446.631A

소성재료역학 (Metal Plasticity)

Chapter 4: Physical Plasticity

Myoung-Gyu Lee Office: Eng building 33-309 Tel. 02-880-1711 <u>myounglee@snu.ac.kr</u> TA: Chanyang Kim (30-522)

Plasticity in Physical Metallurgy

- Crystal plasticity
 - W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, 1993.
 - K.S. Havner: Finite Plastic Deformation of Crystalline Solids, Cambridge University Press, 1922.
- Dislocation
 - A.H. Cottrell: Dislocation and Plastic Flow in Crystals, Oxford University Press, 1956.
 - D. Hull and D.J. Bacon: Introduction to Dislocations, Pergamon Press, 1989.
 - J.P. Hirth and J. Lothe: Theory of Dislocations, Krieger Publishing Company, 1991.

Single crystal vs Polycrystal

Diamond – huge single crystal

Most metals - polycrystal

Schematics of polycrystal

Crystal structures – 14 Bravais lattice

 simple (1), body-centered (2), base-centered (2) face-centered (4 atoms/unit cell)

Crystal structures of materials

FCC - Face centered cubic Fe-γ, Al, Ni, Cu, etc...

BCC – Body centered cubic Fe- α , Cr, Co, etc...

HCP – Hexagonal close packed Mg, Ti, Zn etc...

Crystal structures – FCC

- ABCABC... Stacking Sequence
- 2D projection

FCC unit cell

Crystal structures – Close packing

FCC

Stacking sequence in Close-packed plane HCP : ABABAB.... FCC : ABCABC...

Defects(or imperfections) in crystals

- 0D : point defects
 - Vacancy, interstitial, etc..
- 1D : line defect
 - dislocations
- 2D : surface defects
 - grain boundary, twinning, stacking-faults
- 3D : bulk defects
 - micro(or macro) void, crack, precipitates, etc...

Plastic deformation

- Plastic deformation occurs by shear stress, which involves sliding of atoms and moving dislocations for crystals.
- There exist slip systems (slip planes and slip directions for easy sliding) and the critical shear stress for a single crystal.
- Point/line/surface defects contribute the magnitude of the critical shear stress.
- Initially, the elastic deformation is introduced by the applied force, then, as force increases, normal force component and shear force component on a plane compete for fracture and plastic deformation during deformation.

Theoretical strength of crystals

y

Tensile strength by Orowan(1949)

 $\approx -\pi$

Crystal structures of materials

Shear strength by Frenkel (1926)

$$\sigma_{xy} = K_{xy} \sin\left(\frac{2\pi \cdot \Delta l_{xy}}{r_0}\right)$$
$$\approx \frac{2K_y \pi \cdot \Delta l_{xy}}{r_0} \qquad \cdots \cdots \cdots (1)$$
$$\sigma_{xy} = G2\varepsilon_{xy} = \frac{G \cdot \Delta l_{xy}}{l_0} \qquad \cdots \cdots \cdots (2)$$

From (1) and (2)
$$(l_0 \approx r_0)$$

$$\sigma_{xy}^{\max} = K_{xy} \approx \frac{G \cdot r_0}{2\pi l_0} \approx \frac{G}{2\pi}$$

Considering relation of G and E

Point defects

- A single atom changes to the normal crystal array.
- Three major point defects: Vacancies, Interstitials and Substitutional impurities
- Vacancies: A vacancy is the absence of an atom from a site normally occupied in the lattice.
- Interstitials: An interstitial is an atom on a non-lattice site.
- Substitutional impurities: An impurity is the substitution of a regular lattice atom with an atom that does not normally occupy that site.

Dislocations (TEM image)

* https://en.wikipedia.org/wiki/Dislocation#/media/File:TEM_micrograph_dislocations_precipitate_stainless_steel_1.jpg

- \perp : positive edge dislocation
- -: negative edge dislocation

(a)

(C)

- Dislocation density, ρ
- = total length of dislocation in unit volume of crystal (m/m³)
- Typical values for dislocation density Well-annealed metallic material ~ 10¹⁰-10¹² (m/m³) Cold-rolled metal ~ 10¹⁴-10¹⁵ (m/m³)
 - Average distance between dislocations
 - = $1/\sqrt{\rho}$ (~10µm for well-annealed metals)

- Perfect dislocation: its Burgers vector is the lattice translation vector
- Partial dislocations: its Burgers vector is not a lattice translation vector

For FCC materials, $\mathbf{b} = \frac{1}{2} [\overline{1} \ 0 \ 1]$ $\mathbf{b_1} = \frac{1}{6} [\overline{1} \ \overline{1} \ 2], \mathbf{b_2} = \frac{1}{6} [\overline{2} \ 1 \ 1]$

Motion of dislocation

- Produces plastic deformation
- Depends on incrementally breaking bonds
- If dislocations don't move, plastic deformation doesn't happen! (But fracture will, like in a ceramic)

Motion of dislocation

• Edge dislocation: edge dislocation line moves parallel to applied stress

Motion of dislocation

Screw dislocation: screw dislocation line moves perpendicular to applied stress

Distorted lattice

• Mixed dislocation*

* Hensel A., Spittel Th., Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, VEB Deutscher Verlaf fur Grundstoffindustrie Leipzig

Plastic flow is initiated when τ_{RSS} reaches a critical value, characteristic of the material, called *critical RSS*, when $m \tau_{CRSS} = \sigma_{vs}$ (Schmid law).

Resolved Shear Stress

$$\tau_{RSS} = \frac{F}{A_o} \underbrace{\cos \phi \cos \lambda}_{\text{Schmid Factor}}$$

- The active slip system will have the largest Schmid factor.
- Macroscopic tensile yield stress:

$$\sigma_{y} = \frac{\tau_{CRSS}}{\cos\phi\cos\lambda}$$

or $\tau_{CRSS} = \sigma_{y}\cos\phi\cos\lambda$

τ_{CRSS} is the <u>resolved shear stress</u> required <u>to cause</u>
 <u>plastic deformation via slip</u>.

FIGURE 7.6 (a) A {111} $\langle 110 \rangle$ slip system shown within an FCC unit cell. (b) The (111) plane from (a) and three $\langle 110 \rangle$ slip directions (as indicated by arrows) within that plane comprise possible slip systems.

- FCC (Al, Cu, Ni, Ag, Au)
 - Close packed planes: {111}, e.g., ADF
 - Close packed directions: <110>, e.g., AD, DF, AF
 - Slip system: {111}<110> (12 independent slip systems)
- BCC (Fe, W, Mo): {110}<111> (12 independent slip systems)
- HCP (Zn, Cd, Mg, Ti, Be): 3 independent slip systems
- FCC & BCC metals: ductile, HCP metals: brittle

Metal	Crystal structure	Purity, %	Slip plane	Slip direction	Critical shear stress, MPa	Ref.
Zn	hcp	99,999	(0001)	[1120]	0.18	
Mg	hcp	99.996	(0001)	[1120]	0.77	ь
Cd	hcp	99.996	(0001)	[1120]	0.58	c
Ti	hep	99.99	(1010)	[1120]	13.7	đ
		99.9	(1010)	[1120]	90.1	đ
Ag	fcc	99.99	(111)	[110]	0.48	۴
-		99.97	(111)	[110]	0.73	e
		99.93	(111)	[110]	1.3	*
Cu	fcc	99.999	(111)	[110]	0.65	•
		99.98	(111)	[110]	0.94	e
Ni	fcc	99.8	ani	[110]	5.7	
Fe	bcc	99.96	(110)	[111]	27.5	1
			(112)			
			(123)			
Mo	bcc		(110)	[111]	49.0	8

Table 4-4 Room-temperature slip systems and critical resolved shear stress for metal single crystals

^oD. C. Jillson, Trans. AIME, vol. 188, p. 1129, 1950.

^bE. C. Burke and W. R. Hibbard, Jr., Trans. AIME, vol. 194, p. 295, 1952.

"E. Schmid, "International Conference on Physics," vol. 2, Physical Society, London. 1935.

^dA. T. Churchman, Proc. R. Soc. London Ser. A, vol. 226A, p. 216, 1954.

"F. D. Rosi, TRans., AIME, vol. 200, p. 1009, 1954.

¹J. J. Cox, R. F. Mehl, and G. T. Horne, Trans. Am. Soc. Met., vol. 49, p. 118, 1957.

⁸ R. Maddin and N. K. Chen, Trans. AIME, vol. 191, p. 937, 1951.

• What is most likely initial slip system?

• If CRSS is 50 MPa, what is the tensile stress at which Cu will start to deform plastically?

Slip Plane	Slip direction	n'l	s · l	Schmidt factor	σ (MPa)	
n	S	cosø	cosλ	cosφ cosλ		
(111)	[110] [101] [011]	2√2/3	$ \begin{array}{c} 0 \\ \sqrt{3} / 6 \\ \sqrt{3} / 6 \end{array} $	0 √6/9 √6/9	Not def. 184 184	
(1 11)	[110] [101] [01]	√2 / 3	$ \sqrt{3} / 3 $ - $\sqrt{3} / 2 $ $ \sqrt{3} / 6 $	√6 / 9 - √6 / 6 √6 / 18	184 -122 ◀ 367	smallest stress to cause slip (yielding)
	[110] [101] [011]	√2 / 3	$ \sqrt{3} / 3 $ - $\sqrt{3} / 6 $ $ \sqrt{3} / 2 $	√6/9 -√6/18 √6/6	184 -367 122	
$ (11\overline{1}) = (\overline{1}\ \overline{1}1)$	[110] [101] [011]	0	0 $\sqrt{3} / 2$ $\sqrt{3} / 2$	0 0 0	Not def. Not def. Not def.	

Initial Slip Systems (plane, direction) are then $(\overline{1}11)[101], (1\overline{1}1)[011]$

Plastic deformation in single crystal - How much?

• If a single dislocation passes through the crystal, what will be the resulting strain?

3-D

2-D

Cubic crystal after passage of a single dislocation

First we recognize that the shear strain is simply defined by the equation:

shear strain =
$$\gamma = \frac{b}{h}$$

Plastic deformation in single crystal - How much?

Assuming that the original crystal has dimension are 1 cm \times 1 cm \times 1 cm and that b = 1 Å (which is roughly of the correct order of magnitude), the shear strain can be calculated as:

$$\gamma = \frac{b}{h} = \frac{1 \times 10^{-10} \text{ m}}{1 \times 10^{-2} \text{ m}} = 1 \times 10^{-8} \text{ or } 1 \times 10^{-6} \%$$

This amount is not really perceptible so how can dislocations cause strain?

Deformation of single crystal

<u>Stage I</u>:

Easy glide.

Stage II:

Linear hardening

<u>Stage III</u>:

Parabolic hardening

Stage I:

- This is typical when there is a <u>single slip system</u> operative. Dislocations do not interact much with each other. "Easy glide"
- Active slip system is one with maximum Schmid factor

Stage II:

- The shear stress needed to continue plastic deformation begins to increase in an almost linear fashion.
- This stage begins when slip is initiated on <u>multiple slip</u> systems.
- Work hardening is due to interactions between dislocations moving on intersecting slip planes.

Stage III:

- There is a decreasing rate of work hardening.
- This decrease is due to an increase in the degree of <u>cross slip</u> resulting in a parabolic shape to the curve.

Plastic deformation in polycrystals

- Slip planes & directions (λ, ϕ) change from one crystal to another.
- τ_R will vary from one crystal to another.
- The crystal with the largest τ_{R} yields first.
- Other (less favorably oriented) crystals yield later.

Adapted from Fig. 7.10, *Callister 6e.* (Fig. 7.10 is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Plastic deformation in polycrystals

• Stress-strain curves of crystalline materials

Plastic deformation in polycrystals

Schematic illustrations of (a) upper yield point formation characteristic of static strain aging and (b) serrated yielding characteristic of dynamic strain aging.

Surface defects

Grain boundaries

A grain boundary is a general surface defect that separates regions of different crystalline orientation (grains) within a polycrystalline solid

Schematics of polycrystalline & orientation

Surface defects

• Twin boundaries

Stacking fault

• Stacking fault vs. Twin boundaries

A change in the stacking sequence over a few atomic spacings produces a stacking fault whereas a change over many atomic spacings produces a twin region.

Plastic deformation mechanism - dislocation sliding & twinning

Effect of temperature on plastic deformation

- Dislocation slip involves diffusion of atoms (and friction between atoms) so that it is temperature dependent, while twinning is not.
- In general, at low strain rates, slip is easier.
- At lower temperatures and high strain rates, twining is easier.
- As for the crystal structure effect, HCP has less of a slip system so it is more prone to twinning, while BCC is prone to twinning at low temperatures. On the other hand, twinning is more difficult for FCC.

Different hardening behavior of various metals

