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Differential equations

Recall pure bending
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Figure 12.1. Deflection curve of neutral
surface.

For general loading, the above equation gives local radius of curvature of the
neutral surface

Normal stress (or normal strain) results in deflection of the beam

Radius of curvature as a function of deflection, from analytic geometry
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Differential equations

e Basic differential equations
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Differential equations: example 12.1

A cantilever beam is uniformly loaded over its span as shown
in Fig, 12.2. Find the deflection curve v(x).
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Figure 12,2, Cantilever beam. d 2V M
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dx* El,,

The bending moment M(x) is clearly seen by inspection to be
—wyx*/2. Hence, for the region 0 < x < L we can say,” using Eq. (12-

£y _ 1 ( n)
dx* El 2

@)
* Boundary conditions

v:Q:O at x=L

dx

Integrating twice, we get

where C; and C, are constants of integration. When x = L we have
v = dv/dx = 0. Accordingly, we may determine the constants of inte-
gration as follows:

W0L3

C = 6
_ W.}L‘ ng4 _ 1 4
=" 6 = g™l

We thus have as a final result
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Differential equations: example 12.2

n+1
[P(x—a) dx= P(x-a) +C
n+1

n

Shown in Fig. 12.3 is a simply supported beam with a variety of
loadings. We will determine the deflection curve.

Figure 12.3. Simply supported beam.



Differential equations: example 12.2

As a first step, we compute the supportmg forces by rigid-
body mechanics.

M, =0
—R,(20) + (500)(15) — 800 + (500)(2.5) = 0
» S R =39151b
=M =0
20R, — (500)(5) — 800 — (500)(17.5) = 0
R,=60251b

As a check, we can sum forces in the vertical direction. Thus

SVF, = 0 = 397.5 + 602.5 — 500 — (5)(100)
0=0

We now consider a series of domains.

0=x=<35:

.
d—z 21(3975 +c]) (@)

£
6

v = -l'(3975

El + C]_x + Cz) (b)

S=sx <10
M=3975x-500(x-—5)
d'v

e [397 5x — 500(x - 5)]

Integrating and using Eq.-(12.9), we get

dx EI

1 [3975 £ _ s _5)3+‘c +c] d
Y=EI 6 6 ol )

2 — 532
do _ 1 [397.5%—500(" - ) +cs] ©

W<x=<15

M = 397.5x - 500(x — 5) + 800

jz‘; 1[3975:-—500(1—5)1-800]
dv 1 2 (x — 57
dx E[39‘!SZ 500 3 +800x+C,] (e)
__53 2
v—-——[39’75:? sm(x6)+sm%+c,x+q] )
15 = x =20
. ~15
M=397.5x-500(x-5)+800—100-(x—2—-z
2y (x—lS)‘]
s E[SQ‘?S: S00(x ~ 5) + 800 ~ 100"~
2 - 5
%=—17[397.552——500(x "+ 800x
- 15
1 x (x - 5)°
v= E[ssns 500 300
(x — 15)
‘100*—2;—+C-.rx+€s (b)




Differential equations: example 12.2

Boundary conditions

1. Whenx=0,v=0.

From Eq. (b), we can conclude that C, = 0. Also:
2. Whenx=20,v=0.

From Eq. (h), we get

(397.5)20°)  (500)15°) . (800)(20%)
6 T 6 2
100)(5*

L0

~ 20C, + Cy = —406,145 )

0=

We must next properly patch the equations between the
domains. That is, the slope and the deflection at the end of one

5| B00Ib-f
*—10'—-—'

- 15* L
~———20 -

domain must, respectively, equal the slope and deflection at the
beginning of the next domain. Thus between the first and second
domains we require (compatibility) that

e _[dus
l dx Lq(a) [ dx Lq.(c]
(3975 +C1) EI(397552 +0+C3)

[It is the appearance of the zero on the right-hand side that is the
simplification resulting from the use of Eq. (12.9).] Hence,

.C1 =G @
Also,
[¥(5)]ea = [9(5)]eqs

1 5 1 5
7 (39753+5c,) 51(3975— -0+ 5C; + c‘)

55C, = 5C;—C,=0 (k)

For the next two domains, we have just to the left of x = 10 (i.e., x =
107) and just to the right of x = 10 (i.e., x = 10%).

[$Lw ) [d”(dlf +)]qu

1 (10%) (500)(5‘)
= [397 555 CJ] =

(10%) (500)(52)

EI [3975 + (800)(10) + Cs]
. C3 - Cg = 8000 (1)

[©(107) ]eqqq) = [2(10")]eqqn

(10 (53 )
I, [397 5—— 5 s —6“ + 10C, + C4:|
1 (10%) (5 (10%)
E[[3975T_500 +8mT+10C5+C5]

= 10C, + C, — 10C, — C; = 40,000 (m)



Differential equations: example 12.2

Finally, we have

[dlng)]uue) - [m

(15%) (10%)
B [39?5 2 - 500 —— 2 + (800)(15) + C,]
1 (15’) (10‘)
T [3975 5~ 50077 + (B00)15) + 0 + Cy
' S Cs= G (n)
(2(15)]gqin = [v(15))gqm)
1 15 10° 15%
El [3975(6) (—6—)-+800(2)+15C,|-C,]
1 (15" (10°) (15%) .
ﬁ[aw.s 3 - 500 6 + 800 2 +0+15C,+(,,]

S 15C, + Cg— 15C,— Cg=0 (o)

In forming the patching equations you need not write every-
thing down as we have done. By inspection you can arrive directly at
the proper equations such as Eq. (0), since many of the terms are
either zero or cancel, as can be easily observed from the domain
cquations. We now rewrite the equations for the constants.

C,=0
20C, + Cy = —406,145 (i)
¢ - ¢ )
5C, -5C,—-C,=0 (k)
C, = C; = 8000 0
10C, + €, — 10C; ~ C¢ = 40,000 (m)
C=C, (n)
15C, + Cg = 15C, = Cg =0 (0)

The equations are rather simple to handle: By substituting for
C, in Eq. (k), using Eq. (j), we obtain

dx L-qw

SC,—SC_I-:C4=0
LCy=0 (p)
Next going to Eq. (m), we get
10(C, — Cs) — C¢ = 40,000 Q)
But (C, — Cy) = 8000, from Eq. (I). Hence, we may solve for C,.
C, = 40,000 (r)
Now we go to Eq. (0). Replacing C,, using Eq. (n), we get

15C, + C4 = 15C, = Cy = 0
< Cy = C, = 40,000 (s)

Going to Eq. (i), we may determine C.:

20C, +40,000 = —406,145

v Cy = =22307 (t)
From Eq. (n),
Cs = —22307 | ()
From Eq. (),
C, = 8000 - 22,307 = —14,307
From Egq. (j),

C, = —14307 v)

The example is thus complete.



Differential equations: example 12.4

Find the maximum deflection of the pin-connected beams
shown in Fig. 12.5. The weight of the beam has been included in the

180 N/m uniform loading. Take E = 2 X 10! Pa.

|z

"z

Pin connected beam
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Figure 12.5. Pin-connected beams.

‘It would at first seem that we have a statically indeterminate y
support system here, but this is not the case. We can take AB as free

Q: Find max. deflection

body with the bending moment zero at the pin at B and solve for the 180 N/m

supporting force at A. Thus abserving Fig. 12.6, we can say:
EMy=0:
—R,3) + (130)(3(—32-) =
“R, =210N

We can now proceed with the deflection curve analysis.
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Figure 12.6. Free bodyff AB.
Solution step

1. Apply moment equilibrium at the position of pin
@ And determine the reaction force at A
®) 2. Obtain bending moment along the beam axis
Note: divide the region at the pin position
3. Apply boundary conditions
BCs. O deflection at x=0 & x=9, zero slope at x=9
Apply patch condition.



Differential equations:

() (D) ecnra] @

You will note that except for the constants of integration the deflection
equations are identical for this simple problem for both domains.

Boundary conditions:
1. Whenx=0,v=0.
nCy=0

2. When x = 9, do/dx = 0.

m(2)- w(2) s

5 Cy=1.004 X Y*
3, Whenx=9,v=0.

270(%;) - 130(%) + (1094 X 10°(9) + C, = 0
5 Cy=—8206 X 10*
Patch condition:
P eam = @) pqa
LGB +C=C0) +C,

Noting that C, = 0, C, = 1.094 X 10%, and C, = —8206 X 104, we can
solve for the remaining unknown constant C,. That is,

3C, + 0 = (3)(1.094 X 10%) — 8.206 x 10*
€y = —1.641 X 10¢

We now look for zero slopes of v in the two domains. Thus for the
left domain we have

3
d—"=0=i(27nf— 130%- 1.641 X 10*) (©

We find as a real root for this equation,
x=—-692m

example 12.4

Pin connected beam

Q: Find max. deflection

Solution step

1. Apply moment equilibrium at the position of pin

And determine the reaction force at A

2. Obtain bending moment along the beam axis

Note: divide the region at the pin position

3. Apply boundary conditions

BCs. O deflection at x=0 & x=9, zero slope at x=9
Apply patch condition.



Differential equations: example 12.4

r

Clearly, we discard this result, coming as it does outside the domain

of Eq. (e).-Look next at the remaining domain. Pi nNnconn ECtEd bea m
% =0= % [270(%2) - 180(163) + 1.094 % 10‘}
We get as the only zero-slope position, Q: Fi n d max. d efl eCtio n
x=900m

This corresponds to the base of the cantilever and represents the
trivial condition of a minimum deflection of zero.

We should check the pin. Thus, from Eq. (b) we have

2(3) = é {270(%3) - 130(%) — (1.641 X 104)(3)]

_ 4862 X 10°
EI

It should now be clear that the maximum deflection must occur at
the pin.
The value of EI is next computed.

ElI=(2X 10“)]:(%)(.075)(.1)3 - (%)(.040)(.060)3]
= 1.106 X 10% N-m?

The maximum deflection then is

_ 4862 X 10

2002 X 0 0440
1.106 X 10° "

v(3) =



Statically indeterminate problem: example 12.5

The cantilever beam shown in Fig. 12.8 supports a uniform
loading w,, of 10 kN/m and a concentrated couple-moment M, hav-
ing the value of 100 kN-m, Find the supporting forces and the deflec-
tion curve in terms of EL The beam is 10 m long,

The free-body diagram for the entire beam is shown in Fig,
12.9. We shall consider the supporting force R, as the redundant
constraint in the ensuing computations. We can here compute the
bending moment M in terms of R, without the necessity of determin- Figure 128, Cantilever beam.
ing other supporting forces or torques in terms of R;,. Accordingly,
we shall employ Eq. (12.4) for two spans of the beam as follows:

¥y

m‘—‘)——; )
10 kNm T u Solution step
A1 _i+5j+ )Mz_;
Sm m
Rl B o RZ

1. Calculat® bending moment as a

Figure 12.9, Free-body diagr. f cantil b 3 . .
. sermoty Cagram of cantllover beam function of x with unknown R1

0=x<35: .
d_zvzi(h _lqg) @ (considered as redundant constant)
oo ax' EI 2 2. Obtain deflection and slope for each
1 = region between 0~5, and 5~10
il —E‘;(Rlx - 10"{ + 100) (b)

3. Apply proper boundary condition at

Integrating twice, for the spans we get

D r<s x=0, x=10, and patch conditions at x=5
d_v=L(Rx_“_Ex_3+ cl) @© 4. Obtain additional unknowns for R2 and
dx EI\"'2 6
AT M2 at the wall (or x=10)
x 10x
v = E(RIF TS + Cix + Cz) (d)
5 < x <10
% = %(Rf{g - 10613 + 100x + C3) (e)



Statically indeterminate problem: example 12.5

-1 10t x ) '
v EI( g % +10!}—2 Cx + Cy (f)
We have four constants of integration plus the unknown R, to be ’

determined. We can note that

C, = 1167 ~ SOR,

atx =0, v=0 5C1=83_R1 - 202 x 103
dv
atx=L, —-=v=0
Solving for R,, we get
Applying these conditions, we have
C,=0 (8) Rl = 26.3 kN
2
) = R0y | {10)‘(510)3 — (100)(10) = ~S0R, + 667 (h) . '
2 The other supporting forces are now readily available from rigid-
Ry(10°) _ (10)(10% (10°) ; bod hanics. Th
Co= =+ — (100~ — (~50R, + 667)(10) (i) OCy mechanics. 1hus,
= 333R, — 7.51 x 10° ’ SF, =0
Next we apply the patch conditions (compatibility) at x = 5. Thus Rl - (10)(10) + R2 =0
ds)]  _[45T) SR, =T37kN
[ dx L«;} [ dx Lqie) EM{} = ( 2
N (8 2\ (5 , '
r(%)- 1082+ 6= &(F) - 10+ aonesy + ~(100)(S5) ~ 100 + R,(10) — M, = 0
€y =500+ Cy ) “ M, =137 kN-m
Also, We h dingly determined both i i
(05 s = (95 eat e have accordingly determine th the deflection equation and

the supporting forces simultaneously.

4 2
1(%’) 09 e - (%) - C2 4100 + s +

~5C, = 1250+ 5C, + C, (k)

Replacing C, and C, using Eqs. (h) and (i) in Egs. (j) and (k), we get
the following simultaneous equations for C; and R:



Superposition method

SECTION 12.
0=x=<(
v= b (ar) Homework!!!!
— | a=xst Derive the left equations!
{ u=6—2:-r [~(x - a)® + x* - 3x%a}

_ WX’
T 24E]

—r—— v

(-x* - 6L + 4Lx)

Osx=gqg

N R T 5 N R S
v=grgy ¥ - 7= 5]
0=<x=<L

Pbh

ve g x:‘»%-(x-a)’-(l,z-bz)x]

. WoX 3 ~
P V= El (-L + 2Lx 13)

Figure 12.11. Deflection formulas for simple beam loadings.



Superposition method

Shown in Fig. 12.12 is a simply-supported beam carrying a uni-
form loading of 50 N/m and a S000-N concentrated load. What is the
deflection at the midpoint of the beam?

y

Figure 12.12. Simply-supported beam.

Noting that the value of x to be used is less than a = 15, from
Fig. 12.11(c) and 12.11(d) we have, on using the proper domain for

the S000-1b force
(5000)(5) noq . 50X 012
V= aoer ¥~ @~ + 24“’51 [~20° + (2)(20)2 — °]

At x = 10 we have

1 [(5000)(5
u10) = = {( ( 6)(2)5)) (1000 — (400 — 25)(10)]
50)(10
+ % [ ~8000 + (2)(20)(100) — 1000]}
w(10) = _6.77 X mf‘m

EI



Energy method

o Strain energy related 1) normal stress, 2) transverse shear stress
e For normal stress

Gxx:_l\/IZy
IZZ
0" = [ Zogy= (1 TMY g o= 1 Mo fy2aa o
v 2E | a 2EI2 ° 2E|2

) M ?
U :IO{ZEI }dx

* For shear stress resulting from V,

2
U =J, gg dv



Energy method

e Shear stress may vary across the cross section as a function of

both y and z

* Therefore, instead of determining the exact distribution of shear
stress, use “tabulated shape factors”

* The shape factors correlate the energy computed using actual
shear stress distribution with that of a cross section with equal
area but with a constant distribution of shear stress

2
.
U = —2dv
[ 2
U'=a [ Y
Y0 /{ZGA2

dA

2 V
=, | 9y =1
T Ty —>simplifie

y v e y plified A
z-xy—>simpliﬁed
2
dX =« j
' ZGA




Energy method — Example 12.11

For a beam with a rectangular cross section, as shown in Fig.
12.21, compute the shape factor associated with shear strain energy.
The beam is prismatic and the loading is in the xy plane.

We start by assuming that the shear stress distribution across
the face of the section can be adequately described by Jourowski’s
formula

;= Vsz ;._.' : - N _L
¥ Ib |-;_‘~b——-

Figure 12.21. Rectangular beam
section,

so that Eq. (12.15) becomes®



Energy method

= J[fag e[ 2]
* — —_ = — | X g
u J”za [ Ty Rl 1 e (@)
v v
Canceling terms from both sides of the equation and, recognizing
that the beam is prismatic of length L and cross section area A, we
integrate with respect to x on both sides and then with respect to A

on the right side. Then we get on cancelling L,

O
“ (b)

A Qz:lz
- cay= 2|22 aar
@ Iiz”[b 4
A

For the rectangle we have

A=bh
I, = 11_2th
B[R}
Q, = 2i\z) —¥| (From Example 11.7) Shape a,
7
Substitution of the above parameters into Eq. (b) yields é &5 (1.20)
4 P 2 ' '
bh J I [4[(2) Y] ] @) 1w aw
o, = L NS AN
¥ i_i:bZhﬁ )y bl @
- — 6 2
s ay —‘ g =E
So we see that the shape factor a, = 6/5 for the rectangular section. - ~ T“?——%;:I:::: (=1.00)
Note that we get the same shape factor for loading in the xz plane 5IE
(ic., @, = 6/5).5 L)

- Shape factors for other common cross sections are shown in Figure 12.22. Shape factors for
Fig. 12.22. common cross sections,



Energy method- Example 12.12

Determine the displacement at the tip (x = 0) of the end-

second theorem. Assume that the beam is prismatic and is made
from a linear elastic material.

Figure 12.23. Tip loaded cantilevered beam.

We start by assuming that the displacement at the beam tip is
due to both bending and shear deformation in the beam. We can
write U* (or U since the material is linear elastic) as the sum of the
flexural energy given by Eq. (12.14) and the shear energy given by
Eq. (12.17) (constitutive law)

U = r M; dx + JL—-V;
) 2EL, ) 2GA % (@

The bending moment at any position is M,(x) = —Px and the shear
is simply V| (x) = —P (equilibrium). Substitution into Eq. (a) gives

L(-Pxy Y-Py
U* = J dx + a J dx b
o 2EL, '}, 2GA (®)
Evaluating the integrals in Eq. (b) we get
P} PL
U =6EL. t Y264 ©

Using the second Castigliano theorem given in Eq. (6.58) we
can readily determine the displacement A at the location of and in
the direction of the load P as (compatibility)

ou* PL? PL
P ~AT3EL T Ga @

Since the solution for A is positive, the beam deflects in the direction
of the load P, as was expected. From our work in this chapter, we
recognize the first term on the right-hand side of Eq. (d) as the dis-

loaded cantilevered beam shown in Fig, 12.23 using Castigliano’s

placement at the tip of a point-loaded cantilevered beam. The sec-
ond term is the additional displacement due to the shear deforma-
tion in the beam.

Carrying the calculations further, we can determine the rela-
tive influence of the shear deformation on the tip displacement.
Assuming a rectangular cross section of height 4 and width b we
have from Example 12.11 [Fig. 12.22] « , = 6/5. The displacement
given by Eq. (d) is now expressed as

PLI4(LV} 6

-5 36 ©

If we assume the beam is made from steel (v = 0.3) then from Eq.
{6.10) we have E = G/2.6. Rewriting Eq. (¢)

PL LY i

A bhE [4(h) * 3'12] ®
The first term in the bracket of Eq. (f) is the contribution due to
bending, the second term is due to shear. The ratio of beam length
to height (L/h) is often called the aspect ratio of the beam. We can
see from Eq. (f} that for a beam with an aspect ratio of upity (i.e., L
= h}, the bending and shear contributions are of the same order of
magnitude; the shear deformation in this case is significant. As the
aspect ratio increases, the beam becomes slender and the relative
contribution to the displacement of the bending and shear terms
change. We can see in Eq. (f) that the aspect ratio, which appears in
the bending term, is to the second power while the shear term is con-
stant. Clearly, as the length of the beam becomes much greater than
its height, the affect of shear on the tip displacement becomes negli-
gible.” For example, with an aspect ratio L/k = 10, the contribution
of shear to the deformation is less than 1%, this drops to less than
0.2% for L/h = 20. Similar results are obtained with other beam
cross sections. We conclude that for slender beams (say, L/h = 10),
the effect of shear on the displacement may be ignored.



Homework by yourself

Solve examples 12.3, 12.6, 12.8, 12.13, 12.14

22
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