 0 for all k=0

» Parameter Estimation
- estimate the elements of A & C through the univariate parameter estimation
- estimate B by solving BB" = G where the eclements of G can be estimated as
eq(19.3.50) ((T1))

» Diagnostic Checks
- normality: & ~ Normal?

- independence in space: E[EtétT] =1

- independence in time: E[é.tt.kT] = (0 for all k=0



< Disaggregation Models (DM) >

« Disaggregation Modeling: A process by which time series are generated dependent on
a time series already available
- temporal disaggregation
((note)) Approach for generation of seasonal & annual flows
(i) generation of seasonal flows with a periodic model
--> aggregation of the seasonal flows to annual flows
(ii) generation of annual flows with any an annual model
--> disaggregation of the annual flows into seasonal flows

- spatial disaggregation
« Purpose: to reproduce statistics at more than one level of aggregation

« Advantage of the Disaggregation Approach
(i) DM allows for a reduction in the number of parameters with little or no
corresponding loss of desirable properties in generated data
(i) DM allows for increased flexiblity in the methods used for generation

« Basic DM (Valencia & Schaake, 1973)
- formulation
Y =AX + Bt
where Y: the current observation of the series being generated (subseries) ~ N(0,0,%)
X: key series ~ N(0,0,")
€ : stochastic term ~ N(0,1)
- parameters
A=S5 xvS ;()l(
BB =Sy ASxy
- moments: Eq. (A8.1) ~ (A8.12) ((T2))
- features
(i) preserves covariance between annual values and its seasonal values
(i) preserves variance and covariances among the seasonal values
(iii) preserves cross-covariance between the values at the various sites in case of a
multi-site case
- advantage : basic and clean
- disadvantages

(i) the number of parameters is large




(ii) the moments being preserved are not consistent

(inconsistency in calculation of seasonal covariance - See ((T2))Eq. A.8.2)

+ Extended DM (Mejia & Rousselle, 1976)
- formulation
Y = AX + Be + CZ
where Z: a column matrix containing as many seasonal values from the previous year
as are desired (ex: A8.13 ((T2)) )
- parameters: Eq. (8.16) ~ (8.18) ((T2))
- moments: Eq. (A8.13) ~ (A8.19) ((T2))
- additional advantage: preserves the covariances of the first season of a year and
preceding season
- disadvantages
(i) the number of parameters becomes larger

(ii) inconsistency in moment calculation still exists

» Condensed DM (Lane, 1979)
- formulation
Y: = AiX + Big + CiYea
where T: the current season being generated
- parameters: Eq. (8.19) ~ (8.21) ((T2))
- moments: Eq. (A8.20) ~ (A8.24) ((T2))
- features
(i) some parameters of the extended DM are set to zero
(ii) one-season-at-a-time
(iii) ignores all but the lag-0 and lag-1 correlations among the monthly flows and

therefore requires fewer parametrs

- advantage: the number of parameters is reduced considerably

- disadvantages

(i) not clean and straightforward

(i) since all seasons are not generated jointly, the seasonal data will not add exactly
to give the annual time series (nonpreservation of addictivity)

((note)) the second disadvantage is outweighted by its advantages because the
problem are common for all DM models if the data have undergone any
transformations

- software: LAST (Lane & Frevert, 1990)
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