

Chapter 2 Design Methodologies for Info Systems

 Figure 2.1 From data to information and knowledge. (a) Various levels of abstractions (from Turban and Aronson, 1998 with modifications). (b) From running to managing a city.
From Devlin, 1997 with modifications.

2.1 Data, info, knowledge & meta data

- Data : numbers, strings, Booleans, sounds, images ..
- Info : organized data, has a meaning
- Knowledge : results of analyzing & synthesizing info, derived info
- Meta data / meta info : data about data/ info about info

Figure 2.2 Data modelling levels (ANSI/X3/SPARC 1978).

2.2 Modeling levels (external, conceptual, logical, internal)

- External : users define their own subset of the real world
- Conceptual : schematic representation of phenomena & their relationship

deals w/ only info content of the database usually use entity-relationship approach

- Logical : data structure, relational/object oriented/object-relational
- Internal : represent the way info items are stored at bit/byte level deals w/ storage devices, file structures, access methods ..

Figure 2.3 Example of steps for modelling streets. Bartelme 1996, with modification.

Example of steps for modeling streets

external model ->	> conceptual model -	> logical model
(real world)	(classification,	(data org schema
	identification,	ex. relational DB)
	geometry)	

 Figure 2.4 Examples of entity-relationship diagrams. (a) Nomenclature for entityrelationship diagrams. (b) Example of a binary relationship. (c) Example of a ternary relationship.
From Laurini and Thompson (1992).

2.3 Conceptual modeling : entity-relationship approach

- E-R model : a means to organize & schematize info

basic component : entities (classes of entities), relationships, attributes, cardinalities, integrity constraints

- * relationships can be multiple (binary, ternary ..)
- * integrity constraint is a predicate that must be matchedex) attribute values, attribute definition, cardinality ..

Figure 2.6 The entity-relationship diagram for land parcels and eity blocks: a city can have several city-blocks and streets. Each block is surrounded by a minimum of three streets and can have a minimum of one parcel.

Figure 2.5 An example of city blocks and parcels.

R	Zone-number	Area	Landuse
	34	4578	commercial
	35	3471	residential
	36	9065	industrial

Table 2.1 Example of a table for land use planning

2.4 Logical modeling: relational databases

- Relational DB : collection of relations via tables

conventional form of expression

R (Zone-number, Area, Landuse) : single relation for landuse planning

 \rightarrow its table containing an instance of this example(Table 2.1)

columns: fields (attributes) - data type, format, unit need decided identifier attribute : key

rows: records/tuples (particular instances of an entity)

Figure 2.7 Nomenclature for relational tables. (a) Structure of a table. (b) Relational instance with a particular value.

PURCHASE	Plot_ID	Owner_ID	Purchasing_date
-	5678	45	13-03-76
	4567	67	16-05-81
	1208	85	01-07-78
	3089	60	20-12-80
	3218	49	31-01-82

Table 2.2 Example of a more complex relation

- Example of relation schema

PURCHASE (Plot_ID, Owner_ID, Purchasing_date) (-> Table2.2) PURCHASE : relation, Owner_ID,Purchasing_date : attributes

From Caron et al. (1993) with modifications.

2.5 Spatial pictograms

- Spatial pictogram : need to represent geo-entity in the E-R approach
- Four types : Point, Line, Area, Volume
- Examples

single case, complex case, alternative case

Figure 2.9 Example of an entity-relationship diagram with pictograms. From Caron et al. (1993).

- Example of an E-R diagram w/ spatial pictograms

Figure 2.10 Example of an entity-relationship model with entity pictograms.

2.6 E-R relationship w/ entity pictograms

- Entity pictogram : to increase readability & abstraction

Figure 2.11 Example of object-oriented concepts. (a) Classes and subclasses. (b)
Attributes. (c) Attributes in inheritance hierarchy. (d) Multiple inheritance.
(c) Links between classes. (f) Inheritance of methods.

2.7 Object-oriented spatial DBs

- OODBs : to improve modeling of the real world

class : a collection of objects w/ the same behavior

instance : a particular occurrence of an object for a given class

- Class can define subclasses within it (Fig 2.11 a)

class -> subclass / class -> superclass

ex. CLASS Motorway : SUBCLASS_OF Driving road CLASS Street : SUBCLASS_OF Driving road CLASS Turnpike : SUBCLASS_OF Motorway

- Class has attributes

ex. CLASS Turnpike : SUBCLASS_OF Motorway { Turnpike-name : string Toll-free : money } * money can be a class

- Object in a subclass inherits all attributes of the superclasses

- Objects may be linked in different ways in a DB

- Object includes methods (operation on the data)

Figure 2.12 Examples of object-oriented modelling. (a) In urban planning, (b) For urban documentation.

- Examples of object-oriented modeling

Figure 2.13 The OMT/UML formalism. (a) Various types of associations depending on cardinalities. (b) The specialisation in subclasses. (c) The aggregation formalism emphasising that Part-1-class has a unique instance whereas Part-2-class has several (Rumbaugh *et al.* 1991).

2.8 Object-oriented DB design methodology

- Object-oriented DB design is possible by OMT / UML

* OMT : object modeling tech UML : unified modeling tech

- OMT / UML allows one :
 - to define classes w/ attributes & methods
 - to define inheritance
 - to define aggregation & specialization
 - to define association between classes, and so on.

Figure 2.14 Example with OMT/UML formalism. (a) Ownership and cadastre without methods. (b) Administrative bodies in the US with their relations with methods.

- Example of OMT / UML formalism
 - * semi-circle represents attributes of a relation

Figure 2.15 An urban database structure for storing façades of all buildings.

- OMT / UML model for a DB storing facades

Figure 2.16 Graphic description of spatial meta-class.

2.9 Presentation of OMEGA

- OMEGA : based on OOA, MODUL-R, CONGOO, OMT-Booch

-> leads to an operational description of GUI, org & architecture

Figure 2.17 An example of a representation of meta-classes and their instances in OMEGA formalism (Lbath 1997, Lbath et al. 1997).

Figure 2.18 Example of dynamic representation of object in function of its current state.

Figure 2.19 An example of a user class diagram with OMEGA formalism.

Figure 2.20 An example of a technical class diagram with OMEGA formalism. Metaphoric icons are replaced by a technical representation of objects.

2.10 Extended relational formalism

- Extend the relational model to integrate some object-oriented characteristics
 - -> introduce subtables in relational tables

: *R1 (a, b, c*)* c* attributes are a list of values ex. *OWNER (Owner_ID, Name, Address, Property*)*

a subtable can be nested in another subtable ex. *PERSON (Person_ID, Last_name, (kind_names, toys*)*)* geoprocessing ex. *POLYLINE (Polyline_ID, (x,y)*)*

Figure 2.21 Multiple representations of a street: each user has his own model.

2.11 Multi representation

 Users can have different models for the same real features can be problem in the context of interoperability