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Hooke’s law in 3D

The stress oy in the x-direction produces 3 strains

1) Longitudinal strain (extension) along the x-axis,

2) Transverse strains (contraction) along the y and z -axes,
due to the Poisson’s effect,

VO,
E

E, = & = —VE = —




Hooke's law in 3D

The total strain produced along a particular direction can be
determined by the principle of superposition

That is, the resultant strain along the x-axis, comes from the strain

contribution due to the application of o4, 6, and c;
O
X

oy causes: E inthe x-direction

VO

oy causes: — Y in the x-direction
E

C, causes: VO, in the x-direction
E

Therefore, applying the principle of superposition in the x-
axis results in

1 -
&, = E[GX -v(o, +0,)




Hooke's law in 3D

In general, by superposition of the components of strain
in the x, y, and z directions, the strains can be written as

Ey = é[o-x _V(O-y + 0, )]

1

£, = E[Gy —V(o, +o0, )]

&, = é[o-z _V(Gx +Uy)]




Hooke's law in 3D

Shearing stresses acting on the unit cube produce shearing
Strains; i.e., no Poisson’s effect

Ty =Gy Vi = 28;

TyZ — nyz Why?

Uy = G7/xz




Hooke's law in 3D

1+ v
&j = E Ojj = G0
In Matrix Form
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Evs. Gvs.v

Stress tensor (state) in x-y coordinate system
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Figure 6.4. Half of square plate.



Evs. Gvs.v
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Figure 6.5. Deformation of square plate.
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Strain _energy

e Strain energy increment in the uniaxial tension for infinitesimal volume dv

7, de, dv
* More generally for normal stresses

(7, e, +7,de,, +7,de, )dv
rxydy/xy =T, (ngxy ) = Txydgxy + Tyxdé‘yx

More generally for normal and shear stresses

(r,de, +7,de, +7,de, +1,0p, +7,dy, +7,dy, )dv

Energy per unit volume

du=r,de, + Tyydé‘yy +7.de, + rxydyxy + ryzd)/yz +7,dy, = Tijdgij

Then,

U= r,de; U :Jjg” r;de;dv

0



Strain energy for linear isotropic elastic solids

du = T—éx[dfxx _V(Tyy +Tzz):| +TEW|:dTyy _V(Tzz +Txx)] +T_éz|:dz-zz _V(TXX T TW)]

T T T
+—2dr +-2dr, +-2dr
y rlgo e

L o 2 5V L
U= E(TXX +7,, +7.) —E(TXXTW +7,7, +TZZTXX)+E(TXy +17,, +7.)

e As functions strain

Ev G
U= e +e +6 )+G(e2 +&2 +&2 ) +—(12 +72 +9°
2(1+v)(1—2v)(xx y+ea) 16(e ) +a) 2% et Ta)




Strain energy density: physical interpretation

XX

Complementary strain-energy density function
=]
U*=|¢ dr,
/ —

/

Area ) u = J‘TXXd gXX

Under SS curve Strain-energy density function
> &

XX




Energy method — Castigliano theorem I

* Derivation in the textbook

The rate of change of the strain energy
oU _ A for a body with respect to
- - k . .
oP any statically independent force P,
k gives the deflection component
of the point of application of this force
in the direction of force

The rate of change of the strain energy for a
“F_p body with respect to

M any statically independent couple M gives the
amount of rotation

at the point of application of the point couple
about an axis collinear with the couple
moment 13



Volume strain

For a rectangular parallelepiped with edges dx, dy and dz

The volume in the strained condition is:
(1+e&)(1l+gy)(1l+¢g,)dxdydz

The dilation (or volume strain) A is given as

(1 + ax)(l + sx)(l + ex)dxdydz — dxdydz
dx dy dz

= L+efl+e)ive) - 1

A =

for small strain
A= g + g + g




Plane stress

Plane Stress (o3 = 0)

This stress state is typically observed in
- a thin sheet loaded in the plane of the sheet, or

- a thin wall tube loaded by internal pressure where there is no
stress normal to a free surface.

1 1,
= = - & = —|log — vig,E + vo
Seto,=03= 0. “ E [O-l VO_Z] 1= gt (& )]
1 1
Therefore, e, = o, - vo,] - = ot - v2)] = LiaE)
1 1 e
&y = —EV[Gl +o0,] &atVvae = o]
o, = E e, + ve
1 1 . V2 1 2
Similarly,
o, = E le, + ve,|
2 1 — V2 2 1.




Plane strain

Plane Strain (€5 = 0): This occurs typically when
One dimension is much greater than the other two

Examples are a long rod or a cylinder with restrained ends.

1
&3 = E[GB - V(Gl + (72)] =0

but

oy = V|o, + o0,]

This shows that a stress exists along direction-3 (z-axis) even though
the strain is zero.

& = é[(l —~ vz)ol - vl + V)O'Z]

[(1 - V2)02 - (1 + v)al]

g—l
* E
& =0




Questions ?
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