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Yield function and plastic strain

What we learn from this chapter

* |In chapter 12, yield function states the boundary between
elastic and elasto-plastic region and size of equivalent stress

 How can we define the direction of plastic flow?
— normality rule

e Could we define scalar strain value like a equivalent stress?
— work equivalence principle & equivalent strain



Additive decomposition of strain increment

1-D stress-strain curve

=

H H
plastic elastic

Additive decomposition
in general state

de=de® +dg’

Rigid-plasticity
(for large plastic deformation)

de=dé&° +dé”

~de’



Normality rule

Surface of plastic potential 1 direction plastic flow

de” (= D dt) ~ a%(")
0]

de®

Plastic potential

g(o)

Direction of plastic flow
= direction of gradient of potential



Assoclated/non-associated flow rule

Associated flow rule

Use yield function as plastic potential Yield function deP
g(o) = (o)
de =d1 19D _ 4, 99(0) (_ 4z 0000,
oo oo oo

Non-associated flow rule
Introduce another function to point out plastic flow

de”,

Yield function

f (o)

0o _4,99(0)( _ of(o)
de? =dA o (7& = j ¢

Plastic potential

d(o)




Plastic work equivalence principle

* Both yield surface and fixed scalar value, or so called equivalent stress

for the given stress state is described in 6(0) = const

* Equivalent stress plays a role in defining a generalized magnitude of the stress

* Similarly, equivalent (or effective) plastic strain increment, which is a conjugate quantity

of equivalent stress, can be defined based on plastic work equivalence principle

dw” =tr(ode®) =

o-defl=0,de

o(o)de(de”) = constant




Plastic work equivalence principle

» Effective plastic strain increment surface gives two information:

generalized magnitude of plastic strain increment and its surface

Yield surface & (o) = const Effective plastic strain increment surface
_ dw”
deP! de(def)=— = const
A & (o)(= const)
: 5!

d(de®)




Dual normality rules v

dw’ = o, dg; = 5de = constant

—d(dw?)=d (o )del +oyd(def ) =0

By the normality rule, |o;d (dgif) =0

Therefore, |o,d (dgij'?) =0

also,

odg(de”) _ 0 (de”) - ode(de”)

S e) N afee) 7 o)

)

de? =2 209) _y,9010) _4590(0)
oo oo oo

)




Effective plastic strain increment
as a first order homogeneous function

Proof

(ac)-(ﬁdsp) = afdwP®

afBdw’ = aﬂ&(c)dg(cap)
= E(ac)dg(ﬂcsp)

=ao(6)f"de(de)
s.n=1




Effective plastic strain increment
as a first order homogeneous function

Since (o) and &(deP) are first homogeneous function,

o-de’ =dA 62(0) .o=0dAo(o)=0c(o)de(de")
o
dA=deg(de?)

From normality rule,

of 05 _05
dap:dz—a(:)zd/l gi_a)(:dg ‘gg’)) — o =o(de")

Then, equivalent strain can be calculated like in below
o(de”)-de’
6 (o(de"))

For the simple cases like von Mises or Hill 1948,
analytical expressions can be obtained.

de =



Accumulative effective plastic strain

T~

Similar to the concept of travel length in geometry,

s:jds(dx):jdx

Accumulative effective plastic strain

§=jd§(dep)




Remark

Remark #13.3 Note that the standard elasto-plastic constititutive formation with
Eq. (13.1) 1s based on the normality rule in Eq. (13.3) so that it requires the yield
function as well as its diverse development. Meanwhile, the standard rigid-plastic
formulation 1s based on the normality rule in Eq. (13.7) so that it requires the plastic
strain increment function as well as its diverse development. However, the effective
plastic strain increment is required in order to calculate the accumulative effective
plastic strain in Eq. (13.13). Since rigid-plasticity 1s based on the plastic strain
increment function, calculating the accumulative effective plastic strain 1s
straightforward. For elasto-plasticity, a standard formulation to be discussed in
Chap. 16 calculates the magnitude of the effective plastic strain increment, without
requiring the explicit expression of the effective plastic strain increment as a
function of the plastic strain increment tensor. Similarly, rigid-plasticity does not
require the explicit expression of the effective stress as a function of the stress
tensor in order to calculate the size of the yield stress. Consequently,
clasto-plasticity requires only the effective stress as a function of the stress tensor,
while rigid-plasticity requires only the effective plastic strain increment as a
function of the plastic strain increment tensor. These will be discussed in Chap. 16.



Incompressibility

For the crystalline metals,
tr(de?)=deP =10,=0

~

l,: 1stinveriant of plasticstrain increment

For the normality rule,
b _ of (Gij) _ af(Sij’)g:kk)

dgii =0 <+— Hydrostatic stress independence
do; ooy

or dgp _ dep - af _ af (Sij’Mk) as|(| n af (Sij’Mk) aakk _ af (Slj ! Mk) aSk|

! ' doy Sy Joy doy 0o S, Joy

de; :deviatoric plasticstrain increment



Incompressibility
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Incompressible effective plastic strain
Increment surface in normal component space

* Normality rule leads to 2D membrane of the plastic strain increment surface in the 3D
normal stress component space, while the conjugate yield surface is a 3D cylinder

e Constructing a 3D cylindrical yield surface from the 2D plastic strain increment surface
based on the dual normality rule would be troublesome algebraically

e Afigurative justification would be possible by considering the two-dimensional membrane
as the limit of a 2D closed structure having a smooth curved side wall (with a half circular

cross-section)

4,20

def =

Normal direction of side wall cover
all possible hydrostatic stress

t—= 0

=de

*-

06 (o)

#

-----
o e

-
-------

d

deP

~ 95(0)

oo

Remark #13.6 Applying the normality rule in Eq. (13.3) figuratively and alge-
braically leads to the two-dimensional membrane of the plastic strain increment
surface in the three-dimensional normal stress component space, while the conju-
gate yield surface is a three-dimensional cylinder. However, constructing a
three-dimensional cylindrical yield surface from the two-dimensional plastic strain
increment surface based on the dual normality rule in Eq. (13.7) would be trou-
blesome algebraically. A figurative justification would be possible by considering
the two-dimensional membrane as the limit of a thin three-dimensional closed
structure having a smooth curved side wall (with a hall circular cross-section),
when its thickness converges to zero. Then, the normal direction of its side wall
would cover all possible hydrostatic stress, which is vertical to the deviatoric plane
as shown in Fig. 13.2.



Relations for incompressible plasticity

Work equivalence for the incompressmle plasticity

dw® =g, de; = (S; +%akk5ij)(de +3dg 0;)=S;de;=S;dg’ =5 (S)de(de”) = constant

mm*ij

Yield surfaces are symmetric

Normality rule for the incompressible plasticity with respect to deviatoric p,ane

80(8)( dE (de p)aa(S))

Dual normality rule for the incompressible plasticity \
g _ 2 0dg(de”) _ , adz” (de”) :Aadgp(dap)( 5(S )adgp(dap)) \

a(dep) 8(dep) 8( )

de’(=de”) =d2 ) g,
oS

) Yield surfaces are asymmetric
From dual normality rule, with respect to deviatoric plane

odz " (deP)

o=0(S) v + Bl ¢
o(de") \‘&

-




Incompressible & Isotropic case

dg(de®)
=dg(def,dgy,dey,n,n,,ny)
= dg (d glp’dglFl) . ngFI)I) <«— |sotropic case

— dg ( |~1’ r2’ r3) <+— Denote with invariants

s m-diagram
=dg(l,,J,, 1;) et
— dg (Jz, \]3) «— l\;cgr:?reisg’le case,
where

I,,T,, I, :invariants of plasticstrain increment

J,,J,,J, :invariants of deviatoric plasticstrain increment B 7N




Reference plastic strain increment

* As a conjugate of the reference yield stress for the yield surface (and the effective stress), there

is the reference plastic strain increment (as a scalar quantity) for the plastic strain increment
surface

Reference state for the incompressible, isotropic and symmetric plasticity shown
in below

Direction of plastic flow for the different reference state

(d el defl T, dellT) =—(def>,del> del) =def (4, ?1 ?1)

) (d ngBBT’ng pBBT ngpBBT) —(d ngBBC dgl pBBC ngpBBC _ ‘dglpl)lBBT‘(_,l,_

(d glpPSZ ngpI)PSZ dglpPSZ) dglpPSZ(l,O’ _1) . . .
Simple tension/compression-ST/SC

(d ngPSB ng?PS3 d8|pPS3) d5|pPS3(1, _1, 0) I;alanc;ed biaéisaltension/Compression: BBT/BBC
ure shear:




Reference plastic strain increment

Plastic work equivalence principle for the different reference state

( Simple tension/compression-ST/SC
ST pST _ __SC pSC p P
(7| d <9| — G| d g| — YdY balanced biaxial tension/Compression: BBT/BBC

Pure shear : PS

—A= _ BBT pBBT | __ BBC pBBT __
ocde =<0, |d‘9m |—|0'I |d‘9m = BdB

ZGIPSngIpPSZ — 20'|P53d8|pPS3 — KdK

\

where
( ( ST sC
dY =dg :‘dglpsc‘ Y=0"= ‘G, ‘
- _ _ pBBT | pBBC — _ BBT __ BBC
dz ={dB =|def*| =ds}, 5=1B=0/"" =|o}*|

dK =2d¢g™% = 2d g™’ K =02 =0c

J\




Reference plastic strain increment

Four reference states in the T diagram
in terms of plastic strain increment

Simple tension Balanced biaxial
dejy dey,
| |
def” def de” “de)
———dg” :(dY,—d—Y,—d—Y) ——de’ :(d—K,O,—d—K)
2 2 2 2
Pure shear(PS3) Pure shear(PS32
for plane strain(PLS3) for plane strain(PLS2)
dis‘l‘,’, dej
|
d glp/ d g} de’ g dep

—»dsp:(d%(,—d%(,O) —»dsp:(d;,d;,—dB)



Von Mises isotropic yield criterion

From normality rule,

d gij'.o =AS,

From work equivalence principle,

_ .~ A_ de
AS,S; =S,deP =6z =—52 — A="2
a o
From above equations,
— Sij
def = AS; =ade —
o

In addition,

- d7 = \/idgijpdgijp
a

defdef = AS,del = A5dE = adz’




Von Mises isotropic criterion

Reference state : simple tension

B ]
0 2
2
=Y 0 0
v 0 0 3 dgls;-'p 0
6,=|0 0 0|58, =| 0 -2y 0 |~dg~| 0 -ldgv
3 2
0 0 0 .
0 0o =Y 0 0
3

dEz\/ (1+i+l)dgffp de) P




Von Mises isotropic criterion

Ref: Balanced biaxial tension case

sde = \/idgifdgif
0

g 0 o0
B 0 0 3 ) def®? 0 0
oj=|0 B 0|>S;=| 0 2B 0 |~dg~| 0 d&™ 0
0 0 0 , 0 0 -2dg®r
0 0 -ZB
3
07 = |2 (L+1+4)de™P = 2de®P =[ds2, = desT
& = 5 &11 — é11 = Y €thickness | = Y €11

|



Von Mises isotropic criterion

Pure shear case

_ 1 3
de =,|—dglde’ | a=5
a J J 9
0 K O 0 K 0 0 dglF;s,p
o = K 0 O —)Sij K 0 0]~ dgijp - dglF;s,p 0
O 0 O O 0 O 0 0
dg — g(]__'_l)ngS,p _ingS,p . ngT,p _‘ngB,p
a \/ 3 1z \/§ 2 Y1 thickness
while

=Y =B =+/3K



Tresca isotropic yield criterion

Tresca yield criterion

S _S. equivalent .
& = 2max ~ i & ={a(|S, = Sy|+[Sy = Su|+[Su —S])}
2
Gradient of stress or strain increment surface is not unique for the sharp corner
Yield surface of Tresca Plastic strain increment surface of Tresca
p
on(Sy) dey,

o, (Sy)




Tresca isotropic yield criterion

Introducing smoothing at the sharp corner of the Tresca

0<y<1
For the simple tension For the balanced biaxial
deP 0 0 L-p)def®| 0 0
de™ =| 0 (-1+y)de 0 de™®® = 0 yldei®| o
0 0 —ydel 0 0 —|de|

dey, def




Non-quadratic isotropic incompressible
yield criterion

Hosford set

Yield surface Plastic strain increment surface )

i =

5:{05(\8.\M +[S," +[Su|" )}M dg:{ﬂ(|d‘9lp|M +|d‘9'ﬁ)|M +|d‘9'F')' |M )}M
de?




Non-quadratic isotropic incompressible
yield criterion

Inverse Hosford set

Yield surface Plastic strain increment surface
1 1

i {a(‘SI _S“‘M +‘S” _SHI‘M +‘S"| _S"M )}M dE:{ﬂ(‘dglp _dg'?‘M +‘dgﬁ _dgﬁl‘M +‘d8.7| —d8|p‘M )}M

O d E fU




Hill 1948 yield criterion

Yield surface
f(o)=6°"= Flo,, ~-0,)+G(o,-0,) +H(o,, —ny)2

+ 2Lc7yz2 +2Mo,° + ZNO'Xy2

Conjugate plastic strain increment surface

dEZ :(G+H)4 (F(dgxi)2+G(d8§y)2+H (dgzg)z)-l_Z(dE;Z)z +2(d8£()2 +2<d5)§/)2
(FG+GH+HF) L M v




Drucker-Prager isotropic
compressible yield criterion

Drucker-Prager criterion

o =./2ad,+pl,

From normality rule and work equivalence principle,

p_ p_ p L Py — 3 L .Y ~dF
dw” = oy de; _Sijdeij+3(0ii)(dgjj) (\/E)(\ﬁ)*‘(\/é)(\/g) X-X=0ode

Drucker-Prager criterion is axisymmetric in the principle stress space
Therefore, Sand de are parallel to each other

+S,def =|s||d e’|= (y23,)(y/2T,)

=20

K = a2)

Case 1: B3>0 Case 2 : B<0

Oy

Hydrostatic Line|| (1, 1, 1)

Hydrostatic Line|| (1, 1, 1)

Deviatoricplane




Drucker-Prager yield criterion

Drucker-Prager yield surface and its conjugate surface when >0

O-III(d‘c"f?I)
2/ | I ]
(J27,) NN
0 C’_H(d‘c"f?)
O-L(defg)
2-D side view
NVANES
™
9 4
\/E * 1\‘\‘ LT
o N\
N
P _

dey (o)

Jadz

[

343

def (o,

27, (27)

dey (o)

=
72

O
y

s
=
Q.
|

& =2ad,+pl,



Drucker-Prager yield criterion

Variation of Drucker —Prager yield criterion(double cone shape case)
Yield surface and its conjugate surface

onldey)

NA
(27,

o(def)

2-D side view

BILGRT)

G

deg (o)
(27 ALy
G =20, +B]1
“\b =
W75 ds? (o)
def (op)
J2LGRT)
X
\/G(_dé‘_ I, I
e

1|

V3pd




Drucker-Prager yield criterion

Variation of Drucker —Prager yield criterion(ellipsoid shape case)

Yield surface and its conjugate surface

5 =200, +pI

on(def)
\/ﬁ A
(27))
-
O
o (def)

2J,
N (2J,)
LR
3 3
JH(dEE[U}

def (o))

dgl*fIEJIE)
A




