Lecture 15 – High Temperature Deformation of Crystalline Materials

Heung Nam Han
Professor
Department of Materials Science & Engineering
College of Engineering
Seoul National University
Seoul 151-744, Korea
Tel : +82-2-880-9240
Fax : +82-2-885-9647
email : hnhan@snu.ac.kr
Homepage : http://mmmpdl.snu.ac.kr
Introduction

- $T > 0.5 \ T_{mp}$: CREEP deformation occurs.
 $\sigma < \sigma_{ys}$: Permanent deformation occurring by CREEP over long periods of time.

CREEP = time-dependent permanent deformation
YIELDING = time-independent permanent permanent deformation

Deformation Mechanism Maps (DMM) [Ashby]
Steady-State Creep Rate

When long life is necessary and dimensional tolerances are critical (Ex. Jet engine turbine blade)

\[\dot{\varepsilon}_{ss} = A \sigma^n e^{-Q/RT} \]

A & n are material constants
Q is the creep activation energy

Dorn relation :
When \(T \geq 0.5T_{mp} \), Q : activation energy for self-diffusion
Generalized form of the Creep Equation

\[\dot{\varepsilon} = \frac{ADGb}{kT} \left(\frac{\sigma}{G} \right)^n \left(\frac{b}{d} \right)^p, \text{ where } D = D_0 \exp(-Q/\kappa T) \]

- D = diffusion coefficient
- d = grain size
- b = Burgers vector
- k = Boltzmann’s constant
- T = the absolute temperature (degrees Kelvin)
- G = the shear modulus
- σ = applied stress
- n = stress exponent
- p = inverse grain size exponent
- A = a dimensionless constant.

This form of the Dorn equation applies for all creep mechanisms.
Dislocation Glide Creep

Low T or High \(\sigma \)

- \(\perp \) motion is assisted by thermal activation.
- Crystals always contain defects.
- Certain point defects, vacancies, can promote plastic deformation by helping \(\perp \)'s overcome obstacles. This is “vacancy assisted climb”.

\[
\dot{\varepsilon}_{dg} \approx \frac{ADGb}{kT} \left(\frac{\sigma}{G} \right)^5
\]
Nabarro-Herring Creep

- Occurs solely by diffusional mass transport.
- Is important for much higher T and lower σ than was the case for dislocation glide creep.
- Can occur in crystalline and amorphous materials.

\[
\dot{\varepsilon}_{NH} \approx \frac{A_{NH} D_L G b}{kT} \left(\frac{b}{d} \right)^2 \left(\frac{\sigma}{G} \right)
\]

$A_{NH} \approx 10-15$

$D_L =$ lattice diffusion coefficient
Coble Creep

- Also driven by stress-induced vacancy concentration gradient.
- Diffusion/mass transport occurs along:

 Grain boundaries in polycrystalline materials
 Surfaces in single crystals

\[
\dot{\varepsilon}_C \approx \frac{A_C D_{GB} Gb}{kT} \left(\frac{\delta}{b} \right) \left(\frac{b}{d} \right)^3 \left(\frac{\sigma}{G} \right)
\]

\[A_C \approx 30-50\]

\[D_{GB} = \text{grain boundary diffusion coefficient}\]

\[\delta = \text{effective width of grain boundary}\]
Vacancy Flow According to NH and Coble Creep Mechanisms

\[\varepsilon_{NH} \approx \frac{A_{NH} D_L G b}{kT} \left(\frac{b}{d} \right)^2 \left(\frac{\sigma}{G} \right) \]

\[\varepsilon_C \approx \frac{A_C D_{GB} G b}{kT} \left(\frac{\delta}{b} \right) \left(\frac{b}{d} \right)^3 \left(\frac{\sigma}{G} \right) \]
The creep rate of a material can be greatly reduced by the incorporation of a fine dispersion of non-deforming particles at grain boundaries. The particles effectively inhibit grain boundary sliding.

ROLE OF PARTICLES: they “pin” grain boundaries.
COMBINED CREEP MECHANISMS

DIFFUSION CREEPS

\[\dot{\varepsilon}_{\text{diffusion}} = \dot{\varepsilon}_{\text{NH}} + \dot{\varepsilon}_C \]

- NH: \(\dot{\varepsilon} \propto d^{-2} \)
- Coble: \(\dot{\varepsilon} \propto d^{-3} \)

\(\therefore \) grain size is more important.
COMBINED CREEP MECHANISMS

DIFFUSION & DISLOCATION CREEP

In this case, σ is critical for determining the relative proportion that each mechanism contributes to the overall creep rate.

$$\dot{\varepsilon}_{total} = \dot{\varepsilon}_{diffusion} + \dot{\varepsilon}_{GC}$$
ESTIMATES OF CREEP LIFE

<table>
<thead>
<tr>
<th>Design Lives:</th>
<th>Jet turbine 10,000 hr (1 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stationary turbine~10 years</td>
</tr>
<tr>
<td></td>
<td>Nuclear reactor ..~40 years</td>
</tr>
</tbody>
</table>

MUST: be able to **extrapolate** properties measured over short (accelerated) time to predict performance over extended time.

LARSON-MILLER METHOD

\[
m = LM = T(\log t_f + C)
\]

LM or \(m \): Larson-Miller constant varied with stress
C : Material constant
\(t_f \): Time to rupture
ESTIMATES OF CREEP LIFE

Now, if we keep stress constant, \(m = \text{constant} \).
We can change \(T \) and can calculate the time to rupture (failure).

![Graph showing log \(t_r \) vs. \(1/T \) with lines \(\sigma_1 \) and \(\sigma_2 \), and determination of \(t_r \) and \(T \).]

Experimentally, the LM approach gives optimistic life predictions.
It has been observed that some materials when heated above 0.5Tmp can elongate to extremely large strains (e.g., ~5000%). We take advantage of this phenomenon to form complex shapes that cannot normally be obtained by forging, extrusion, or other metalworking processes. This is called “superplasticity”.

Microstructural Requirements:

1. Grain size ≤ 10 μm
 This grain size must not change during straining!
2. Grain shape remains equiaxed during superplastic forming.
 Grains “slide” under stress.
Superplasticity

Strain Rate Sensitivity:

As m increases, the material becomes more resistant to necking.

In the neck, $\dot{\varepsilon}_{\text{neck}} > \dot{\varepsilon}_{\text{non-neck}}$

\therefore flow stress of the neck $>$ flow stress in non-necked region

\therefore deformation stops in the neck.

We can determine m from strain rate change and/or stress relaxation tests.