457.646 Topics in Structural Reliability In-Class Material: Class 01

)

I. Introduction

Our Content of Cont

① (): Inherent randomness (or physical fluctuation)

e.g. earthquake intensity (PGA, PGV, ...), wind velocity, maximum flow rate

 \Rightarrow () be reduced

② (): uncertainty due to insufficient (

() uncertainty: imperfect or simplified model (e.g.
$$3D\rightarrow 2D$$
)

missing variables or effects

- () uncertainty: insufficient data

e.g. "sample mean is not the true mean"

 \Rightarrow () be reduced by investing more in knowledge and data

Der Kiureghian, A., and O. Ditlevsen (2009). Aleatory or epistemic? Does it matter? *Structural Safety*, **31**: 105-112

Our Content of Cont

457.646 Topics in Structural Reliability (Theory)

- Focus: methods for quantifying risk & applications
- Provide overview and applications of " " reliability methods
 - \Rightarrow The word " " does not refer to physical structures (buildings and bridges, ...)
 - \Rightarrow in an () & () manner

- Part 2: Basic theory of probability & statistics (≤ 3 weeks) (ref. A&T textbook)
- Part 3: Structural Reliability Analysis (SRA) Component

- Reliability index: $eta_{\scriptscriptstyle MVFOSM},eta_{\scriptscriptstyle HL}$
- Reliability methods: FORM, SORM, etc. (how to integrate <)
- Part 4: Structural Reliability Analysis (SRA) System

- Reliability methods developed to handle system failure domains
- : "System" reliability methods
- Part 5: Structural Reliability under Epistemic Uncertainty

$$P_f = \int_{g(\mathbf{x}; \) \le 0} f_{\mathbf{x}}(\mathbf{x}; \) \ d\mathbf{x}$$

- \Rightarrow Monte Carlo simulations
- ⇒ Efficient Sampling methods

$$Y = g(\mathbf{x})$$

Part 8: Applications

II. Basic theory of Probability and Statistics

1. Set Theory

Why do we need 'set theory' in uncertainty analysis?

- Uncertainty: a () of possible (e.g. toss a coin roll a dice weight of a car
- **Probability:** numerical measure of the () of an event (i.e. a group of outcomes) of interest () the other possible outcomes

)

e.g. "unfair coin"

- Uncertainty analysis starts with () the collection of all possible outcomes
- Principles of set theory are essential tool for this task.

2. Definitions

(a) **Sample space** (): the set of () possible outcomes **Sample point** (): an () outcome

Criteria	Sample space	Examples
Continuous?	"Discrete": () quantities	# of typhoons at city A in a year S={ }
Continuous?	"Continuous": () quantities	% of congested traffic in Seoul S={ }
Can count	"Finite" : () () and ()	S = { }
sample points?	() or ()	S = { }

- (b) **Event** (): any collection of sample () or any () of sample space
 - e.g. Baseball: outcomes of each "at-bat"

S=

discrete or continuous?

infinite or finite?

"A hitter reaches a base"

E=

- (c) Some notable events
 - () event: E=
 - Occurs with certainty
 - () event: E= - cannot occur
 - **Complementary** event of *E*:() or ()
 - An event that contains () the sample points that are () in E

- e.g. "at-bat" outcomes

E: "a hitter reaches a base"

$$\overline{E} =$$

-e.g. $\overline{S} =$, $\overline{\phi} =$

(d) **Venn diagram**: (points and events

) representation of the sample space, sample

) & (

* GUI-based interactive learning tools for Venn diagrams (and other statistical concepts) are available at http://www.stat.berkeley.edu/~stark/Java/Html/

457.646 Topics in Structural Reliability In-Class Material: Class 02

) reliability analysis

 E_i

- (1) "Union" of events: $E_1 \qquad E_2$
 - An event that contains all the sample points that are in E_1 E_2

- e.g., Concrete mixing
- E_1 : shortage of water E (concrete can't be produced) =

=

- E_2 : shortage of sand
- E_3 : shortage of gravel
- E_4 : shortage of cement
- e.g., Wind
- E_1 : blown off due to pressure $E = E_1$ E_2
- E_2 : missile-like flying objects
- e.g., Bridge pier under EQ
- E_1 : reaches displacement capacity $E = E_1 \qquad E_2$
- E_2 : reaches shear capacity
- $\begin{array}{ll} \bigstar & A \cup S = \\ A \cup \phi = \\ A \cup A = \\ \text{If } A \subset B \text{ , then } A \cup B = \end{array}$

② "intersection" of events $E_1 = E_2$ or

: an event that contains all the sample points that are both in $E_1 - E_2$

 $A \cdot S =$

$$A \cdot \phi =$$

$$A \cdot A =$$

If $A \subset B$, then $AB =$

e.g.,

No evacuation by freeway E =

Exposed to pollutant E =

Operation Rules

$E_1 \cup E_2 =$
$E_1E_2 =$
$(E_1 \cup E_2) \cup E_3 = =$
$(E_1 E_2) E_3 = =$
$(E_1 \cup E_2)E_3 =$
$(E_1E_2) \cup E_3 =$
$\overline{(\underline{b},\underline{b},\underline{b})} =$
$(\bigcap_{i=1}^{i} E_i) =$
-

Relationship between events

① Mutually Exclusive events: $E_1E_2 =$

- Cannot occur together
- e.g. E_1 and $\overline{E_1}$
- $E_1 \cdots E_n$ and $\overline{E_i}$, $i \in \{1, \cdots, n\}$

S

E2

(2) Collectively Exhaustive events: $\bigcup_{i=1}^{n} E_i =$

■ The union constitutes the sample space

* <u>MECE:</u>

2. Mathematics of Probability (measure of likelihood of event)

Approach	Description	Example : Prob. (a "Yut" stick shows the flat side)
Notion of Relative	Relative frequency based on empirical data. Prob. = (# of occurrences) / (# of	
Frequency	observations)	
On a Priori Basis	Derived based on elementary assumptions on likelihood of events	
On Subjective Basis	Expert opinion ("degree of belief")	
Based on Mixed Information	Mix the information above to assign probability	

© Four approaches for assigning probability of events

Axioms of Probability

"Axioms": Statements or ideas which people <u>accept</u> as being the foundation of theory

I. P(E) = 0II. P(S) = 1III. M.E $E_1 \& E_2 : P(E_1 \bigcup E_2) = 1$

As a result,

(1) $\leq P(E) \leq$	$(\because P(S) = P(\bigcup)) = +$	=)
2 $P(\phi) =$	$(\because P(S \cup \phi) = + =$)
③ $P(\overline{E}) =$	$(\because P(E \cup \overline{E}) =$)
(4) $P(E_1 \cup E_2) = P(E_1)$	$P(E_2) \qquad P(E_1E_2)$	
*Addition RuleVenn DiagramFormal Proof	$F_{1} \xrightarrow{\mathbf{S}} \overline{\mathbf{E}_{2}}$ $P(E_{1} \cup E_{2}) = P(E_{1} \cup \overline{E}_{1}E_{2}) = P(E_{1}) + P(\overline{E}_{1}E_{2})$ $P(E_{2}) = P(E_{1}E_{2}) + P(\overline{E}_{1}E_{2})$	

"Inclusion-Exclusion Rule"

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum \sum P(E_{i}E_{j}) + \sum \sum P(E_{i}E_{j}E_{k}) + \dots + (-1)^{n-1} \times P(E_{1}\cdots E_{n})$$

© Conditional Probability & Statistical Independence

① Conditional Probability

■ C.P of given

 $P(E_1 \,|\, E_2) \equiv$

- ③ "Multiplication Rule": $P(E_1E_2) =$

$$(:: P(E_1 | E_2) =)$$

- $P(E_1E_2E_3) =$

-
$$P(E_1 \cdots E_n) =$$

- ④ All the other prob. rules should be applicable to conditional probabilities as long as all the prob. are defined within the same space
 - $P(E_1 \cup E_2 | E_3) =$
 - $P(E_1E_2|E_3) =$

-
$$P(\overline{E_1}|E_3) =$$

- 5 **Statistical Independence:** The occurrence of one event does not affect the likelihood of the other event
 - $P(E_1|E_2) =$
 - $P(E_2|E_1) =$
 - $P(E_1E_2) =$
 - cf. Mutually Exclusive $P(E_1E_2) = 0$

Total Prob. Theorem

 $P(E) \rightarrow$ Not easy to get directly $P(E \mid E_i) \rightarrow$ Easier to get $P(E) = \sum_{i=1}^{n}$

Proof:

Examples:

(1) Seismic hazard analysis:

$$P(E) =$$

FIG. 3.1 TYPE 1 SOURCE (BASIC CASE)

Der Kiureghian, A. (1976). *A line source-model for seismic risk analysis*, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, USA.

(2) Probability of structural failure under an uncertain input intensity: Fragility

Bayes Theorem

$$P(E_i|E) = \frac{P(E|E_i)}{E_i}$$

- Decision making
- Parameter estimation
- Inference

Example)

Measure of cleanness, X (0 : contaminated ~ 100 : clean)

	$P(E_i)$	$P(X \le 20 E_i)$
1	0.1	0.9
2	0.3	0.2
3	0.6	0.01

 $X \leq 20 \Rightarrow$ Which one failed?

$$P(E_i \mid X \le 20) =$$

457.646 Topics in Structural Reliability Normal (Gaussian) Distribution

1. Normal distribution

- Best known and most widely used. Also known as ______ distribution.
- According to ______, the sum of random variables converges to a normal random variable as the number of the variables increases, no matter what distributions the variables are subjected to.
- Completely defined by the _____ and the _____ of the random variable.
- (a) PDF: $X \sim N(\mu, \sigma^2)$

$$f_{X}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right], -\infty < x < \infty$$

Figure 1. PDF's of normal random variables with different values of $\,\mu$

Figure 2. PDF's of normal random variables with different values of $\,\sigma$

(b) CDF: no closed-form expression available

$$F_{X}(x) = \int_{-\infty}^{x} f_{X}(x) dx, -\infty < x < \infty$$

- (c) Parameters: μ , σ
 - μ : ______ of the random variable, i.e. $\mu = \mu_X \equiv E[X]$
 - σ : ______ of the random variable, i.e. $\sigma = \sigma_X \equiv \left\{ E[(X \mu_X)^2] \right\}^{0.5}$

(d) Shape of the PDF plots

- Symmetric around *x* =
- A change in μ_x _____ the PDF horizontally by the same amount.
- The larger the value of σ_x gets, the more ______ the PDF becomes around the central axis.

1a. Standard normal distribution

- A special case of the normal distribution: $\mu_X =$, $\sigma_X =$
- The CDF of the standard normal distribution can be used for computing the CDF of any general normal random variable.
- (a) PDF: $U \sim N(, ^2)$

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right), \ -\infty < u < \infty$$

(b) CDF:

$$\Phi(u) = \int_{-\infty}^{u} \phi(u) du , \quad -\infty < u < \infty$$

- → no closed-form expression available, but the table of the standard normal CDF $\Phi(\cdot)$ can be found in books or computer software (e.g. See Appendix A of A&T)
- (c) Inverse CDF of standard normal distribution: $\Phi^{-1}(\cdot)$

$$\Phi(u_p) = p \quad \Leftrightarrow \quad u_p = \Phi^{-1}(p)$$

(d) Symmetry around u = :

$$\Phi(-u) = 1 - \Phi(u)$$
$$u_{1-p} = -u_p$$

- → The table of the standard normal CDF is often provided for positive *u* values only, but using the symmetry one can find the CDF for negative values as well.
- (e) One can compute the CDF of a general normal random variable $X \sim N(\mu, \sigma^2)$ by use of the CDF of the standard normal random variable $U \sim N(0, 1^2)$ as follows.

$$F_{X}(a) = P(X \le a)$$

$$= \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] dx$$

$$= \int_{-\infty}^{\left(\frac{a-\mu}{\sigma}\right)} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}u^{2}\right) \sigma du$$

$$= \Phi\left(----\right)$$
Hence, $P(a < X \le b) = F_{X}(-) - F_{X}(-) = \Phi\left(----\right) - \Phi\left(-----\right)$

Example 1: Given a standard normal distribution, find the area under the curve that lies

- (a) to the right of u = 1.84
- (b) between u = -1.97 and u = 0.86

Example 2: The drainage demand during a storm (in mgd: million gallons/day): $X \sim N(1.2, 0.4^2)$. The maximum drain capacity is 1.5 mgd.

(a) Probability of flooding?

(b) Probability that the drainage demand during a storm will be between 1.0 and 1.6 mgd?

(c) The 90-percentile drainage demand?

Seoul National University

Instructor: Junho Song

х	PHI(x)	х	PHI(x)	х	PHI(x)	х	PHI(x)	Х	PHI(x)
0.00	0.5	0.90	0.81593987	1.80	0.96406968	2.70	0.99653303	3.60	0.999840891
0.01	0.50398936	0.91	0.81858875	1.81	0.96485211	2.71	0.99663584	3.61	0.999846901
0.02	0 50797831	0.92	0 82121362	1 82	0.9656205	2 7 2	0 9967359	3.62	0 999852698
0.02	0.50757051	0.02	0.02121302	1.02	0.0000200	2.72	0.00602220	3.62	0.000050000
0.03	0.51196647	0.93	0.82381446	1.83	0.96637503	2.73	0.99683328	3.63	0.999858289
0.04	0.51595344	0.94	0.82639122	1.84	0.96711588	2.74	0.99692804	3.64	0.999863681
0.05	0.51993881	0.95	0.82894387	1.85	0.96784323	2.75	0.99702024	3.65	0.99986888
0.06	0 52392218	0.96	0 83147239	1 86	0 96855724	2 76	0 99710993	3.66	0 999873892
0.00	0.52552210	0.50	0.00147200	1.00	0.00000724	2.70	0.00710300	0.00	0.000070002
0.07	0.52790317	0.97	0.83397675	1.87	0.96925809	2.77	0.99719719	3.67	0.999878725
0.08	0.53188137	0.98	0.83645694	1.88	0.96994596	2.78	0.99728206	3.68	0.999883383
0.09	0.53585639	0.99	0.83891294	1.89	0.97062102	2.79	0.9973646	3.69	0.999887873
0.10	0 53982784	1.00	0 84134475	1 90	0 97128344	2.80	0 99744487	3 70	0 0008022
0.10	0.555502704	1.00	0.04104475	1.50	0.07120044	2.00	0.00750000	0.70	0.0000022
0.11	0.54379531	1.01	0.84375235	1.91	0.97193339	2.81	0.99752293	3.71	0.99989637
0.12	0.54775843	1.02	0.84613577	1.92	0.97257105	2.82	0.99759882	3.72	0.999900389
0.13	0.55171679	1.03	0.848495	1.93	0.97319658	2.83	0.9976726	3.73	0.99990426
0 14	0 55567	1 04	0 85083005	1 94	0 97381016	2.84	0 99774432	3 74	0 00000700
0.14	0.0001700	1.04	0.05003003	1.34	0.97301010	2.04	0.33774432	0.74	0.33330733
0.15	0.55961769	1.05	0.85314094	1.95	0.97441194	2.85	0.99781404	3.75	0.999911583
0.16	0.56355946	1.06	0.8554277	1.96	0.9750021	2.86	0.99788179	3.76	0.999915043
0.17	0.56749493	1.07	0.85769035	1.97	0.97558081	2.87	0.99794764	3.77	0.999918376
0.18	0 571/2372	1.08	0.85002801	1 08	0 0761/82/	2.88	0.00801162	3 78	0 000021586
0.10	0.57142572	1.00	0.00000000	1.30	0.37014024	2.00	0.33001102	0.70	0.333321300
0.19	0.57534543	1.09	0.86214343	1.99	0.97670453	2.89	0.99807379	3.79	0.999924676
0.20	0.57925971	1.10	0.86433394	2.00	0.97724987	2.90	0.99813419	3.80	0.999927652
0.21	0.58316616	1.11	0.86650049	2.01	0.97778441	2.91	0.99819286	3.81	0.999930517
0.22	0 58706442	1 1 2	0 86864312	2 02	0 07830831	2 02	0.0082/08/	3.82	0 000033274
0.22	0.56700442	1.12	0.00004312	2.02	0.97830831	2.92	0.99024904	3.62	0.999933274
0.23	0.59095412	1.13	0.87076189	2.03	0.97882173	2.93	0.99830519	3.83	0.999935928
0.24	0.59483487	1.14	0.87285685	2.04	0.97932484	2.94	0.99835894	3.84	0.999938483
0.25	0.59870633	1.15	0.87492806	2.05	0.97981778	2.95	0.99841113	3.85	0.999940941
0.26	0.60256811	1 16	0.8760756	2.06	0.08030073	2.06	0.008/618	3.86	0 0000/3306
0.20	0.00230011	1.10	0.0703730	2.00	0.30030073	2.30	0.3304010	5.00	0.999943300
0.27	0.60641987	1.17	0.87899952	2.07	0.98077383	2.97	0.998511	3.87	0.999945582
0.28	0.61026125	1.18	0.88099989	2.08	0.98123723	2.98	0.99855876	3.88	0.999947772
0.29	0.61409188	1.19	0.8829768	2.09	0.9816911	2.99	0.99860511	3.89	0.999949878
0.20	0 617011/2	1 20	0 88403033	2 10	0 98212559	3 00	0 0086501	3 00	0 999951904
0.30	0.01731142	1.20	0.00433033	2.10	0.00210000	0.00	0.0000001	0.00	0.000050050
0.31	0.62171952	1.21	0.88686055	2.11	0.98257082	3.01	0.99869376	3.91	0.999953852
0.32	0.62551583	1.22	0.88876756	2.12	0.98299698	3.02	0.99873613	3.92	0.999955726
0.33	0.62930002	1.23	0.89065145	2.13	0.98341419	3.03	0.99877723	3.93	0.999957527
0.24	0.62207174	1.24	0.9025122	2.14	0.00202262	2.04	0.00001711	2.04	0.000050250
0.34	0.03307174	1.24	0.0925125	2.14	0.90302202	3.04	0.99001711	3.94	0.9999959259
0.35	0.63683065	1.25	0.89435023	2.15	0.98422239	3.05	0.99885579	3.95	0.999960924
0.36	0.64057643	1.26	0.89616532	2.16	0.98461367	3.06	0.99889332	3.96	0.999962525
0.37	0 64430875	1 27	0 89795768	2 17	0 98499658	3 07	0 99892971	3 97	0 999964064
0.38	0.64802720	1.28	0 800727/3	2.18	0.08537127	3.08	0.008065	3.08	0.000065542
0.50	0.04002723	1.20	0.03372743	2.10	0.30537127	5.00	0.330303	5.50	0.3333000042
0.39	0.65173173	1.29	0.90147467	2.19	0.98573788	3.09	0.99899922	3.99	0.999966963
0.40	0.65542174	1.30	0.90319952	2.20	0.98609655	3.10	0.9990324	4.00*	3.16712E-05
0.41	0.65909703	1.31	0.90490208	2.21	0.98644742	3.11	0.99906456	4.05	2.56088E-05
0.42	0 66275727	1 22	0.00659240	2.22	0.09670062	2 1 2	0.00000574	4 10	2 065755 05
0.42	0.002/3/2/	1.32	0.90038249	2.22	0.90079002	3.12	0.99909574	4.10	2.00373E-03
0.43	0.66640218	1.33	0.90824086	2.23	0.98712628	3.13	0.99912597	4.15	1.66238E-05
0.44	0.67003145	1.34	0.90987733	2.24	0.98745454	3.14	0.99915526	4.20	1.33457E-05
0.45	0.67364478	1.35	0.91149201	2.25	0.98777553	3.15	0.99918365	4.25	1.06885E-05
0.46	0.6772/190	1.26	0.01209504	2.26	0.00000027	2.16	0.00021115	4 20	9 52001E 06
0.40	0.07724109	1.30	0.91306504	2.20	0.90000937	3.10	0.99921115	4.30	0.00991E-00
0.47	0.68082249	1.37	0.91465655	2.27	0.98839621	3.17	0.99923781	4.35	6.80688E-06
0.48	0.6843863	1.38	0.91620668	2.28	0.98869616	3.18	0.99926362	4.40	5.41254E-06
0 49	0 68793305	1 39	0 91773556	2 29	0 98898934	3 19	0 99928864	4.45	4 29351E-06
0.10	0.60146246	1.00	0.01024224	2.20	0.000000001	2 20	0.00021286	4.50	2 20767E 06
0.50	0.09140240	1.40	0.91924334	2.30	0.96927569	3.20	0.99931200	4.50	3.39/0/E-00
0.51	0.69497427	1.41	0.92073016	2.31	0.98955592	3.21	0.99933633	4.55	2.68230E-06
0.52	0.69846821	1.42	0.92219616	2.32	0.98982956	3.22	0.99935905	4.60	2.11245E-06
0.53	0.70194403	1.43	0.92364149	2.33	0.99009692	3.23	0.99938105	4.65	1.65968E-06
0.54	0 70540149	1 4 4	0.0250662	2.00	0.00025912	2.24	0.00040225	4 70	1 20091E 06
0.54	0.70540148	1.44	0.9250005	2.34	0.99035613	3.24	0.99940235	4.70	1.300812-00
0.55	0.70884031	1.45	0.92647074	2.35	0.99061329	3.25	0.99942297	4.75	1.01708E-06
0.56	0.71226028	1.46	0.92785496	2.36	0.99086253	3.26	0.99944294	4.80	7.93328E-07
0.57	0 71566115	1 47	0 92921912	2 37	0 99110596	3 27	0 99946226	4.85	6 17307E-07
0 50	0 7100/260	1 / 0	0 03056330	2.20	0.00134269	3.20	0 00010000	4 00	4 701935 07
0.50	0.7 1904209	1.40	0.0000000000000000000000000000000000000	2.30	0.39134308	3.20	0.33340030	4.30	4.13103E-U/
0.59	0.72240468	1.49	0.93188788	2.39	0.99157581	3.29	0.99949906	4.95	3.71068E-07
0.60	0.72574688	1.50	0.9331928	2.40	0.99180246	3.30	0.99951658	5.00	2.86652E-07
0.61	0.7290691	1.51	0.93447829	2.41	0.99202374	3.31	0.99953352	5.10	1.69827E-07
0.62	0 73237111	1 50	0 03574454	2 / 2	0 00222075	3 3 3	0 90054004	5 20	9 96113E 09
0.02	0.70505071	1.52	0.00004401	2.42	0.00220010	0.02	0.00050577	5.20	5.50445
0.63	0.73565271	1.53	0.93699164	2.43	0.99245059	3.33	0.99956577	5.30	5.79013E-08
0.64	0.7389137	1.54	0.93821982	2.44	0.99265637	3.34	0.99958111	5.40	3.33204E-08
0.65	0.74215389	1.55	0.93942924	2.45	0.99285719	3.35	0.99959594	5.50	1.89896E-08
0.66	0 74537300	1 56	0 94062006	2 46	0 99305315	3 36	0 99961029	5 60	1 07176E-08
0.00	0.7405744	1.50	0.0447004	2.40	0.00004405	0.00	0.00000440	5.00	F 00007E 00
0.67	0.7485711	1.57	0.94179244	2.47	0.99324435	3.37	0.99962416	5.70	5.99037E-09
0.68	0.75174777	1.58	0.94294657	2.48	0.99343088	3.38	0.99963757	5.80	3.31575E-09
0.69	0.75490291	1.59	0.9440826	2.49	0.99361285	3.39	0.99965054	5.90	1.81751E-09
0.70	0 75803635	1 60	0.94520071	2 50	0 99379033	3 40	0 99966307	6.00	9 86588E-10
0.70	0.70444700	1.00	0.04000407	2.50	0.00000044	0.40	0.00007540	0.00	5.0000L-10
0.71	0.76114793	1.61	0.94630107	2.51	0.99396344	3.41	0.9996/519	6.10	5.30342E-10
0.72	0.7642375	1.62	0.94738386	2.52	0.99413226	3.42	0.99968689	6.20	2.82316E-10
0.73	0.76730491	1.63	0.94844925	2.53	0.99429687	3.43	0.99969821	6.30	1.48823E-10
0.74	0 77035	164	0 94949742	254	0 90445720	3 44	0 90070014	6.40	7 768855-11
0.74	0.77007005	1.04	0.04040142	2.04	0.00404005	0.44	0.00074074	0.40	1.10000E-11
0.75	0.77337265	1.65	0.95052853	2.55	0.99461385	3.45	0.99971971	6.50	4.01600E-11
0.76	0.77637271	1.66	0.95154277	2.56	0.99476639	3.46	0.99972991	6.60	2.05579E-11
0.77	0.77935005	1.67	0.95254032	2.57	0.99491507	3.47	0.99973977	6.70	1.04210E-11
0.79	0 78230456	1 69	0 95352134	2 5 9	0 99505000	3 4 8	0 9007/020	08.8	5 23003E-12
0.70	0.10230430	1.00	0.0002104	2.00	0.99000998	3.40	0.33314329	0.00	0.20090E-12
0.79	0.78523612	1.69	0.95448602	2.59	0.9952012	3.49	0.99975849	6.90	2.60014E-12
0.80	0.7881446	1.70	0.95543454	2.60	0.99533881	3.50	0.99976737	7.00	1.27987E-12
0.81	0.79102991	1.71	0.95636706	2.61	0.99547289	3.51	0.99977595	7.10	6.23834E-13
0 00	0 70200105	1 72	0 05720270	2.57	0.00560251	3 50	0 00070400	7 20	3 010025 12
0.02	0.7007000	1.72	0.00120318	2.02	0.33000301	3.52	0.00070000	7.20	4 420055 40
0.83	0.79673061	1.73	0.95818486	2.63	0.99573076	3.53	0.99979222	7.30	1.43885E-13
0.84	0.79954581	1.74	0.95907049	2.64	0.9958547	3.54	0.99979994	7.40	6.80567E-14
0.85	0.80233746	1.75	0.95994084	2.65	0.99597541	3.55	0.99980738	7.50	3.18634E-14
98.0	0 80510549	1 76	0 9607961	2 66	0 99609297	3 56	0 90081/57	7 60	1 47660E-14
0.00	0.00310340	1.70	0.0010001	2.00	0.00000207	0.00	0.000001407	7.00	0.770000=14
0.87	0.8078498	1.77	0.96163643	2.67	0.99620744	3.57	0.99982151	7.70	6.//236E-15
0.88	0.81057035	1.78	0.96246202	2.68	0.99631889	3.58	0.9998282	7.80	3.10862E-15
0.89	0.81326706	1.79	0.96327304	2.69	0.9964274	3.59	0.99983466	7.90	0.00000E+00

* Note: For x>=4.0, 1-PHI(x) is given instead.

Full Name	Short	Parameters	Probability Density/Mass Function	Mean	Variance
Binomial	bino	$0n integer$	$\binom{n}{x} p^{x} (1-p)^{(n-x)}, x = 0, 1, \dots, n$	np	<i>np</i> (1 – <i>p</i>)
Geometric	geo	0 < <i>p</i> < 1	$p(1-p)^x$, $x = 0.1, 2,$	(1-p)/p	$(1-p)/p^2$
Hypergeometric	hyge	$0 < K, N \le M$ K, N, M integers	$\binom{K}{x}\binom{M-K}{N-x}\binom{M}{N}^{-1}, K+N-M \le x \le K$	$\frac{NK}{M}$	$N\frac{K}{M}\frac{M-K}{M}\frac{M-N}{M-1}$
Negative Binomial	nbin	$0r integer$	$\binom{r+x-1}{x}p^r(1-p)^x, x=0,1,\dots$	r(1-p)/p	$r(1-p)/p^2$
Poisson	poiss	0 < λ	$\frac{\lambda^x}{x!}e^{-\lambda}, x = 0, 1, \dots$	λ	λ
Beta	beta	0 < <i>a</i> , <i>b</i>	$B(a,b)^{-1}x^{a-1}(1-x)^{b-1}, 0 \le x \le 1$	a/(a+b)	$ab/(a+b+1)/(a+b)^2$
Chisquare	chi2	0 < v	$x^{(\nu-2)/2}e^{-x/2}2^{-\nu/2}\Gamma(\nu/2)^{-1}, 0 < x$	ν	2v
Exponential	exp	0 < μ	$\mu^{-1}e^{-x/\mu}, 0 < x$	μ	μ^2
F	f	$0 < v_1, v_2$	$\frac{\Gamma[(v_1 + v_2)/2](v_1/v_2)^{v_1/2} x^{v_1/2 - 1}}{\Gamma(v_1/2)\Gamma(v_2/2)[1 + (v_1/v_2)x]^{(v_1 + v_2)/2}}, 0 < x$	$v_2 / (v_2 - 2)$	$\frac{2v_2^2(v_1+v_2-2)}{v_1(v_2-2)^2(v_2-4)}$
Gamma	gam	0 <i><a</i> , <i>b</i>	$b^{-a}\Gamma(a)^{-1}x^{a-1}e^{-x/b}, 0 < x$	ab	ab^2
Lognormal	logn	λ, 0 < ζ	$x^{-1}\xi^{-1}(2\pi)^{-1/2}\exp[-(\ln x - \lambda)^2/2\xi^2], 0 < x$	$e^{(\lambda+0.5\xi^2)}$	$e^{(2\lambda+2\xi^2)}-e^{(2\lambda+\xi^2)}$
Normal	norm	$\mu, 0 < \sigma$	$\sigma^{-1}(2\pi)^{-1/2} \exp[-(x-\mu)^2/2\sigma^2]$	μ	σ^2
Rayleigh	rayl	0 < <i>b</i>	$xb^{-2}\exp(-x^2/2b^2), 0 < x$	$b\sqrt{\pi/2}$	$(4-\pi)b^2/2$
Т	t	0 < v	$(\nu\pi)^{-1/2}\Gamma((\nu+1)/2)\Gamma(\nu/2)^{-1}(1+x^2/\nu)^{-(\nu+1)/2}$	0	v/(v-2)
Uniform	unif	<i>a</i> < <i>b</i>	$(b-a)^{-1}, a \le x \le b$	(a+b)/2	$(b-a)^2/12$
Weibull	weib	0 < a, b	$abx^{b-1}e^{-ax^b}, 0 < x$	$a^{-1/b}\Gamma(1+b^{-1})$	$a^{-2/b}[\Gamma(1+2b^{-1})-\Gamma^2(1+b^{-1})]$

Probability Distribution Models in Matlab® Statistics Toolbox

Use *shortname***pdf**() to compute the probability density/mass function; *shortname***cdf**() to compute cumulative distribution function; *shortname***fit**() to estimate parameters from data; *shortname***rnd**() to generate random numbers; *shortname***stat**() to compute mean and variance for specified parameters; and *shortname***inv**() to compute the inverse cumulative probability. Use Matlab® help to learn more about these commands.

457.646 Topics in Structural Reliability In-Class Material: Class 03

3. Random Variables, Prob. Functions & Partial Descriptors:

- Tools to associate uncertain q_____ with probabilities

Random variables

: a variable ______ that takes on one of the values in a specified set according to the assigned probabilities

Example: X = the random number one can get from throwing a fair dice

Specified set: Assigned probabilities:

Functions for discrete random variables

① Probability _____ Function () of X

$$P_{X}(x) \equiv \qquad \qquad x \to P_{X}(x) \to x \to P_{X}(x)$$

e.g. # of land falls of hurricanes/year

$P_{X}(x)$
0.10
0.40
0.30
0.15
0.05

 $\leq P_{\chi}(x) \leq$

్

 $\sum_{\text{all } x} P_X(x) =$

Seoul National University Dept. of Civil and Environmental Engineering

- $P(a < X \le b) = \sum$
- e.g. $P(0 < X \le 2) =$
- ② Cumulative _____ Function (

= \sum_{-1} \sum_

) of X

 $F_{X}(x) \equiv$

X	$P_{X}(x)$	$F_X(x)$
0	0.10	
1	0.40	
2	0.30	
3	0.15	
4	0.05	

** $F_X(a) = \sum$ $F_X(-\infty)$

 $F_X(\infty)$

$$P(a < X \le b) =$$

Functions for continuous r.v.

- ③ Probability _____ Function (
 - $f_X(x) = \lim_{\Delta x \to 0}$

"Density" of Probability at X = x

) of X

)

Partial Descriptors of a r.v. :

(a) "Complete" description by probability functions:

(b) "Partial" descriptors: measures of key characteristics; can derive from (

Note:

- Expectation: $E[\cdot] = \int_{-\infty}^{\infty} (\cdot) f_X(x) dx$ (continuous) or $\sum_{\text{all } x} (\cdot) p_X(x)$ (discrete)
- Moment: $E[\cdot X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$ or $\sum_{\text{all } x} x^n p_X(x)$

• Central Moment,
$$E[(X - \mu_X)^n] = \int_{-\infty}^{\infty} (x - \mu_X)^n f_X(x) dx$$
 or $\sum_{\text{all } x} (x - \mu_X)^n p_X(x)$

`	Name	Definition	Meaning (PDF/CDF)		
ocation	Mean, µ _x	First moment, E[X]	Location of the () of an area underneath ()		
Measure of Central Lo	Median, $x_{0.5}$	$F_X(x_{0.5}) = 0.5$ $F_X^{-1}(0.5)$	The value of a r.v. at which values above and below it areIly probable. If symmetric?		
	Mode, \widetilde{x}	$\arg\max_{x}f_{X}(x)$	The outcome that has theest probability mass or density		
чо	Variance, σ_X^2	Second-order central moment $E[(X - \mu_X)^2]$ $= E[X^2] - E[X]^2$	Average of squared deviations		
Measure of Dispersio	Standard Deviation, σ_x	$\sqrt{\sigma_{X}^{2}}$	Radius of ()		
	Coefficient of Variation (C.O.V.), δ_x	$\frac{\sigma_x}{ \mu_x }$	ed radius of ()		
Asymmetry	Coefficient of Skewness, γ_x	Third-order central moment normalized by σ_X^3 , $\underline{\mathrm{E}[(X - \mu_X)^3]}_{\sigma_X^3}$	Behavior of two tails > 0 = 0 < 0		
Flatness	Coefficient of Kurtosis, κ_x	Fourth-order central moment normalized by σ_X^4 , $\frac{E[(X - \mu_X)^4]}{\sigma_X^4}$	"Peakedness" - more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly-sized deviations.		

Example: PDF and Log-PDF of Pearson type VII distribution with kurtosis of infinity (red), 2 (blue), and 0 (black) (source: Wikipedia)

4. Probability Distribution Models

457.646 Topics in Structural Reliability Lognormal Distribution

- 1. Lognormal distribution
 - Closely related to the _____ distribution.
 - Defined for _____ values only.

(a) PDF: $X \sim LN(\lambda, \zeta^2)$

$$f_{X}(x) = \frac{1}{\sqrt{2\pi}\zeta x} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\zeta}\right)^{2}\right], \quad 0 < x < \infty$$

(b) CDF:

$$F_X(x) = \int_{-\infty}^x f_X(x) dx, \quad 0 < x < \infty$$

- → no closed-form expression available, but can be computed by use of the table of the standard normal CDF $\Phi(\cdot)$ (as shown below)
- (c) Parameters: λ, ζ
 - λ : mean of _____, i.e. $\lambda = \lambda_X \equiv E[\ln X]$
 - ζ : standard deviation of _____, i.e. $\zeta^2 = \zeta_X^2 = \sigma_{\ln X}^2$

(d) Shape of the PDF plots

Figure 3. PDF's of lognormal random variables.

(e) Relationship between normal and lognormal distribution:

"The logarithm of a ______ random variable is a ______ random variable."

$$X \sim LN(\lambda, \zeta^2) \Longrightarrow \ln X \sim N(\lambda, \zeta^2)$$

(f) Can obtain the CDF of lognormal $X \sim LN(\lambda, \zeta^2)$ from the CDF of standard normal:

$$F_{X}(a) = P(X \le a)$$

= $P(\ln X \le \ln a)$ Since $\ln X \sim N(\lambda, \zeta^{2})$,
= $\Phi\left(\frac{\ln a - \lambda}{\zeta}\right)$

(g) "The exponential function of a ______ random variable is a ______ random variable."

(h) $(\lambda, \zeta) \rightarrow (\mu, \delta)$: Find the mean and c.o.v. from the distribution parameters

$$\mu = E[X] = \exp(\lambda + 0.5\zeta^2)$$
$$\delta = \sigma/\mu = \sqrt{\exp(\zeta^2) - 1} \quad (\cong \zeta \text{ for } \zeta << 1)$$

(i) $(\mu, \delta) \rightarrow (\lambda, \zeta)$: Find the distribution parameters from the mean and c.o.v.

$$\zeta = \sqrt{\ln(1 + \delta^2)} \quad (\cong \delta \text{ for } \delta << 1)$$
$$\lambda = \ln\mu - 0.5 \ln(1 + \delta^2)$$

(j) $(x_{0.5}) \leftrightarrow (\lambda)$: Relationship between the median and λ

$$\lambda = \ln x_{0.5}, \ x_{0.5} = e^{\lambda}$$

(k) $(\mu, \delta) \rightarrow (x_{0.5})$: Find the median from the mean and c.o.v.

$$x_{0.5} = \frac{\mu}{\sqrt{1+\delta^2}}$$

Note: $x_{0.5} < \mu$ for the lognormal distribution.

Example 1: The drainage demand during a storm (in mgd: million gallons/day) is assumed to follow the <u>lognormal</u> distribution with the same mean and standard deviation as Example 1 (mean 1.2, standard deviation 0.4). The maximum drain capacity is 1.5 mgd.

- (a) Distribution parameters, i.e. λ and ζ ?
- (b) Probability of the flooding?
- (c) Probability that the drainage demand during a storm will be between 1.0 and 1.6 mgd?
- (d) The 90-percentile drainage demand?

Example 2: Consider a bridge whose uncertain capacity against "complete damage" limitstate caused by earthquake events is defined in terms of peak ground acceleration (PGA; unit: g) that the bridge can sustain. Suppose the median of the capacity is 1.03g and the coefficient of variation is 0.50. It is assumed that the capacity follows a lognormal distribution.

- (a) Distribution parameters of the lognormal distribution, i.e. λ and ζ ?
- (b) The mean and standard deviation of the uncertain capacity, i.e. μ and σ ?
- (c) Suppose the peak ground acceleration from an earthquake event is 0.5g. What is the probability that the structure will exceed "complete damage" limit state?

457.646 Topics in Structural Reliability In-Class Material: Class 04

II-5. Multiple Random Variables

e.g.
$$P(X \le 20) = \int dx$$

=
 $P(\cap) = ?$

Need more information than () and ()

)

 Joint <u>C</u>umulative <u>D</u>istribution <u>F</u>unction (CDF) (Discrete/Continuous) ↔ cf. _____ CDF

$$F_{XY}(x, y) \equiv P($$

- $F_{XY}(-\infty, -\infty) =$
- $F_{XY}(\infty,\infty) =$
- $F_{XY}(-\infty, y)$ • $F_{XY}(\infty, y) = P(\cap) = P()$

② Joint Probability Mass Function (discrete r.v's) ↔ cf. _____ PMF

- (a) Definition : $P_{XY}(x, y) \equiv P($,)
- (b) $F_{XY}(a,b) = \sum_{x}$
- (c) Conditional PMF

$$P_{X|Y}(x|y) \equiv = ----=$$

(d) $P_{XY}(x, y) \to P_X(x), P_Y(y)$?

(e) If X & Y are statically independent,

$$P_{X|Y}(x|y) =$$

$$\Leftrightarrow P_{Y|X}(y|x) \qquad P_{Y}(y)$$

$$\Leftrightarrow P_{XY}(x, y)$$

* In-class material on Joint PMF

③ Joint <u>PDF</u> (continuous r.v's)

(a) Joint cumulative distribution function (CDF)

$$\begin{split} F_{XY}(x,y) &\equiv P(X \leq x, Y \leq y) \\ &= \int \\ f_{XY}(x,y) &= \end{split}$$

- (b) $P(a < X \le b, c < Y \le d) =$
- (c) Conditional PDF

$$f_{X|Y}(x|y) = \lim_{\Delta x \to 0} \frac{P(x < X \le x + \Delta x)}{\Delta x}$$

Can show

** Multiplication rule $f_{XY}(x, y) =$ (s.i $f_{XY}(x, y) =$

(d) Joint PDF \rightarrow marginal PDF?

$$f_X(x) = \int$$

457.646 Topics in Structural Reliability In-Class Material: Class 05

***** See supplementary material on bivariate normal joint PDF

- Covariance & Correlation Coefficient
 - Partial descriptors or measures for _____ dependence
 - ① Covariance
 - (a) Definition:

$$Cov[X,Y] \equiv E[$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dy dx$$

- **(b)** Cov[X,Y] =
- (c) Cov[X,Y] > 0 _____ linear dependence
 - = 0 _____ linear dependence

< 0 _____ linear dependence

 \Rightarrow Not useful to measure/compare the strength of the linear dependence. Why?

② Correlation Coefficient

(a) Dimensionless measure of linear dependence

$$\rho_{XY} \equiv$$

(b) $\leq \rho_{XY} \leq$

Proof: Consider

$$f(a) = \iint [a(x - \mu_X) - (y - \mu_Y)]^2 f_{XY}(x, y) dxdy$$

= $a^2 Var[X] - 2a \cdot Cov[X, Y] + Var[Y]$ 0
 $\therefore D/4 = (Cov[X, Y])^2 - Var[X] \cdot Var[Y]$

$$:: \frac{[Cov(X,Y)]^2}{Var[X] \cdot Var[Y]} \le$$

 $\leq \rho_{XY} \leq$

(c) What does $\rho_{XY} =$ & $\rho_{XY} =$ mean?

Consider the case D=

$$f(a) = Var[X] \left(a - \frac{Cov[X,Y]}{Var[X]} \right)^2 + \dots$$

$$f(a) = 0$$
 at $a = \frac{C \operatorname{ov}[X, Y]}{Var[x]} = a^*$

Substituting this into f(a),

$$f(a^*) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [(x - \mu_x) - (y - \mu_y)]^2 f_{XY}(x, y) dx dy = 0$$

 \therefore for $\forall (x, y)$, the following (deterministic/probabilistic) and (linear/nonlinear) relationship between X and Y holds:

0

Seoul National University Dept. of Civil and Environmental Engineering

- (d) $\rho_{XY} = 0 \iff Cov[X,Y] = 0$ "No linear dependence" "Un "
- (e) "Uncorrelated" vs "Statistical Independence"

$$\begin{array}{ccc} \rho_{XY} = 0 & \longrightarrow & \\ (E[XY] = &) & \leftarrow & f_{XY}(x, y) = \end{array}$$

Instructor: Junho Song

 \rightarrow ?

Suppose $Y=X^2$ and X has a symmetric distribution in [-a,a]

$$E[XY] = E[X] = Cov[X,Y] =$$

←?

***** Vector/matrix formulation for multiple RVs

$$\mathbf{X} = \begin{cases} X_1 \\ \vdots \\ X_n \end{cases} \qquad \mathbf{\mu}_{\mathbf{X}} = \begin{cases} \mu_{X_n} \\ \vdots \\ \mu_{X_n} \end{cases} \qquad \mathbf{\Sigma}_{\mathbf{X}\mathbf{X}} = \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \vdots \\ sym & & \dots & \sigma_n^2 \end{bmatrix}$$

() vector () vector=E[X] () matrix
$$\mathbf{\Sigma}_{\mathbf{X}\mathbf{X}} = E[(\mathbf{X} - \mathbf{M}_{\mathbf{X}})(\mathbf{X} - \mathbf{M}_{\mathbf{X}})^T] = E[\mathbf{X}\mathbf{X}^T] - \mathbf{M}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}}^T$$

where

= **DRD**

$$\mathbf{D} = \begin{bmatrix} & & & \\ & \ddots & \end{bmatrix} = \begin{bmatrix} & & \\ & & \ddots & \end{bmatrix} = \begin{bmatrix} & & \\ & & & \\ & & & \\ & & & \ddots & \\ sym & & & & 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & & \\ \end{bmatrix} \quad \underline{\qquad} \qquad \text{matrix}$$

- * Σ_{xx} and R_{xx} are _____ and _____
 - $\mathbf{a}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}} \mathbf{a} > 0 \ (\forall \mathbf{a} \neq \mathbf{0})$ If no perfect linear dependence (a simple proof: $Y = \mathbf{a}^{\mathrm{T}} \mathbf{X}$, $\sigma_{y}^{2} = \mathbf{a}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}} \mathbf{a} > 0$)
 - $a^{\mathrm{T}} \Sigma_{xx} a = 0$ for $\exists a$ if there exist linear dependence among X

e.g.
$$X_1 = 2X_2$$
, $Y = 1 \cdot X_1 - 2X_2 = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 0$
 $\sigma_Y^2 = \mathbf{a}^T \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}} \mathbf{a} = 0$

457.646 Topics in Structural Reliability In-Class Material: Class 06

II-6. Functions of Random Variables (See Supp. 03)

Consider Y = g(X)

(1) For input X: distribution model ${\rm f}_X(x)$ or expectations $(M_X,\ \Sigma_{XX})$ available

(2) For output Y: distribution model () or expectations (,)?

Examples:

(1) Regional/inventory loss: $L = \sum_{i=1}^{n} V_i D_i \rightarrow$ linear function

(2) Wind-induced pressure: $P = \frac{1}{2}C_{\rho}\rho V^2$

Mathematical expectation of linear functions

$$Y_k = a_{k,0} + \sum_{i=1}^n a_{k,i} X_i, \quad k = 1, ..., m$$

- ① Algebraic formula $(n \le 3)$: See supp.
- 2 Matrix formula:

For $\mathbf{Y} = \mathbf{A}_0 + \mathbf{A}\mathbf{X}$

where

$$\mathbf{Y} = \begin{cases} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{cases}, \ \mathbf{A}_0 = \begin{cases} a_{1,0} \\ a_{2,0} \\ \vdots \\ a_{m,0} \end{cases}, \ \mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \text{ and } \mathbf{X} = \begin{cases} X_1 \\ X_2 \\ \vdots \\ X_n \end{cases}$$
$$\mathbf{M}_{\mathbf{Y}} = \mathbf{\Sigma}_{\mathbf{Y}\mathbf{Y}} =$$

* Proof of Positive-definiteness of Σ_{XX}

Consider $Y = \mathbf{a}^{\mathrm{T}} \mathbf{X}$ ($\mathbf{A}_0 =$, $\mathbf{A} =$)

Using the formula above,

$$\Sigma_{YY} = \sigma_Y^2 =$$

♦ Linear transformation for standardization, i.e.,&Suppose X hasandFind Y = A₀ + AXsuch that $M_Y =$ and $\Sigma_{YY} =$ $M_Y = A_0 + AM_X =$ (1) $\Sigma_{YY} = A\Sigma_{XX}A^T =$ (2)Since Σ_{XX} is positive semi-definite, $\Sigma_{XX} = L_{\Sigma}L_{\Sigma}^T$ (e.g. by _____ decomposition)Therefore,= IA =→ Substitute to () $A_0 =$

In summary,

Y = =

Alternatively,

$$\Sigma_{XX} = \mathbf{D}_{X}\mathbf{R}_{XX}\mathbf{D}_{X}$$
$$=$$
$$= \mathbf{L}_{\Sigma}\mathbf{L}_{\Sigma}^{\mathrm{T}}$$

Therefore, $L_{\Sigma} =$ and $L_{\Sigma}^{-1} =$

Y =

→ This version is preferred because of numerical stability in decomposition ($|\rho| \leq 1$).

Mathematical expectation of <u>nonlinear</u> functions

$$Y_k = g_k(x), \ k = 1, \cdots, m$$

Taylor series expansion around the mean point, $\mathbf{x} = \mathbf{M}_{\mathbf{X}}$

$$Y_k \cong g_k(\boldsymbol{M}_{\boldsymbol{X}}) + \frac{\partial g_k}{\partial \boldsymbol{x}} \Big|_{\boldsymbol{x} = \boldsymbol{M}_{\boldsymbol{X}}} (\boldsymbol{x} - \boldsymbol{M}_{\boldsymbol{X}}) + \cdots$$

Matrix form

$$\mathbf{Y} \cong \mathbf{g}(\mathbf{M}_{\mathbf{X}}) + \mathbf{J}_{\mathbf{Y},\mathbf{X}} \Big|_{\mathbf{x}=\mathbf{M}_{\mathbf{X}}} (\mathbf{X} - \mathbf{M}_{\mathbf{X}})$$
Seoul National University Dept. of Civil and Environmental Engineering

① First-order approximation

(Scalar: See supp.)

$$\mathbf{M}_{\mathbf{Y}}^{FO} = \mathbf{g}($$
)
 $\mathbf{\Sigma}_{\mathbf{Y}\mathbf{Y}}^{FO} =$

- Second-order approximation
- \Rightarrow Can use 2nd order approximation from Taylor series expansion
- \Rightarrow Not useful because higher-order moments are needed (γ, κ, \cdots)
- ③ Accuracy of FO/SO approximation

Sources of large errors in approx.

- σ_x
- Nonlinearity in g(x)

Example : $\mathbf{U} = \mathbf{K}^{-1}\mathbf{P}$ (Frame structure)

Derived Distribution of Functions

Consider $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ where $\mathbf{Y} = \{Y_1, \dots, Y_m\}$ and $\mathbf{X} = \{X_1, \dots, X_n\}$

Given: $f_{\mathbf{X}}(\mathbf{x}) \rightarrow f_{\mathbf{Y}}(\mathbf{y})$? (1) m = n, one-to-one mapping a) Discrete $P_{\mathbf{Y}}(y_1, \dots, y_n)$ $P_{\mathbf{X}}(x_1, \dots, x_n)$ b) Continuous $f_{\mathbf{Y}}(y_1, \dots, y_n)$ $f_{\mathbf{X}}(x_1, \dots, x_n)$ $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \cdot |\det|$ $= f_{\mathbf{X}}(\mathbf{x}) \cdot |\det|^{-1}$

"Jacobian"
$$\mathbf{J}_{\mathbf{y},\mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & & \vdots \\ \vdots & & & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & \cdots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}$$

Consider y = g(x), x = h(y)

$$f_{\mathbf{y}}(\mathbf{y}) = f_{\mathbf{x}}(\mathbf{h}(\mathbf{y})) \left| \det \mathbf{J}_{\mathbf{y},\mathbf{x}}(\mathbf{h}(\mathbf{y})) \right|^{-1}$$
$$m = n = 1$$

$$f_Y(y) = f_X(x)$$
 $= f_X(-) \left| \frac{dh(y)}{dy} \right|$

Example: $X \sim N(0, 1^2)$

a)
$$Y = g(X) = aX + b$$

One-to-one mapping?

$$f_Y(y) = f_X(x)$$
.
=
=
Distribution

$$\mu_{Y} = \sigma_{Y}$$

b) T_1, T_2 ~ exponential r.v.'s (See supplement on "Other Distribution Models")

$$f_{T_1}(t_1) = \alpha \cdot \exp(-\alpha t_1), \ t_1 > 0$$

$$f_{T_2}(t_2) = \beta \cdot \exp(-\beta t_2), \ t_2 > 0$$

 T_1, T_2 : statistically independent

Joint PDF of
$$\begin{cases} Y_1 = T_1 + T_2 \\ Y_2 = T_1 - T_2 \end{cases}$$
?
$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{T}}(\mathbf{t}) \left| \det \mathbf{J}_{y,t} \right|^{-1}$$

$$\mathbf{J}_{\mathbf{y},\mathbf{t}} = \begin{bmatrix} \frac{\partial y_1}{\partial t_1} & \frac{\partial y_1}{\partial t_2} \\ \frac{\partial y_2}{\partial t_1} & \frac{\partial y_2}{\partial t_2} \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$\left|\det \mathbf{J}_{\mathbf{y},\mathbf{t}}\right|^{-1} =$$

$$\therefore f_{\mathbf{Y}}(\mathbf{y}) =$$

Inverse relationship

$$\begin{cases} T_1 = \frac{1}{2}(Y_1 + Y_2) \\ T_2 = \frac{1}{2}(Y_1 - Y_2) \end{cases}$$

$$\therefore f_{\mathbf{Y}}(\mathbf{y}) = \frac{\alpha\beta}{2} \exp[-\frac{\alpha+\beta}{2}y_1 - \frac{\alpha-\beta}{2}y_2], \quad y_1 > 0, -y_1 < y_2 < y_1$$

- Range of **Y** derived from the condition $t_1, t_2 > 0$ & $\mathbf{t} = \mathbf{h}(\mathbf{y})$

457.646 Topics in Structural Reliability

In-Class Material: Class 07

II-6. Functions of Random Variables (contd.)

- Derived Distribution of Functions (contd.)
 - (2) m = n, but NOT one-to-one mapping
 - a) Discrete

$$P_{\mathbf{Y}}(y_1, \cdots, y_n) =$$

$$P_{\mathbf{X}}(x_1,\cdots,x_n)$$

roots of $\mathbf{y} = \mathbf{g}(\mathbf{x})$

b) Continuous

$$f_Y(y) = \sum_{\substack{\text{all roots of}\\ \mathbf{y} = \mathbf{g}(\mathbf{x})}}$$

Example c)

$$Y = g(X) = X^{2}, \qquad X \sim N(0, 1^{2})$$

$$\begin{cases} x_{1} = h_{1}(y) = \\ x_{2} = h_{2}(y) = \end{cases}$$

$$f_{Y}(y) = f_{X}(x_{1}) \left| \frac{dx_{1}}{dy} \right| + f_{X}(x_{2}) \left| \frac{dx_{2}}{dy} \right|$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x_{1}^{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x_{2}^{2}\right)$$

=

(3) m < n, one-to one mapping

$$\mathbf{Y}' \begin{cases} \mathbf{Y} \begin{bmatrix} Y_1 = g_m(X_1, \cdots, X_n) \\ \vdots & \vdots \\ Y_m = g_m(X_1, \cdots, X_n) \\ Y_{m+1} = \\ \vdots \\ Y_n = \end{bmatrix} \mathbf{Y}' = \mathbf{g}'(\mathbf{X})$$

Discrete

$$P_{\mathbf{X}'}(\mathbf{y}') = P_{\mathbf{X}}(\mathbf{x})$$

Then,

$$P_{\mathbf{Y}}(\mathbf{y}) = \sum \cdots \sum P_{\mathbf{X}}(\mathbf{x})$$

a) Continuous

$$f_{\mathbf{Y}'}(\mathbf{y}')dy_{1}\cdots dy_{m} = f_{\mathbf{X}}(\mathbf{x})dx_{1}\cdots dx_{m}dx_{m+1}\cdots dx_{n}$$

$$f_{\mathbf{Y}'}(\mathbf{y}') = f_{\mathbf{X}}(\mathbf{x})\left|\det J_{\mathbf{Y},\mathbf{X}}\right|^{-1}$$

$$= f_{\mathbf{X}}(\mathbf{x})\left|\det J_{\mathbf{Y},\mathbf{X}}\right|^{-1}$$

$$\int_{\mathcal{X}_{1}} \frac{\partial y_{1}}{\partial x_{2}} \cdots \frac{\partial y_{1}}{\partial x_{m}}$$

$$\int_{\mathcal{Y}_{1},\mathbf{X}} = \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{m}} \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{m}} \end{bmatrix}$$

$$\therefore \quad f_{\mathbf{Y}}(\mathbf{y}) = \int_{x_{m+1}} \cdots \int_{x_{n}} f_{\mathbf{X}}(\mathbf{x}) \left|\det J_{\mathbf{Y},\mathbf{X}}\right|^{-1}_{m \times m} dx_{m+1} \cdots dx_{n}$$

Example d)

=

$$Y = T_{1} + T_{2} \leftarrow \text{contd. From Example b}$$

$$f_{Y}(y)?$$

$$\mathbf{Y'} \begin{cases} Y_{1} = T_{1} + T_{2} \\ Y_{2} = T_{2} \end{cases}$$

$$f_{\mathbf{Y'}}(\mathbf{y'}) = f_{\mathbf{T}}(\mathbf{t}) \left| \det J_{\mathbf{Y'},\mathbf{T}} \right|_{1 \times 1}^{-1} \qquad \left| \det J_{\mathbf{Y},\mathbf{T}} \right|_{1 \times 1}^{-1} =$$

$$= f_{\mathbf{T}}(\mathbf{t}) \left| \det J_{\mathbf{Y'},\mathbf{T}} \right|_{1 \times 1}^{-1}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{Y_1}(y_1) = \int dt_2$$
$$= \int f_{T_1}()f_{T_2}()dt_2$$
$$= \frac{\alpha\beta}{\alpha - \beta} [\exp(-\beta y) - \exp(-\alpha y)], y > 0$$

When $\alpha = \beta$, using l'Hopitals rule,

$$\lim_{\beta \to \alpha} f_{Y}(y) = \lim_{\beta \to \alpha} \frac{\frac{\partial(\)}{\partial \beta}}{\frac{\partial(\)}{\partial \beta}} = \alpha^{2} y \exp(-\alpha y), \ y > 0$$

(4) m < n, NOT one-to one mapping

II. Structural Reliability (Component)

Structural Reliability Analysis (contd.)

e.g. Shear failure of RC beam w/o stirrups

Source: https://www.youtube.com/watch?v=DPQIpT1ZvXY

"Limit-state" function

$$g(\mathbf{X}) = V_c - V_d$$
$$= \frac{1}{6}\sqrt{f_c} b_w d + \varepsilon - V_d \le 0$$

where $X = \{f_c, b_w, d, \varepsilon, V_d, \cdots\}$ random variables

Failure Probability

$$P_f = P(g(\mathbf{x}))$$

"Structural Reliability Analysis"

(Anatomical + Systematic)

Three important tasks for structural reliability analysis:

- 1)
- 2)
- 3)

,	
	\rightarrow

Joint Probability Distribution Models

① Joint Normal $\mathbf{X} \sim N(\mathbf{M}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{XX}})$

a) Joint PDF

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \mathbf{\Sigma}}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{M}_{\mathbf{X}})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{X}\mathbf{X}}^{-1} (\mathbf{x} - \mathbf{M}_{\mathbf{X}})\right]$$

$$n=1$$
 $f_x(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$ Uni-variate normal PDF (See supp.)

$$n = 2$$
 $f_{X_1X_2}(x_1, x_2) = f($) Bi-variate normal PDF (See supp.)

b) Properties

- Joint distribution completely defined by
- All lower order distribution are

•
$$\mathbf{X} = \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \quad \mathbf{M}_{\mathbf{X}} = \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \quad \sum_{\mathbf{X} \mathbf{X}} = \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$$

Given $\mathbf{X}_2 = \mathbf{x}_2$, then $\mathbf{X}_1 \sim N(\mathbf{M}_{1|2}, \boldsymbol{\Sigma}_{1,1|2})$

Conditional mean and covariance

$$\begin{cases} \mathbf{M}_{1|2} = \mathbf{M}_{1} + \Sigma_{1,2} \Sigma_{2,2}^{-1} (\mathbf{x}_{2} - \mathbf{M}_{2}) \\ \Sigma_{1,1|2} = \Sigma_{1,1} - \Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1} \\ \mathbf{e.g.} \quad n = 2, \text{ i.e. } \mathbf{X} = \begin{cases} \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{cases} = \begin{cases} X_{1} \\ X_{2} \end{cases} \\ \mathbf{X}_{1} \end{cases} \\ \mathbf{X}_{1} \sim N(\mu_{1|2}, \sigma_{1|2}^{2}) \\ \mu_{1|2} = \mu_{1} + \rho \sigma_{1} \left(\frac{x_{2} - \mu_{2}}{\sigma_{2}} \right) \\ \sigma_{1|2}^{2} = \sigma_{1}^{2} (1 - \rho^{2}) \end{cases}$$
 if $\rho = 0$ (" ")

- Uncorrelated () s.i for jointly normal (in general, $\rho = 0 \square s.i$)
- Linear functions of $X \sim N(M, \Sigma) \rightarrow \text{follow}$

$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{A}_{\mathbf{0}}$$

In summary, $\mathbf{X} \sim N(\mathbf{M}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}})$

$$\Rightarrow \mathbf{Y} \sim N(\mathbf{M}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{Y}})$$

$$\mathbf{M}_{\mathbf{Y}} =$$

$$\Sigma_{YY} =$$

c) Standard Normal

For univariate, 'standard normal' means, $\mu =$, $\sigma =$

... For jointly normal,

$$M_x =$$

 $\Sigma_{xx} =$

$$\mathbf{Z} \sim N(\mathbf{0}, \) \quad \varphi_n(\mathbf{z}, \) = \frac{1}{(2\pi)^{n/2} \sqrt{\det}} \cdot \exp\left[-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{R}_{\mathbf{xx}} \mathbf{z}\right]$$
$$\mathbf{U} \sim N(\mathbf{0}, \) \quad \varphi_n(\mathbf{u}, \) = \frac{1}{(2\pi)^{n/2} \sqrt{\det}} \cdot \exp\left[-\frac{1}{2}\right]$$
$$= \prod_{i=1}^n$$

U used for FORM/SORM

For normal,

$$\begin{cases} \mathbf{x} = \mathbf{D}\mathbf{L}\mathbf{u} + \mathbf{M} \\ \\ \mathbf{u} = \mathbf{L}^{-1}\mathbf{D}^{-1}(\mathbf{x} - \mathbf{M}) \end{cases}$$

457.646 Topics in Structural Reliability In-Class Material: Class 08

III. Structural Reliability (Component)

Joint Probability Distribution Models

2 Joint Lognormal

 X_1, \dots, X_n are jointly lognormal if $\ln X_1, \dots, \ln X_n$ are jointly _____

a) Parameters

$$\lambda_{i} = E\begin{bmatrix} \\ \end{bmatrix} = \ln \mu_{i} - 0.5 \ln(1 + \delta_{i}^{2})$$

$$\xi_{i}^{2} = Var\begin{bmatrix} \\ \end{bmatrix} = \ln(1 + \delta_{i}^{2}) \ (\cong \delta_{i}^{2} \text{ for } \delta \quad 1)$$

$$\rho_{\ln X_{i}, \ln X_{j}} = \frac{1}{\xi_{i}\xi_{j}} \ln(1 + \rho_{ij}\delta_{i}\delta_{j})$$

b) Properties

- Completely defined in terms of () & ()
- All lower order distribution are jointly
- Conditional distribution are jointly
- Uncorrelated \neq S.I.
- Product / Quotient of jointly lognormal r.v.'s follows

•
$$\rho_{X_i,\ln X_j} = \frac{1}{\xi_i} \delta_j \rho_{ij}$$

③ General Joint Distribution Forms

- e.g. Johnson & Kotz (1976)
- \Rightarrow on multivariate prob. distribution models
- ④ Joint Distribution by conditioning (e.g. Bayesian Networks)

 $f(x_1,\cdots,x_n) = f(x_n | x_1,\cdots,x_{n-1}) \times$

(5) Joint Distribution model with : Prescribed marginals: $, i = 1, \dots, n$ and

correlation coefficient matrix :

• Read CRC Ch.14

• See Liu & Kiureghian (1986) a) Morgenstern

b) Nataf

* "Copula": formula to construct joint PDF with marginal distributions (Review by Jongmin Park (SNU): Term Project Report in 2014)

a) Morgenstern distribution

$$F_{\mathbf{X}}(\mathbf{X}) = \prod_{i=1}^{n} F_{X_i}(x_i) \cdot \left\{ 1 + \sum_{i < j} \alpha_{ij} [1 - F_{X_i}(x_i)] [1 - F_{X_j}(x_j)] \right\}$$

Q) Can we derive
$$F_{X_i}(x_i)$$
 from $F_{\mathbf{X}}(\mathbf{x})$?

i.e.
$$x_2, x_3, \dots, x_n \rightarrow$$
 then $F_{\mathbf{X}}(\mathbf{X}) = ?$

Q) Can we describe dependence using α_{ij} ?

$$F_{X_i X_j}(x_i, x_j) =$$

$$= f_{X_i}(x_i) \cdot f_{X_j}(x_j) \cdot \left\{ 1 + \alpha_{ij} [1 - 2F_{X_i}(x_i)] [1 - 2F_{X_j}(x_j)] \right\}$$

$$\Rightarrow \leq \alpha_{ij} \leq$$

$$\begin{cases} \alpha_{ij} = 0 \\ \alpha_{ij} \neq 0 \end{cases}$$

Therefore, α_{ii} is a parameter that represents

(corr coeff.)

But
$$\alpha_{ij} = \rho_{ij}$$

Lin & Der Kiureghian (1986) showed

$$\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{x_i - \mu_i}{\sigma_i}\right) \left(\frac{x_j - \mu_j}{\sigma_j}\right) f_{X_i X_j}(x_i, x_j) dx_i dx_j$$
$$= 4\alpha_{ij} Q_i Q_j \qquad \Rightarrow \qquad \left|\rho_{ij}\right| \le 0.30$$
Where $Q_i = \int_{-\infty}^{\infty} \left[\left(\frac{x_i - \mu_i}{\sigma_i}\right) F_{X_i}(x_i) \right] f_{X_i}(x_i) dx_i \approx 0.28$

Table 1: selected distribution

Table 2: Q_i

Table 3 : maximum $\left|
ho_{_{ij}}
ight|$

 \Rightarrow In summary, using Morgenstern's model, you cannot describe X_i, X_j

whose $\left|\rho_{ij}\right| > 0.30$

b) Nataf model (Nataf, 1962) ("Gaussian Copula")

$$\mathbf{X} \sim F_{X_i}(x_i), \ i = 1, \cdots, n$$
$$\mathbf{R} = [\rho_{ij}] \qquad \qquad \overbrace{(1)}_{Nataf} \qquad \qquad \mathbf{Z} \sim N(\mathbf{0}, \mathbf{R'})$$
$$\mathbf{R'} = [\rho_{ij}]$$

Transformation to Z

 $Z_i =$

Why?

$$f_{Z_i}(z_i) = f_{X_i}(x_i) \cdot \left| \frac{dx_i}{dz_i} \right|$$
$$f_{Z_i}(z_i) \cdot = f_{X_i}(x_i) \cdot$$
$$\Phi(\quad) = F_{X_i}(\quad)$$

457.646 Topics in Structural Reliability In-Class Material: Class 09

III. Structural Reliability (Component) - continued

Joint Probability Distribution Models

- **(5)** Joint distribution models with marginal & corr. coeff (contd.)
- a) Morgenstern: $F_{X_i}(x_i), i = 1,...,n \& \alpha_{ij}$ but $|\rho_{ij}| < 0.30$
- b) Nataf model (Nataf, 1962)
 - ★ Joint PDF by Nataf model

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{Z}}(\mathbf{z}) \cdot \left| \det J_{\mathbf{Z},\mathbf{X}} \right|$$
$$= \phi_n(\mathbf{z}; \mathbf{R'}) - \int_{\mathbf{z},\mathbf{x}} \int_{\mathbf{Z},\mathbf{x}} d\mathbf{z}$$
$$= \left[\prod_{i=1}^n f_{X_i}(x_i) \right] \cdot - \int_{\mathbf{z},\mathbf{x}} \int_{\mathbf{z},\mathbf{x}} d\mathbf{z}$$

Note:

$$F_{X_i}(x_i) = \Phi(z_i)$$

$$f_{X_i}(x_i)dx_i = \varphi(z_i)dz$$

★ ρ'_{ij} (corr. coeff. b/w Z_i and Z_j)?

$$\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(----- \right) \left(----- \right) f_{X_i X_j}(x_i, x_j) dx_i dx_j$$

$$\therefore \rho_{ij} = \int \int \left(----- \right) \left(------ \right) \phi_2(z_i, z_j; \rho'_{ij}) ----- dz_i dz_j$$

In general, $\left| \rho_{ij}^{\prime} \right| = \left| \rho_{ij} \right|$

 $\therefore \left| \rho_{ij} \right| \le A < 1$ may not cover the whole range of ρ_{ij}

 $\rho'_{ij} \cong F \cdot \rho_{ij}$ Liu & ADK (Table 4~6) for pairs of selected distribution types

Table 9: Range of ρ_{ii} ~ wider (than Morgenstern)

Later used for transformation of dependent RVs into $\mathbf{U} \sim N(\mathbf{0}, \mathbf{I})$

 ≤ 0

X Z U

© Elementary Structural Reliability Problem

Describe the failure event in terms of _____ & _____

① Failure : $g(\mathbf{x}) = g(\ ,\) =$

② Failure probability : $P_f = P(\leq 0)$

$$P_{f} = \iint f_{R,S}(r,s) dr ds$$
$$= \iint f_{R|S}(r|s) \cdot f_{s}(s) dr ds$$
$$= \iint f_{R|S}(r|s) dr f_{s}(s) ds$$
$$= \int f_{s}(s) ds$$

OR

$$P_{f} = \iint_{r \le s} f_{S|R}(s|r) f_{R}(r) ds dr$$
$$= \iint_{r \le s} f_{S|R}(s|r) ds f_{R}(r) dr$$
$$= \iint_{r \ge s} \left[\int_{r \ge s} f_{R}(r) dr \right] f_{R}(r) dr$$
if s.i =
$$\int_{r \ge s} \int_{r \ge s} dr$$

3 Reliability Index by "Safety Margin," β_{SM}

M =

: Safety Margin

Failure : $\{R - S \le 0\}$ $\Leftrightarrow \{ \le 0 \}$

$$\Leftrightarrow \{U_{_M} \le \qquad \}$$

* Standardization

$$U_{M} = \underbrace{M}_{V_{M}} = \underbrace{E[U_{M}]}_{Var[U_{M}]} =$$

For *n* RVs,

$$\mathbf{U} = \mathbf{L}^{-1}\mathbf{D}^{-1}(\mathbf{X} - \mathbf{M})$$

$$\therefore P_f = P(U_M \le) = F_{U_M} ()$$

$$= F_{U_M} ()$$

 F_{U_M} : depends on distribution of R and S

e.g. special case ~ R and S are jointly normal

Then $U_M \sim$

Therefore $P_f = F_{U_M} (-\beta_{SM}) =$

* A. Cornell (1968. ACI codes)

Assumed R&S are jointly normal & used β_{SM} to compute P_f

④ Reliability Index by "Safety Factor"

(* used for LRFD
$$\phi R_n \ge \sum \gamma_k Q_k$$
)

$$\Rightarrow$$
 special case: R & S are jointly lognormal

$$U_{F} \sim$$

$$\therefore P_{f} = \Phi()$$

$$\mu_{F}^{(LN)} =$$

$$\sigma_{F}^{(LN)} =$$

$$\ln\left(r \cdot \sqrt{\frac{1 + \delta_{s}^{2}}{1 + \delta_{R}^{2}}}\right)$$

$$\beta_{SF}^{(LN)} = \frac{\ln\left(r \cdot \sqrt{\frac{1 + \delta_{s}^{2}}{1 + \delta_{R}^{2}}}\right)}{\sqrt{\ln(1 + \delta_{R}^{2}) - 2\ln(1 + \rho_{RS}\delta_{R}\delta_{S}) + \ln(1 + \delta_{S}^{2})}}, r = \frac{\mu_{R}}{\mu_{s}}$$

Safety factor-based reliability-index when R & S are jointly lognormal

457.646 Topics in Structural Reliability In-Class Material: Class 10

(a) Second moment reliability index β_{MVFOSM}

MVFOSM

- Failure : $g(\mathbf{x}) \le 0$ (NOT "elementary")
- Use () & () only. Therefore, can't compute P_f (index, not method)
 Ang & Cornell (1974) ASCE Journal of Structural Engineering

i.e. equivalent limit-state functions could give different β_{MVFORM}

$$g_{1}(x) = X_{1}^{2} + 3X_{2} < 0$$

$$g_{2}(x) = \frac{g_{1}(x)}{X_{1}^{2}} = 1 + 3\frac{X_{2}}{X_{1}^{2}} < 0$$
equivalent \Rightarrow the same β_{MVFORM} ?

Example: lack of invariance of second order reliability methods

Consider a structural reliability problem with two random variables X_1 and X_2 . The mean vector and the covariance matrix of X_1 and X_2 are

$$\mathbf{M}_{\mathbf{x}} = \begin{bmatrix} 5\\10 \end{bmatrix}, \quad \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}} = \begin{bmatrix} 4 & 5\\5 & 25 \end{bmatrix}$$

 $\begin{aligned} \underline{\mathbf{Case 1:}} & g(X_1, X_2) = X_1^2 + 3X_2 \\ \text{Gradient } \nabla g = [2X_1 \quad 3]. \text{ At the mean point } \mathbf{X} = \mathbf{M}_{\mathbf{X}}, \ \nabla g = \begin{bmatrix} 10 \quad 3 \end{bmatrix}. \\ \text{First order approximation on } \mu_g \text{ and } \sigma_g^2: \\ \mu_g &\cong 5^2 + 3 \times 10 = 55 \\ \sigma_g^2 &\cong \nabla g \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}} \nabla g^{\mathsf{T}} = 925 \\ \beta_{MVFOSM} &= \frac{\mu_g}{\sigma_g} = \frac{55}{\sqrt{925}} = 1.81 \\ P_f &= \Phi(-1.81) = 0.0351 \\ \\ \underline{\mathbf{Case 2:}} & g(X_1, X_2) = 1 + \frac{3X_2}{X_1^2} \\ \nabla g &= [-6X_2X_1^{-3} \quad 3X_1^{-2}]. \\ \text{At the mean point } \mathbf{X} = \mathbf{M}_{\mathbf{X}}, \ \nabla g &= [-0.48 \quad 0.12]. \\ \mu_g &\cong 1 + 3 \times 10/25 = 2.20 \\ \sigma_g^2 &\cong \nabla g \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}} \nabla g^{\mathsf{T}} = 0.706 \\ \beta_{MVFOSM} &= \frac{\mu_g}{\sigma_g} = \frac{2.20}{\sqrt{0.706}} = 2.62 \end{aligned}$

Although the two limit-state functions are equivalent ones with the same failure domains, the second order reliability method yields different reliability indices and failure probability estimates.

///

Summary:

 $P_f = \Phi(-2.62) = 0.00440$

$$\beta_{SM} = \frac{\mu_M}{\sigma_M} = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2 - 2\sigma_R \sigma_S \rho_{RS}}}$$
$$\beta_{SF} = \frac{\mu_F}{\sigma_F}, \text{ for LN } \beta_{SF} = \frac{\lambda_R - \lambda_S}{\sqrt{\zeta_R^2 + \zeta_S^2 - 2\zeta_R \zeta_S \rho_{\ln R \ln S}}}$$
$$\beta_{MVFOSM} = \frac{\mu_g^{FO}}{\sigma_g^{FO}} = \frac{g(\mathbf{M}_{\mathbf{X}})}{\nabla g(\mathbf{M}_{\mathbf{X}}) \Sigma_{\mathbf{XX}} \nabla g(\mathbf{M}_{\mathbf{X}})^{\mathrm{T}}} \quad (\text{Oct1974})$$

${\ensuremath{\textcircled{@}}}$ Hasofer-Lind Reliability Index, $\,\beta_{_{\mathit{HL}}}\,$ (JEM, May 1974)

Linear Limit-State Function

$$g(\mathbf{x}) = a_0 + \mathbf{a}^{\mathrm{T}} \mathbf{x}$$

= $a_0 + \mathbf{a}^{\mathrm{T}} ($)
= $a_0 + \mathbf{a}^{\mathrm{T}} \mathbf{M} + \mathbf{a}^{\mathrm{T}} \mathbf{D} \mathbf{L} \mathbf{u}$
= $b_0 + \mathbf{b}^{\mathrm{T}} \mathbf{u} = G(\mathbf{u})$

VS

$$\beta = \frac{\mu_G}{\sigma_G} = \frac{b_0}{\|\mathbf{b}\|}$$

Can have +/_ sign

always positive

For
$$G(\mathbf{u}) = b_0 + \mathbf{b}^{\mathrm{T}}\mathbf{u}$$

 $b_o = G(\mathbf{0}) < 0$ (in failure domain) $\beta < 0$ $b_o = G(\mathbf{0}) > 0$ (in safe domain) $\beta > 0$ Seoul National University Dept. of Civil and Environmental Engineering Instructor: Junho Song junhosong@snu.ac.kr

i.
$$\hat{\boldsymbol{\alpha}} = -\frac{\nabla G}{\|\nabla G\|}$$
 : "Negative normalized gradient vector"

: Unit row vector pointing toward the _____ domain

e.g. linear function :
$$\hat{\boldsymbol{\alpha}} = -\frac{\mathbf{b}^{\mathrm{T}}}{\|\mathbf{b}\|}$$

ii. \mathbf{u}^* : "Design point"

"Most probable failure point (MPP)"

"Beta point"

e.g. linear function :
$$\mathbf{u}^* \equiv -b_0 \frac{\mathbf{b}}{\|\mathbf{b}\|^2}$$

iii.

$$\beta_{HL} \equiv \hat{\alpha} \mathbf{u}^*$$

Hasofer-Lind Reliability Index

 $\begin{cases} |\beta_{HL}| : \text{distance between origin and } \mathbf{u}^* \\ \text{sign} : \text{directions of } \hat{\boldsymbol{\alpha}} \text{ and } \mathbf{u}^* \end{cases}$

e.g. linear function :
$$\beta_{HL} = \frac{b_0}{\|\mathbf{b}\|} \left(= \frac{\mu_G}{\sigma_G} \right)$$

$$P_{f} = F_{u_{g}}(-\beta_{HL})$$

$$\beta > 0 \quad 0 \quad \beta < 0$$
(reliable) (less reliable) What if $\mathbf{X} \sim N$

What if
$$\mathbf{X} \sim N(\mathbf{M}_{\mathbf{X}}, \sum_{\mathbf{X}\mathbf{X}})$$
 and $g(\mathbf{x})$ linear?

$$\Rightarrow G, g \sim N$$
$$P_f = \Phi(-\beta_{HL})$$

457.646 Topics in Structural Reliability In-Class Material: Class 11

 $\ensuremath{\textcircled{\text{\scriptsize B}}}$ Hasofer-Lind Reliability Index, $\,\beta_{\ensuremath{\textit{HL}}}\,$ (contd.)

② Nonlinear Limit-State Function

Transform g() to G() by

$$\begin{pmatrix} \mathbf{X} = \\ \mathbf{u} = \end{pmatrix}$$

- suppose one can find \mathbf{u}^*
- Linearize $G(\mathbf{u})$ at $\mathbf{u} =$

$$\Rightarrow G(u) \stackrel{FO}{\square} G() + ()$$

$$= = 0$$

Reliability index

=

Try
$$\frac{\mu_G}{\sigma_G} \cong \frac{\mu_G^{FO}}{\sigma_G^{FO}}$$
?
 $\mu_G^{FO} =$
 $\sigma_G^{2_{FO}} =$
 $= \| \|^2$
 $\therefore \frac{\mu_G^{FO}}{\sigma_G^{FO}} =$
 $=$
 $=$

In summary, the "distance" between the origin and the design point \mathbf{u}^* in \mathbf{u} -space gives reliability index based on first-order approximation

★ Note!
$$\begin{cases} MVFOSM & \frac{\mu^{FO}}{\sigma^{FO}} \text{ at } \mathbf{x} = \\ HL & \frac{\mu^{FO}}{\sigma^{FO}} \text{ at } \mathbf{u} = \end{cases}$$

Seoul National University Dept. of Civil and Environmental Engineering

- ** Procedure : i) Transform $g(\mathbf{x})$ to $G(\mathbf{u})$ using $\mathbf{x} =$ ii) Find iii) Find at iv) $\beta_{HL} =$
- * Description of $\beta_{\rm HL}$ in ${\bf x}$ space?

$$\nabla G(\mathbf{u}^*)(\mathbf{u} \cdot \mathbf{u}^*) = 0 \qquad \underbrace{\mathbf{u} =}_{\mathbf{x} =} \qquad \nabla g(\mathbf{x}^*)(\mathbf{x} \cdot \mathbf{x}^*) = 0$$

Approx. Limit state space in u

Proof :

$$\nabla_{\mathbf{x}}g(\mathbf{x}^*) = \nabla_{\mathbf{u}}G(\mathbf{u}^*) \times$$
$$=$$
$$\mathbf{x}^* =$$
$$\mathbf{x} =$$

$$\therefore g^{FO} = \nabla g(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)$$

$$\beta_{HL} = \frac{\mu_g^{FO}}{\sigma_g^{FO}} = \frac{1}{\sqrt{PO}}$$

$$FO \text{ at } \underline{\mathbf{x}} = \frac{1}{\sqrt{PO}}$$

$$\beta_{MVFOSM} = \frac{\mu_g^{FO}}{\sigma_g^{FO}} = \frac{g(\mathbf{M}_x)}{\sqrt{\nabla g(\mathbf{M}_x)\sum_{\mathbf{xx}}\nabla g(\mathbf{M}_x)^{\mathrm{T}}}}$$

$$FO \text{ at } \underline{\mathbf{x}} = \frac{1}{\sqrt{PO}}$$

③ Finding the design point \mathbf{u}^*

$$\mathbf{u}^* = \operatorname{argmin}\{$$

Then evaluate $\hat{\alpha} =$

And compute $\hat{\beta}_{HL} = \hat{\alpha} u^*$

 \Rightarrow constrained nonlinear optimization problem

at

 x_1

 \dot{x}_2

 x_0

Reviews on optimization algorithm of finding \mathbf{u}^*

- Liu & ADK (1990)
- Papaioannou et al. (2010)

HL-RF, SQP, GP, DFO

a) HL-RF algorithm (Rackwitz & Fissler 1978)

To update \mathbf{u}_i to , \mathbf{u}_{i+1} , one needs

 $G(\mathbf{u}_i) =$

 $\nabla_{\mathbf{u}} G(\mathbf{u}_i) =$

Iterate until 1)

2)

457.646 Topics in Structural Reliability In-Class Material: Class 12

See Supplement, "HL-RF Algorithm for HL Reliability Index and FORM/SORM"

☆ Convergence Issue

Solution: Does not go full step, i.e. "step size" control

- Modified HL-RF (Liu & ADK 1990)
- Improved HL-RF (Zhang & ADK 1995)

$$\begin{cases} u_{i+1} = u_i + \lambda d_i & (\lambda, \text{ stepsize} < 1) \\ \mathbf{d}_i = \left(\hat{\boldsymbol{\alpha}}_i \mathbf{u}_i + \frac{G(\mathbf{u}_i)}{\|\nabla G(\mathbf{u}_i)\|} \right) \hat{\boldsymbol{\alpha}}_i^{\mathrm{T}} - \mathbf{u}_i \end{cases}$$

How? "Merit" function $m(\mathbf{u})$ is defined such that $m(\mathbf{u})$ is minimum at $\mathbf{u} =$ Then, select λ at each step such that $m(\mathbf{u})$ <u>d</u>

e.g. 1) Modified HL-RF:
$$m(\mathbf{u}) = \frac{1}{2} \left\| \mathbf{u} - \hat{\boldsymbol{\alpha}} \mathbf{u} \hat{\boldsymbol{\alpha}}^{\mathrm{T}} \right\|^{2} + \frac{1}{2} c \cdot G(\mathbf{u})^{2}$$

 $(m(\mathbf{u}) \text{ can have minima that are not solution})$

2) Improved HL-RF:
$$m(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|^2 + c |G(\mathbf{u})|$$

Select λ such that $m(\mathbf{u}_{i+1})$ $m(\mathbf{u}_i)$ because the direction vector is a descent direction in terms of merit function

as long as
$$c > \frac{\|\mathbf{u}_{i+1}\|}{\|\nabla G(\mathbf{u}_{i+1})\|}$$

* Zhang & ADK(1995) proved this based on so-called "Armijo's rule" and provided detailed updating rule for c (but FERUM uses a simple rule)

Example: $\beta_{\rm HL}$ by improved HL-RF algorithm

Limit-state function $g(X_1, X_2) = 0.5X_1^2 - X_2 + 3\sin(2X_1)$

Mean vector and covariance matrix of X_1 and X_2 :

$$\mathbf{M} = \begin{bmatrix} 5\\3 \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} 4 & 5\\5 & 25 \end{bmatrix}$$

Gradient $\nabla g = [X_1 + 6\cos(2X_1) -1]$

Preparation:

$$\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$
$$\mathbf{R} = \mathbf{L}\mathbf{L}^{\mathrm{T}} \quad \text{(Cholesky decomposition):} \quad \mathbf{L} = \begin{bmatrix} 1 & 0 \\ 0.5 & 0.87 \end{bmatrix}, \quad \mathbf{L}^{-1} = \begin{bmatrix} 1 & 0 \\ -0.58 & 1.15 \end{bmatrix}$$
$$\mathbf{u}(\mathbf{x}) = \mathbf{L}^{-1}\mathbf{D}^{-1}(\mathbf{x} - \mathbf{M}_{\mathbf{x}}); \quad \mathbf{x}(\mathbf{u}) = \mathbf{D}\mathbf{L}\mathbf{u} + \mathbf{M}$$
$$\mathbf{J}_{\mathbf{u},\mathbf{x}} = \mathbf{L}^{-1}\mathbf{D}^{-1} = \begin{bmatrix} 0.5 & 0 \\ -0.29 & 0.23 \end{bmatrix}; \quad \mathbf{J}_{\mathbf{x},\mathbf{u}} = \mathbf{D}\mathbf{L} = \begin{bmatrix} 2 & 0 \\ 2.5 & 4.33 \end{bmatrix} \text{ (constant since linear)}$$

Initialization:

i = 1;
$$\varepsilon_1 = \varepsilon_2 = 10^{-3}$$

Starting point: $\mathbf{x}_1 = \mathbf{M} = \begin{bmatrix} 5\\ 3 \end{bmatrix}$; $\mathbf{u}_1 = \mathbf{u}(\mathbf{x}_1) = \begin{bmatrix} 0\\ 0 \end{bmatrix}$
Scale parameter: $G_0 = g(\mathbf{M}) = 0.5 \cdot 5^2 - 3 + 3 \cdot \sin(2 \cdot 5) = 7.87$

Computation (1st step):

$$G(\mathbf{u}_{1}) = g(\mathbf{x}_{1}) = 7.8679$$

$$\nabla G(\mathbf{u}_{1}) = \nabla g(\mathbf{x}_{1}) \mathbf{J}_{\mathbf{x},\mathbf{u}} = \begin{bmatrix} -0.03 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 2.5 & 4.33 \end{bmatrix} = \begin{bmatrix} -2.57 & -4.33 \end{bmatrix}$$

$$\hat{\alpha}_{1} = -\frac{\begin{bmatrix} -2.57 & -4.33 \end{bmatrix}}{\left(2.57^{2} + 4.33^{2}\right)^{1/2}} = \begin{bmatrix} 0.51 & 0.86 \end{bmatrix}$$

Convergence check (1st step): Skipped.

Update $(1^{st} \rightarrow 2^{nd})$: $c_1 \ge \frac{\|\mathbf{u}_1\|}{\|\nabla G(\mathbf{u}_1)\|} = 0$; Set $c_1 = 10$ Current value of the merit function: $m(\mathbf{u}_1) = 0.5 \|\mathbf{u}_1\|^2 + c_1 |G(\mathbf{u}_1)| = 0.5(0)^2 + 10(7.87) = 78.7$ $\mathbf{d}_{1} = \left[\hat{\alpha}_{1}\mathbf{u}_{1} + \frac{G(\mathbf{u}_{1})}{\left\|\nabla G(\mathbf{u}_{1})\right\|}\right]\hat{\alpha}_{1}^{\mathrm{T}} - \mathbf{u}_{1}$ $= \left\{ \begin{bmatrix} 0.51 & 0.86 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{7.87}{5.03} \right\} \begin{bmatrix} 0.51 \\ 0.86 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $= \begin{vmatrix} 0.80 \\ 1.34 \end{vmatrix}$ Try a step size: $\lambda = 1$ (original HL-RF) $\mathbf{u}_2 = \mathbf{u}_1 + \lambda \mathbf{d}_1$ $=\begin{bmatrix} 0\\0 \end{bmatrix} + (1)\begin{bmatrix} 0.80\\1.34 \end{bmatrix} = \begin{bmatrix} 0.80\\1.34 \end{bmatrix}$ Check $m(\mathbf{u}_2) < m(\mathbf{u}_1)$ $\mathbf{x}_2 = \mathbf{x}(\mathbf{u}_2) = \begin{bmatrix} 6.59\\ 10.81 \end{bmatrix}$ $G(\mathbf{u}_2) = g(\mathbf{x}_2) = 0.5 \cdot 6.59^2 - 10.81 + 3\sin(2 \cdot 6.59) = 12.68$ $m(\mathbf{u}_2) = 0.5(6.59^2 + 10.81^2) + 10(12.68) = 126.82 > 78.7$ N.G. (reject: $\lambda = 1$) Try a step size: $\lambda = 0.5$ $\mathbf{u}_2 = \mathbf{u}_1 + \lambda \mathbf{d}_1$ $=\begin{bmatrix} 0\\0 \end{bmatrix} + (0.5)\begin{bmatrix} 0.80\\1.34 \end{bmatrix} = \begin{bmatrix} 0.40\\0.67 \end{bmatrix}$ Check $m(\mathbf{u}_2) < m(\mathbf{u}_1)$ $\mathbf{x}_2 = \mathbf{x}(\mathbf{u}_2) = \begin{bmatrix} 5.80\\ 6.91 \end{bmatrix}$ $G(\mathbf{u}_2) = g(\mathbf{x}_2) = 0.5 \cdot 5.08^2 - 6.91 + 3\sin(2 \cdot 5.08) = 7.42$ $m(\mathbf{u}_2) = 0.5(0.40^2 + 0.67^2) + 10(7.42) = 74.60 < 78.7$ O.K. (accept: $\lambda = 0.5$) Computation (2nd step): $\nabla g = [X_1 + 6\cos(2X_1) -1]$ $G(\mathbf{u}_{2}) = 7.42$

$$\nabla G(\mathbf{u}_2) = \begin{bmatrix} 9.18 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 2.5 & 4.33 \end{bmatrix} = \begin{bmatrix} 15.86 & -4.33 \end{bmatrix}$$
$$\hat{\alpha}_2 = \begin{bmatrix} -0.97 & 0.26 \end{bmatrix}$$

Convergence check (2nd step):

$$|G(\mathbf{u}_2) / G_0| = \frac{7.42}{7.67} = 0.94 > \varepsilon_1$$
 N.G.
 $\|\mathbf{u}_2 - \hat{\alpha}_2 \mathbf{u}_2 \hat{\alpha}_2^{\mathrm{T}}\| = 0.75 > \varepsilon_2$ N.G.

Update $(2^{nd} \rightarrow 3^{rd})$:

$$c_2 \ge \left\| \mathbf{u}_2 \right\| / \left\| \nabla G(\mathbf{u}_2) \right\| = 0.05 \text{ ; set } c_2 = 10$$

Repeat until the convergence criteria are satisfied.

Note: If $m(\mathbf{u}_{i+1}) \ge m(\mathbf{u}_i)$, reduce the value of λ until you satisfy $m(\mathbf{u}_{i+1}) < m(\mathbf{u}_i)$

of input r.v's

☆ Santos, Matioli & Beck (2012)

New optimization algorithms for structural reliability Analysis

- \Rightarrow provides a good review on HLRF, mHLRF and iHLRF
- ⇒ proposes <u>nHLRF</u> and two <u>Lagrangian</u> methods
- \Rightarrow nHLRF \rightarrow as efficient as iHLRF & more robust

 \Rightarrow Lagrangian \rightarrow Less efficient than HLRF's but more general and probably more suitable than HLRFs for large no. of rvs

Reliability Indices VS Reliability Methods

 $(\beta_{SM}, \beta_{SF}, \beta_{MVFOSM}, \beta_{HL})$ (P_f)

Reliability indices

- Use partial & (i.e. ∇)
- Do not provide a framework to consider type of
- P_f could be estimated for special cases only

(e.g., $P_f = \Phi(-\beta_{SM})$ when R, S ~ Normal)

ightarrow Therefore, cannot be considered as reliability _____

cf. FORM/SORM ~ reliability methods

$$= \frac{\text{design}}{\text{point}}_{(\text{e.g. } \beta_{HL})} + \begin{cases} 1 \text{) transformation to} \\ \text{achieve } \mathbf{u} \sim N(\mathbf{0}, \mathbf{I}) \\ 2 \text{) procedure to get} \end{cases}$$

Probability in the Uncorrelated Standard Normal Space

$$\mathbf{u} \sim N(\mathbf{0}, \mathbf{I})$$
 (cf. $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{R})$)

Joint PDF

$$\varphi(\mathbf{u}) = \frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2} \|\mathbf{u}\|^2)$$
$$= \prod_{i=1}^n \varphi(u_i)$$

where
$$\varphi(u_i) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}u_i^2)$$

① Rotational Symmetry

~the probability density is completely defined by

from origin

2 Exponential Decay of Density

In <u>r</u> direction

③ Exponential Decay of Density

In t direction

u^{*} : Richest point in terms of prob. density

Therefore, approximation around \mathbf{u}^* should be good

④ FORM : First Order Reliability Method

)

457.646 Topics in Structural Reliability In-Class Material: Class 13

④ First-order reliability method (FORM)

 $P_f \cong$ Probability in the linear half space determined by

FO approximation of failure domain at $\mathbf{u} =$

or

 \times SORM (p_2): later

Probabilistic Transformation & Jacobian (to achieve $U \sim 0$)

... Transformation (&Jacobian) depends on _____

cf.
$$\beta_{HL} \begin{cases} \mathbf{x}(\mathbf{u}) = \mathbf{DL}\mathbf{u} + \mathbf{M} \\ \mathbf{J}_{\mathbf{x},\mathbf{u}} = \mathbf{DL} \end{cases}$$

 ${\rm theta}~$ Why do we need ~X(u)~ and $~J_{x,u}$

$$\begin{cases} G(\mathbf{u}_i) = g(\) \\ \nabla_{\mathbf{u}} G(\mathbf{u}_i) = \nabla_{\mathbf{x}} g(\) \end{cases} \rightarrow \text{need} \quad \begin{cases} \mathbf{x}_i = \mathbf{x}(\mathbf{u}_i) \\ \mathbf{J}_{\mathbf{x},\mathbf{u}} = \mathbf{J}_{\mathbf{u},\mathbf{x}}^{-1} \text{ at} \end{cases}$$

 \Rightarrow Four cases

S.I	Dependent
	2
1	3
	4

① X ~ statistically independent of each other

Each follows general distribution ($F_{X_i}(x_i)$ or $f_{X_i}(x_i)$)

$$f_{\mathbf{X}}(\mathbf{x}) =$$

∴u ~

 \Rightarrow Jacobian $J_{x,u}$

 $J_{ii} = \frac{dx_i}{du_i} = ----$; Ratio of PDFs

Note $F_{X_i}(x_i) = \Phi(u_i)$

$$f_{X_i}(x_i)dx_i = \varphi(u_i)du_i$$

2 X ~ Correlated Normal, $N(M, \Sigma)$

$$\Rightarrow \operatorname{Transform} \begin{pmatrix} \mathbf{x} = & \mathbf{X} & \Box & \mathbf{u} \\ \mathbf{u} = & N(\mathbf{M}, \boldsymbol{\Sigma}) & N(\mathbf{0}, \mathbf{I}) \end{cases}$$

$$\Rightarrow$$
 Jacobian $J_{\mathbf{x},\mathbf{u}}$ therefore β_{HL} β_{FORM} for $\mathbf{X} \sim N($)

$$\Rightarrow$$
 Transform **u** = **z** = $\begin{cases} \\ \\ \\ \end{cases}$

$$\Rightarrow \text{ Jacobian } \begin{cases} J_{\mathbf{u},\mathbf{x}} = J & \cdot J & = \\ J_{\mathbf{x},\mathbf{u}} = & \end{cases}$$

④ Non-normal, non-Nataf, dependent RVs

e.g. Hohenbichler & Rackwitz 1981 (named, Rosenblatt's transformation)

Transformation for non-normal, non-Nataf, dependent random variables

>> Rosenblatt's transformation (Rosenblatt 1952; Hohenbichler & Rachwitz 1981)

<u>Given</u>:

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_n}(x_n \mid x_1, \dots, x_{n-1}) f_{X_{n-1}}(x_{n-1} \mid x_1, \dots, x_{n-2}) \cdots f_{X_2}(x_2 \mid x_1) f_{X_1}(x_1)$$

~ conditional PDFs are available.

Transformation: triangular transformation
$$u_{1} = \Phi^{-1} \Big[F_{X_{1}}(x_{1}) \Big]$$
$$u_{2} = \Phi^{-1} \Big[F_{X_{2}}(x_{2} \mid x_{1}) \Big]$$
$$\vdots$$
$$u_{n} = \Phi^{-1} \Big[F_{X_{n}}(x_{n} \mid x_{1}, ..., x_{n-1}) \Big]$$

****** Proof: $U \sim N(0, I)$?

$$f_{\mathbf{U}}(\mathbf{u}) = f_{\mathbf{X}}(\mathbf{x}) \left| \det \mathbf{J}_{\mathbf{u},\mathbf{x}} \right|^{-1}$$

= $f_{\mathbf{X}}(\mathbf{x}) \left[\prod_{i=1}^{n} J_{i,i} \right]^{-1}$ (:: $\mathbf{J}_{\mathbf{u},\mathbf{x}}$ lower triangular matrix)
= $f_{\mathbf{X}}(\mathbf{x}) \frac{\phi(u_1)}{f_{X_1}(x_1)} \frac{\phi(u_2)}{f_{X_2}(x_2 \mid x_1)} \cdots \frac{\phi(u_n)}{f_{X_n}(x_n \mid x_1, \dots, x_{n-1})}$
= $\prod_{i=1}^{n} \phi(u_i)$ (uncorrelated standard normal)

Jacobian: $\mathbf{J}_{\mathbf{u},\mathbf{x}} = [J_{ij}]$ where

$$J_{ij} = \frac{f_{X_1}(x_1)}{\varphi(u_1)} \qquad i = j = 1$$

$$\frac{f_{X_i}(x_i \mid x_1, ..., x_{i-1})}{\varphi(u_i)} \qquad i = j > 1$$

$$\frac{1}{\varphi(u_i)} \frac{\partial F_{X_i}(x_i \mid x_1, ..., x_{i-1})}{\partial x_j} \qquad i > j$$

$$0 \qquad i < j$$

** What does $F_{X_i}(x_i | x_1, ..., x_{i-1})$ mean?

 $\begin{aligned} \text{First of all, } & F_{X_i}(x_i \mid x_1, ..., x_{i-1}) \neq \frac{F_{X_1...X_i}(x_1, ..., x_i)}{F_{X_1...X_{i-1}}(x_1, ..., x_{i-1})} \text{. It is rather the conditional probability that} \\ & X_i \leq x_i \text{ given } X_1 = x_1, X_2 = x_2, ..., X_{i-1} = x_{i-1} \text{ that is,} \\ & F_{X_i}(x_i \mid x_1, ..., x_{i-1}) = P(X_i \leq x_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1}) \\ & = \int_{-\infty}^{x_i} f_{X_i}(x_i \mid x_1, ..., x_{i-1}) dx_i \\ & = \int_{-\infty}^{x_i} \frac{f(x_1, ..., x_i)}{f(x_1, ..., x_{i-1})} dx_i \\ & = \frac{1}{f(x_1, ..., x_{i-1})} \int_{-\infty}^{x_i} \frac{\partial^i F(x_1, ..., x_i)}{\partial x_1 \cdots \partial x_i} dx_i \\ & = \frac{1}{f(x_1, ..., x_{i-1})} \frac{\partial^{i-1} F(x_1, ..., x_i)}{\partial x_1 \cdots \partial x_i} dx_i \end{aligned}$

For example,

$$F_{X_2}(x_2 \mid x_1) = \frac{1}{f_{X_1}(x_1)} \frac{\partial F(x_1, x_2)}{\partial x_1}, \quad F_{X_3}(x_3 \mid x_1, x_2) = \frac{1}{f(x_1, x_2)} \frac{\partial^2 F(x_1, x_2, x_3)}{\partial x_1 \partial x_2}$$

457.646 Topics in Structural Reliability

In-Class Material: Class 14

FERUM: Finite Element Reliability Using Matlab®

FERUM (URL: <u>http://www.ce.berkeley.edu/FERUM</u>) is an open source Matlab® toolbox for structural reliability analysis, created by Dr. Terje Haukaas during his Ph.D. study at UC Berkeley (currently at the University of British Columbia).

- **FERUMcore** contains the core algorithms to perform FORM, SORM, Monte Carlo simulations and importance sampling.
- **FERUMlinearfecode** is a simple finite element code provided with FERUM to enable linear finite element reliability analysis with truss, beam or quad4 elements. Limit-state functions can be defined in terms of displacement reponse from this code. Gradients can be computed either by direct differentiation (DDM) or by a forward finite difference scheme.
- **FERUMnonlinearfecode** is an add-on to FERUMlinearfecode to enable nonlinear finite element reliability analysis. The J2 plasticity material is provided, and gradients can be computed by direct differentiation (DDM) or by forward finite difference. Truss and quad4 elements are available.
- **FERUMdynamicfecode** is yet another extension of FERUMlinearfecode to enable limit-state functions being defined in terms of response quantities from a dynamic finite element analysis.
- **FERUMlargedefofecode** is an add-on to enable limit-state functions being defined in terms of response quantities from a finite element code capable of large deformation analysis.
- **FERUMsystems** enables FERUM to perform system reliability analysis using the Matrix-based System Reliability (MSR) method. This part of FERUM was created by Bora Gencturk during his CEE491 term project, and is maintained by Junho Song.
- **FERUMrandomfield** is an add-on to the simple finite element codes provided with FERUM. It addresses the issue of characterizing material properties as random fields. Options for the simple 1D case was provided with the initial versions of FERUM. However, the main contributions to the current version have been made by Bruno Sudret, who has also provided a user's/theory manual for the random field part of FERUM (see the User's Guide section).
- **FERUMfedeasconnection** enables the finite element program FedeasLab developed by Professor Filip Filippou at UC Berkeley to be connected to FERUM. This provides for a quite powerful computational platform for finite element reliability analysis. This part is maintained by Paolo Franchin.
- **FERUMexamples** contains a collection of example input files for FERUM.

Recently, Dr. Jean-Marc Bourinet at the French Institute of Mechanical Engineering (IFMA) further developed FERUM (Bourinet et al. 2009). His FERUM4.0 now offers new features such as directional sampling, subset simulation, global sensitivity analysis and reliability-based design optimization. URL: <u>http://www.ifma.fr/lang/en/Recherche/Labos/FERUM</u>
© FERUM Example (Example 14.3.1.1 ADK 2005)

Limit-state function for a short column (elastic-perfect-plastic) under axial force and axial bending:

$$g(\mathbf{x}) = 1 - \frac{m_1}{s_1 y} - \frac{m_2}{s_2 y} - \left(\frac{P}{Ay}\right)^2$$

 m_1 : Normal

 m_2 : Normal

P : Gumbel

y : Weibull

$$\beta_{FORM} = 2.47$$

$$\mathbf{u}^* = \{1.21 \ 0.699 \ 0.941 \ -1.80\}^T$$

$$\mathbf{x}^* = \{341 \ 170 \ 3223 \ 31.8\}^T$$

$$\hat{\boldsymbol{\alpha}} = \{0.491 \ 0.283 \ 0.381 \ -0.731\}$$

$$P_f \Box \Phi(-\beta_{FORM}) = 0.00682$$

% FERUM INPUTFILE

```
clear probdata femodel analysisopt gfundata randomfield systems results
output_filename
output_filename = 'output_Ch14_Example.txt';
probdata.marg(1,:) = [1 2.5e5 2.5e5*0.3 2.5e5 0 0 0 0 0];
probdata.marg(2,:) = [1 1.25e5 1.25e5*0.3 1.25e5 0 0 0 0];
probdata.marg(3,:) = [15 2.5e6 2.5e6*0.2 2.5e6 0 0 0 0];
probdata.marg(4,:) = [16 \quad 4.0e7 \quad 4.0e7 \quad 0.1 \quad 4.0e7 \quad 0 \quad 0 \quad 0 \quad 0];
probdata.correlation = [1.0 0.5 0.3 0.0;
                     0.5 1.0 0.3 0.0;
                     0.3 0.3 1.0 0.0;
                     0.0 0.0 0.0 1.0];
probdata.parameter = distribution_parameter(probdata.marg);
analysisopt.ig_max = 100;
analysisopt.il_max = 5;
analysisopt.e1 = 0.001;
analysisopt.e2 = 0.001;
analysisopt.step_code = 1;
analysisopt.grad_flag = 'DDM';
analysisopt.sim_point = 'dspt';
analysisopt.stdv_sim = 1;
analysisopt.num_sim = 100000;
analysisopt.target_cov = 0.0125;
gfundata(1).evaluator = 'basic';
gfundata(1).type = 'expression';
gfundata(1).parameter = 'no';
gfundata(1).expression = \frac{1-x(1)}{0.030} \frac{x(4)-x(2)}{0.015} \frac{x(4)}{x(4)}
(x(3)/0.190/x(4))^{2'};
gfundata(1).dgdq = { '-1/0.030/x(4)';
                   '-1/0.015/x(4)';
                   -2*x(3)/0.190^2/x(4)^2';
x(1)/0.030/x(4)^{2}+x(2)/0.015/x(4)^{2}+2*x(3)^{2}/0.190^{2}/x(4)^{3};
femodel = 0;
randomfield.mesh = 0;
```

Second- Order Reliability Method (read CRC ch.14)

 $P_{f} \square \text{ Prob in paraboloid in } \mathbf{u} \sim N(\mathbf{0}, \mathbf{I})$ $= p_{2}$ $= P(\beta - u_{n} + \frac{1}{2} \sum_{i=1}^{n-1} \kappa_{i} u_{i}^{2} \le 0)$

(κ : principal curvature in $u_i - u_n$ plane)

- ***** Formulas for p_2
 - ① Tvedt (exact; under the condition $\beta \kappa_i > -1$)

$$p_2 = \varphi(\beta) \operatorname{Re}\left\{ i \sqrt{\frac{2}{\pi}} \int_{0}^{i\infty} \frac{1}{s} \exp\left[\frac{(s+\beta)^2}{2}\right] \prod_{i=1}^{n-1} \frac{1}{\sqrt{1+\kappa_i s}} ds \right\}$$

2 (Karl) Breitung (simpler; derived earlier; approximate)

$$p_2 \cong \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1+\beta\kappa_i}} \begin{cases} \kappa > 0 & p_2 & p_1 \\ \kappa = 0 & p_2 & p_1 \\ \kappa < 0 & p_2 & p_1 \\ \kappa < 0 & p_2 & p_1 \end{cases}$$

③ Improved Breitung

$$p_2 \cong \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1 + \psi(\beta)\kappa_i}} \quad \text{where} \quad \psi(\beta) = \frac{\phi(\beta)}{\Phi(-\beta)} \quad (\leftarrow \text{erratum in Ch.14})$$

* How to get κ_i 's, $i = 1, \dots, n-1$? (κ : principal curvature)

① Curvature-fitting SORM (see in-class material)

$$\Rightarrow \text{ Find (}) \text{ matrix } \mathbf{H} = \left[\frac{\partial^2 G}{\partial u_i \partial u_j}\right] \text{ at } \mathbf{u} =$$

⇒ Two rotations & eigenvalue analysis to obtain $\beta - u_n + \frac{1}{2} \sum \kappa_i u_i^2 \le 0$

- \Rightarrow Getting Hessian \rightarrow Costly & Inaccurate
- 2 Gradient-based SORM (ADK & De Stefano 1991)
 - $\Rightarrow\,$ Find the largest principal curvature from the trajectory of $\,u\,$'s during HL-RF search to get $\,u^*\,$
 - ⇒ For the 2nd largest, perform HL-RF in the subspace orthogonal to u_n and u_i (that has the largest κ_i)
 - \Rightarrow stop searching when $|\kappa_i| < \varepsilon$
 - \Rightarrow does not need **H**; can stop when $\|\kappa_i\|$ small
 - \Rightarrow implementation issue?
- ③ Point-fitting SORM (ADK, Liu and Hwang 1987)

Fit by piecewise paraboloid surface

$$G(\mathbf{u}) \Box \beta - u_n + \frac{1}{2} \sum_{i=1}^{n-1} a_i^{\text{sgn}(u_i)} \cdot u_i^2$$

where $a_i^{\text{sgn}(u_i)} = \frac{2(u_n^{\text{sgn}(u_i)} - \beta)}{2(u_i^{\text{sgn}(u_i)})^2}$

$$b = \begin{cases} 1 & \text{if } |\beta| \le 1 \\ |\beta| & \text{if } 1 < |\beta| \le 3 \\ 3 & \text{if } |\beta| > 3 \end{cases}$$

Merit: Insensitive to the noise in calculating $g(\mathbf{x})$

Does not require derivative calculations (H)

Drawback: $2 \times (n-1)$ fitting points \Rightarrow solve numerically Not invariant (rotation not unique)

457.646 Topics in Structural Reliability In-Class Material: Class 15

*** FERUM Example (SORM)**

$$g(\mathbf{x}) = 1 - \frac{m_1}{s_1 y} - \frac{m_2}{s_2 y} - \left(\frac{P}{Ay}\right)^2 \le 0$$

$$\beta_{FORM} = 2.4661$$

(Curvature fitting)

$$\kappa_i \begin{cases} -1.548 \times 10^{-1} \\ -3.997 \times 10^{-2} \\ 8.903 \times 10^{-7} \end{cases}$$

 $\beta_{SORM} = 2.3506(T), \ 2.3596(B), \ 2.341(iB)$

(Point fitting)

$$\begin{array}{cccc} + & - \\ a_i \begin{cases} -6.2969 \times 10^{-2} & -4.0358 \times 10^{-2} \\ -1.1986 \times 10^{-2} & -9.7461 \times 10^{-3} \\ -1.3778 \times 10^{-1} & -1.1050 \times 10^{-1} \end{cases}$$

 $\beta_{SORM} = 2.3599(T), \ 2.3693(B), \ 2.3537(iB)$

See supplement, "Importance and Sensitivity Vectors" (by A. Der Kiureghian)

→ Main reference: Bjerager & Krenk (1989)

Solution of the sector $\hat{\alpha}$ is a sector $\hat{\alpha}$.

FORM approximation of the limit-state function

$$G(\mathbf{u}) \cong G(\mathbf{u}^*) + \nabla G(\mathbf{u}^*)(\mathbf{u} - \mathbf{u}^*)$$

=
$$= \qquad (\beta - \hat{\alpha}\mathbf{u})$$
$$G'(\mathbf{u}) = \frac{G(\mathbf{u})^{FO}}{\|\nabla G(\mathbf{u}^*)\|} =$$

Seoul National University Dept. of Civil and Environmental Engineering

Note
$$\sigma_{G'}^{2} = (\)\Sigma_{uu}(\)$$

= $\hat{a} \quad \hat{a}^{T} = \hat{a}\hat{a}^{T} = =$
Contribution (percentage) of u_{i}
to the total (variability)
of the limit-state function $G'(\mathbf{u})$
(1) Magnitude of $\alpha_{i}^{2} \Rightarrow$ measure of relative importance (contribution to the uncertainty) of
 u_{i} 's
(2) Sign of $\alpha_{i} \Rightarrow \underline{nature}$ of u_{i} 's e.g., $g(\mathbf{X}) = R - S$
 $G'(\mathbf{u}) = \beta - \hat{a}\mathbf{u} = \beta - \frac{\alpha_{i}}{2} = \beta - \frac{\alpha_{i}}{2}$

 $\begin{cases} \alpha_i & \text{positive} \implies u_i & \text{capacity or demand} \\ \\ \alpha_i & \text{negative} \implies u_i & \text{capacity or demand} \end{cases}$

Question) Importance of $u_i \stackrel{?}{=}$ Importance of X_i

- i) Independent : $u_i = \Phi^{-1} \Big[F_{X_i} (x_i) \Big]$ OK
- ii) Dependent: e.g., Nataf

NOT OK

$$\mathbf{u} = \mathbf{L}_{0}^{-1}\mathbf{z} = \mathbf{L}_{0}^{-1} \begin{cases} \Phi^{-1} \left[F_{X_{1}} \left(x_{1} \right) \right] \\ \vdots \\ \Phi^{-1} \left[F_{X_{n}} \left(x_{n} \right) \right] \end{cases}$$

$$\therefore \hat{\alpha}_i \text{ does NOT} \left(\begin{array}{c} \text{Measure importance} \\ \text{Indicate the nature} \end{array} \right) \text{ of } x_i \text{ 's}$$

.

when X_i 's are

Instructor: Junho Song junhosong@snu.ac.kr

(Proof Form importance vector $\hat{\gamma}$ (Question: contribution/nature of x_i ? Not u_i 's)

Transform to "normal equivalent" of x

Why?Want to keep () distributionWant to recover ()

 $\mathbf{u}^{FO}(\mathbf{x})$?

$$\begin{cases} \mathbf{u} = \mathbf{u}(\mathbf{x}^{*}) + J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^{*}) \\ \hat{\mathbf{x}} = \mathbf{x}^{*} + J_{\mathbf{u},\mathbf{x}}^{-1}(\mathbf{u} - \mathbf{u}^{*}) \end{cases}$$
(*)

Note: Jacobians evaluated at $\mathbf{x} =$

$$\hat{\mathbf{X}} \sim N(\hat{\mathbf{M}}, \hat{\boldsymbol{\Sigma}})$$

$$\begin{cases} \hat{\mathbf{M}} = \\ \hat{\boldsymbol{\Sigma}} = \end{cases}$$

Substituting (*) into $G'(\mathbf{u}) = \beta - \hat{\alpha}\mathbf{u}$,

$$G'(\mathbf{u}) = G''(\hat{\mathbf{x}}) = \beta - \hat{\alpha} [\mathbf{u}^* + J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)]$$
$$= \beta - \hat{\alpha} \mathbf{u}^* - \hat{\alpha} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)$$
$$= -\hat{\alpha} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)$$

$$\sigma_{G''}^{2} = (-\hat{\boldsymbol{a}}J_{\mathbf{u},\mathbf{x}})\hat{\boldsymbol{\Sigma}}(-J_{\mathbf{u},\mathbf{x}}^{T}\hat{\boldsymbol{a}}^{T})$$

$$= \hat{\boldsymbol{a}}J_{\mathbf{u},\mathbf{x}}J_{\mathbf{u},\mathbf{x}}^{-1}(J_{\mathbf{u},\mathbf{x}}^{-1})^{T}J_{\mathbf{u},\mathbf{x}}^{T}\hat{\boldsymbol{a}}^{T}$$

$$= = \| \|^{2} = Contribution of each \hat{x}_{i}?$$

 $\hat{\boldsymbol{\Sigma}} = \hat{\boldsymbol{D}}\hat{\boldsymbol{D}} + (\hat{\boldsymbol{\Sigma}} - \hat{\boldsymbol{D}}\hat{\boldsymbol{D}})$

diagonal off-diagonal

$$\sigma_{G}^2 = \hat{\boldsymbol{a}} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{D}}\hat{\mathbf{D}}) J_{\mathbf{u},\mathbf{x}}{}^T \hat{\boldsymbol{a}}^T + \hat{\boldsymbol{a}} J_{\mathbf{u},\mathbf{x}}(\hat{\boldsymbol{\Sigma}} - \hat{\mathbf{D}}\hat{\mathbf{D}}) J_{\mathbf{u},\mathbf{x}}{}^T \hat{\boldsymbol{a}}^T = 1$$

Contribution from variances $\sigma_{\hat{x}_i}^2$ Contribution from covariances $COV[\hat{x}_i, \hat{x}_j]$

Then, how about using $\hat{a}J_{u,x}\hat{D}$ instead of \hat{a} ?

But not normalized yet.

$$\therefore \hat{\gamma} = ------$$

- i) Magnitude of $\hat{\gamma}_i^2 \rightarrow$ contribution (importance) of \hat{x}_i or x_i
- ii) Sign of $\hat{\gamma}_i \rightarrow$ nature of \hat{x}_i or x_i

Note:
$$G'(\hat{\mathbf{x}}) = -\hat{\boldsymbol{\alpha}}J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}}-\mathbf{x}^*)$$

- $\hat{\gamma}_i$ positive \rightarrow _____ type r.v x_i
- $\hat{\gamma}_i$ negative \rightarrow _____ type r.v x_i

Note : when x are independent, $\hat{\alpha} = \hat{\gamma}$?

$$\hat{\boldsymbol{\Sigma}} = (J_{\mathbf{u},\mathbf{x}}^{-1})(J_{\mathbf{u},\mathbf{x}}^{-1})^T = \hat{\mathbf{D}}\hat{\mathbf{D}} + (\hat{\boldsymbol{\Sigma}} - \hat{\mathbf{D}}\hat{\mathbf{D}})$$

$$\hat{\mathbf{D}} =$$

$$\hat{\gamma} = \frac{\hat{\alpha}J_{u,x}\hat{\mathbf{D}}}{\left\|\hat{\alpha}J_{u,x}\hat{\mathbf{D}}\right\|} =$$

*** FERUM Example** ($\hat{\alpha}$ and $\hat{\gamma}$)

457.646 Topics in Structural Reliability In-Class Material: Class 16

Importance vectors; \hat{a} , $\hat{\gamma}$

© FORM parameter sensitivities of
$$\beta$$
; $\frac{\partial \beta}{\partial \theta}$

(Bjerager & Krenk, 1989) (See Supp)

$$\theta \in \boldsymbol{\theta}_{g} : \text{ parameters in }, g(\mathbf{x}; \boldsymbol{\theta}_{g})$$

$$e.g. \quad g(\mathbf{x}; \boldsymbol{\theta}_{g}) = 1 - \frac{M}{M_{u}} - \left(\frac{P}{P_{u}}\right)^{2} \le 0 \qquad \boldsymbol{\theta}_{g} = \{M_{u} \mid P_{u}\}$$

$$\theta \in \boldsymbol{\theta}_{f} : \text{ parameters in } f_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}_{f})$$

$$e.g. \quad \sigma, \mu, \rho, \lambda, \xi, b$$

(1) Case $\theta \in \mathbf{0}_{+}$ (distribution) \mathbb{X} Derivations \rightarrow see Supplement

$$\frac{d\beta}{d\theta} = \hat{\boldsymbol{\alpha}} \frac{\partial \mathbf{u}(\mathbf{x}^*, \theta)}{\partial \theta}$$

Obtain $\hat{\alpha}$ by FORM analysis

Derive
$$\frac{\partial \mathbf{u}(\mathbf{x},\theta)}{\partial \theta}$$
 from $\mathbf{u}(\mathbf{x},\theta)$ and evaluate it at $\mathbf{x} = \mathbf{x}^*$
 \Rightarrow Vector version $\nabla_{\mathbf{\theta}_f} \beta = \hat{\alpha} J_{\mathbf{u},\mathbf{\theta}_f}(\mathbf{x}^*,\mathbf{\theta}_f)$

e.g. x ~ s.i. Normal

$$\mathbf{u} = \mathbf{L}^{-1}\mathbf{D}^{-1}(\mathbf{X} - \mathbf{M})$$
$$= \mathbf{D}^{-1}(\mathbf{X} - \mathbf{M})$$
$$u_1 = , u_2 = \cdots$$

$$\frac{\partial u_1}{\partial \sigma_1} = \qquad \qquad \therefore \frac{\partial u_1}{\partial \sigma_1} (\mathbf{x}^*) =$$

Seoul National University Dept. of Civil and Environmental Engineering

② Case $\theta \in \mathbf{\theta}_{g}$ (limit-state function)

$$\frac{d\beta}{d\theta} = \frac{1}{\left\| \nabla_{\mathbf{u}} G(\mathbf{u}^*, \theta) \right\|} \frac{\partial g(\mathbf{x}^*, \theta)}{\partial \theta}$$

\$\scale FORM \$\scale \$ derive from \$g(\mathbf{x})\$

 \Rightarrow Vector version

$$\nabla_{\boldsymbol{\theta}_{g}} \beta = \frac{1}{\left\| \nabla_{\mathbf{u}} G(\mathbf{u}^{*}, \boldsymbol{\theta}) \right\|} \nabla_{\boldsymbol{\theta}_{g}} g(\mathbf{x}^{*}, \boldsymbol{\theta}_{g})$$

e.g.

$$g(\mathbf{x}, \mathbf{\theta}_{g}) = 1 - \underbrace{\frac{M}{M_{u}}}_{\theta_{g}} - (\frac{P}{P_{u}})^{2} \leq 0$$
$$\frac{\partial g}{\partial \theta} = \qquad \qquad \therefore \frac{\partial g}{\partial \theta}(\mathbf{x}^{*}) =$$

)

Parameter Sensitivities of failure probability

$$P_f: \frac{\partial P_f}{\partial \theta}$$
 ?

Recall
$$P_f = \Phi($$

$$\frac{dP_f}{d\theta} =$$

Vector version:

$$\nabla_{\theta} P_f = -\phi(-\beta)\nabla_{\theta}\beta$$

Parameter sensitivities w.r.t. alternative parameters

$$\begin{split} \boldsymbol{\theta}_{f} &= \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\lambda}_{,\xi} &= \mu, \sigma \\ \boldsymbol{\lambda}_{,\xi} &= \begin{bmatrix} \lambda \\ \boldsymbol{\xi} \end{bmatrix} = \begin{bmatrix} \ln \mu - 0.5 \ln[1 + (\frac{\sigma}{\mu})^{2}] \\ \sqrt{\ln[1 + (\frac{\sigma}{\mu})^{2}]} \end{bmatrix} \\ \boldsymbol{\theta}_{f} & \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\nabla}_{\boldsymbol{\theta}_{f}} , \boldsymbol{\beta} &= \boldsymbol{\nabla}_{\boldsymbol{\theta}_{f}} \boldsymbol{\beta} \cdot \end{split}$$

% FERUM Input File for CRC CH14 Example (with Parameter)

```
clear probdata femodel analysisopt gfundata randomfield systems results
output_filename
output_filename = 'output_Ch14_Example_param.txt';
probdata.marg(1,:) = [1]
                         2.5e5
                                 2.5e5*0.3
                                            2.5e5 0 0 0 0 0];
probdata.correlation = [1.0 0.5 0.3 0.0;
                   0.5 1.0 0.3 0.0;
                   0.3 0.3 1.0 0.0;
                   0.0 0.0 0.0 1.0];
probdata.parameter = distribution_parameter(probdata.marg);
analysisopt.ig_max = 100;
                   = 5;
analysisopt.il_max
analysisopt.e1 = 0.001;
analysisopt.e2 = 0.001;
analysisopt.step_code = 0;
analysisopt.grad_flag = 'DDM';
analysisopt.sim_point = 'dspt';
analysisopt.stdv_sim = 1;
analysisopt.num_sim = 100000;
analysisopt.target_cov = 0.05;
gfundata(1).evaluator = 'basic';
gfundata(1).type = 'expression';
gfundata(1).parameter = 'yes'; % "We have a parameter in the limit-state
function"
gfundata(1).thetag = [0.03]; % default value of S1
gfundata(1).expression = (1-x(1)/gfundata(1).thetag(1)/x(4)-
x(2)/0.015/x(4) - (x(3)/0.190/x(4))^2';
gfundata(1).dgdq = \{ '-1/gfundata(1).thetag(1)/x(4)' ;
                 '-1/0.015/x(4)';
                 '-2*x(3)/0.190^2/x(4)^2';
x(1)/qfundata(1).thetaq(1)/x(4)^{2}+x(2)/0.015/x(4)^{2}+2*x(3)^{2}/0.190^{2}/x(4)
)^3'};
gfundata(1).dgthetag = { 'x(1)/x(4)/gfundata(1).thetag(1)^2' }; %
Derivative w.r.t. S1
femodel = 0;
randomfield.mesh = 0;
```

Importance Vectors Using Parameter Sensitivities

 $\Rightarrow~$ Use $~\nabla_M\beta~$ and $~\nabla_D\beta~$ to quantify importance of random variables?

$$\frac{\partial \beta}{\partial \mu_1} \gg \frac{\partial \beta}{\partial \mu_2} \rightarrow$$
 more to than

(1) Importance vector $\boldsymbol{\delta}$

$$\boldsymbol{\delta} = \nabla_{\mathbf{M}} \boldsymbol{\beta} \cdot \mathbf{D}$$
$$= \begin{bmatrix} \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{1}} \cdot \dots, \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{2}} \cdot \dots, \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{n}} \cdot \end{bmatrix}$$

Why?

- X_i 's Can have different units & dimensions (therefore μ_i 's) \Rightarrow make it dimensionless
- Assume variations in $\mu_i \propto$
- Change in β when μ_i change by
- 2 Importance vector η

$$\mathbf{\eta} = \nabla_{\mathbf{D}} \boldsymbol{\beta} \cdot \mathbf{D}$$
$$= \begin{bmatrix} \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\sigma}_1} \cdot &, \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\sigma}_2} \cdot &, \cdots, & \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\sigma}_n} \end{bmatrix}$$

Change in $\beta \,$ when $\, \sigma_{_{\it i}} \,$ change by

3 Upgrade worth I_{θ}

$$\mathbf{I}_{\boldsymbol{\theta}} = -\nabla_{\boldsymbol{\theta}} P_{f} \mathbf{D}_{\boldsymbol{\theta}}$$
$$= \begin{bmatrix} -\frac{\partial P_{f}}{\partial \theta_{1}} & \cdots, & -\frac{\partial P_{f}}{\partial \theta_{n}} \end{bmatrix}$$

- Der Kiureghian, Ditlevsen & Song (2007)
- Song & Kang (2009)

Change in θ_i that can be achieved by unit _____

Ise of sensitivity / Importance Vectors

$$(\nabla_{\theta}\beta)$$
 $(\hat{\alpha}, \hat{\gamma}, \delta, \eta)$

- ① To identify important rv's
- (2) To update β for small increment

$$\beta_{new} \cong \beta_{old} + \sum_{i} \frac{\partial \beta}{\partial \theta_{i}} \cdot \Delta \theta_{i}$$

③ Reliability Based Design Optimization

$$\Rightarrow \frac{\partial \beta}{\partial \theta}$$
 needed to facilitate the use of ()-based optimizers

④ To compute PDF of a function $y(\mathbf{x})$

$$F_{Y}(\theta) = P(Y(\mathbf{x}) \le \theta)$$

= $P(Y(\mathbf{x}) - \theta \le 0)$ here consider $Y(\mathbf{x}) - \theta$ as the limit state function $g(\mathbf{x}, \theta)$
 $\simeq \Phi(-\beta(\theta))$

$$f_{Y}(\theta) = \frac{dF_{y}(\theta)}{d\theta} = -\varphi(-\beta(\theta))\frac{d\beta}{d\theta}$$

⑤ To help gain insight of the reliability problem

457.646 Topics in Structural Reliability

IV. System Reliability

Junho Song

Associate Professor Department of Civil and Environmental Engineering Seoul National University

System reliability?

Churchsearch.com

		_
Failure event	E_{sys}	
Abnormal flight (engine)	$E_1 \bigcup E_2$	
Emergency	$E_1 E_2$	$\succ P(E_{sys})?$
Landing at nearby airport	$E_1\overline{E}_2 \bigcup \overline{E}_1E_2$	

System reliability in structural engineering

$$\begin{split} E_{system} &= E_1 E_2 \bigcup E_4 E_5 \bigcup E_4 E_7 \bigcup E_4 E_9 \bigcup E_5 E_6 \bigcup \\ E_6 E_7 \bigcup E_6 E_9 \bigcup E_5 E_8 \bigcup E_7 E_8 \bigcup E_8 E_9 \bigcup \\ E_{11} E_{12} \bigcup E_1 E_3 E_5 \bigcup E_1 E_3 E_7 \bigcup E_1 E_3 E_9 \bigcup \\ E_2 E_3 E_4 \bigcup E_2 E_3 E_6 \bigcup E_2 E_3 E_8 \bigcup E_4 E_{10} E_{12} \bigcup \\ E_6 E_{10} E_{12} \bigcup E_8 E_{10} E_{12} \bigcup E_5 E_{10} E_{11} \bigcup E_7 E_{10} E_{11} \bigcup \\ E_9 E_{10} E_{11} \bigcup E_1 E_3 E_{10} E_{12} \bigcup E_2 E_3 E_{10} E_{11} \end{split}$$

$$L_{system} = f(\mathbf{D}, \boldsymbol{\Theta})$$

$$E[L_{system}] \cong f(E[\mathbf{D}], E[\boldsymbol{\Theta}])$$

$$Var[L_{system}] \cong \nabla f^{T} \boldsymbol{\Sigma} \nabla f$$

$$P(L_{system} \ge c) \cong 1 - \Phi\left(\frac{c - E[L_{system}]}{\sqrt{Var[L_{system}]}}\right)$$

Outline

- I. System reliability: definitions, existing methods and challenges
- II. Bounds of system reliability by linear programming ('LP bounds')
- III. Matrix-based system reliability (MSR) method

I. System Reliability:

- definitions, existing methods and challenges

Definition of system: (1) series system

System fails if any of its component events occur

$$E_{\text{system}} = \bigcup_{i=1}^{n} E_i$$

- Systems with no redundancy
- Examples: 1) statically determinate structure

2) electrical substation with single-transmission-line

Song, J., and A. Der Kiureghian (2003, ICASP9)

Song, J., and A. Der Kiureghian (2003, JEM ASCE)

Definition of system: (2) parallel system

System fails only if every component event occurs

$$E_{\text{system}} = \bigcap_{i=1}^{n} E_{i}$$

- Systems with maximum redundancy
- \succ Examples: 1) a bunch of wires or cables.

2) electrical substation with equipment items in parallel.

Definition of system: (3) general system

System that is *neither series or parallel* system

- 1) Cut-set system:
 - a series system of sub-parallel systems
- 2) Link-set system:
 - a parallel system of sub-series systems

$$E_{\text{system}} = \bigcap_{l=1}^{L} L_{l} = \bigcap_{l=1}^{L} \bigcup_{i \in L_{l}} E_{i}$$

Example: a structure with multiple failure paths (scenarios) ~ a cut-set system

* Component failure events and failure paths

(3) General system (contd.)

Example: electrical substations (cut-set systems)

 $P(E_{system}) =$ $P[E_1 \cup (E_2 E_3 \cdots E_{k+1}) \cup E_{k+2} \cup E_{k+3} \cup E_{k+4}]$

* 5 cut sets, k+4 components

Song, J., and A. Der Kiureghian (2003, ICASP9)

$$\begin{split} P(E_{system}) &= \\ P(E_{1}E_{2} \bigcup E_{4}E_{5} \bigcup E_{4}E_{7} \bigcup E_{4}E_{9} \bigcup E_{5}E_{6} \bigcup E_{6}E_{7} \bigcup \\ E_{6}E_{9} \bigcup E_{5}E_{8} \bigcup E_{7}E_{8} \bigcup E_{8}E_{9} \bigcup E_{11}E_{12} \bigcup \\ E_{1}E_{3}E_{5} \bigcup E_{1}E_{3}E_{7} \bigcup E_{1}E_{3}E_{9} \bigcup E_{2}E_{3}E_{4} \bigcup \\ E_{2}E_{3}E_{6} \bigcup E_{2}E_{3}E_{8} \bigcup E_{4}E_{10}E_{12} \bigcup E_{6}E_{10}E_{12} \bigcup \\ E_{8}E_{10}E_{12} \bigcup E_{5}E_{10}E_{11} \bigcup E_{7}E_{10}E_{11} \bigcup E_{9}E_{10}E_{11} \bigcup \\ E_{1}E_{3}E_{10}E_{12} \bigcup E_{2}E_{3}E_{10}E_{11}) \end{split}$$

* 25 cut sets, 12 components

"component" reliability vs "system" reliability

► Component reliability analysis: $P(E_i) = P(g_i(\mathbf{X}) \le 0) = \int_{g(\mathbf{X}) \le 0} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$

- 1) FORM/SORM
- 2) Response surface method
- 3) Monte Carlo simulations
- 4) Importance samplings

- 1) Complexity
- 2) Dependence between component events
- 3) Lack of information
- synthesize components reliabilities or perform simulations

Existing methods: (1) inclusion-exclusion formula

* Series system

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(E_{i}E_{j}) + \dots + (-1)^{n-1} P(E_{1}E_{2} \cdots E_{n})$$

* Parallel system

$$P\left(\bigcap_{i=1}^{n} E_{i}\right) = 1 - P\left(\bigcup_{i=1}^{n} \overline{E}_{i}\right) = 1 - \sum_{i=1}^{n} P(\overline{E}_{i}) + \cdots$$

* Cut-set system

$$P\left(\bigcup_{i=1}^{n} C_{i}\right) = \sum_{i=1}^{n} P(C_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(C_{i}C_{j}) + \dots + (-1)^{n-1} P(C_{1}C_{2} \cdots C_{n})$$

> the number of terms increase exponentially; 2^n -1

- > requires all the joint probabilities: $P(E_i)$, $P(E_iE_j)$, $P(E_iE_jE_k)$, ...
- > useful only if component events are statistically independent: $P(E_iE_j) = P(E_i)P(E_j)$ ~ need marginal probabilities only

****** Dependence and system reliability

> A parallel system with 1~10 components with $P(E_i) = 0.01$

~ e.g. n=5: 10^{-10} (independent) ~ 10^{-2} (perfectly dependent)

Existing methods: (2) simulations

$$P(E_{\text{system}}) = \int_{D} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
$$\cong \frac{\#(\mathbf{x} \in D)}{\#(\mathbf{x})}$$

~ Count the number of samples in the system failure domain and estimate the ratio.

- > Monte Carlo simulations, importance sampling, directional sampling, etc.
- Independent random variables: easily generated.
- Dependent random variables: need joint probability density function
 ~ not available in many cases.
- > Independence assumption will lead to errors in estimating system reliability

Existing methods: (3) bounding formulas

It is desirable to derive **bounds** on system probability which involve low-order component probabilities:

✓ Uni-component probabilities: $P(E_i) = P_i$ ✓ Bi-component probabilities: $P(E_iE_j) = P_{ij}$

✓ Tri-component probabilities: $P(E_i E_j E_k) = P_{ijk}$

Series System

1) Uni-component bounds (Boole 1854; Fréchet 1953)

$$\max_{k} P_{k} \leq P\left(\bigcup_{k=1}^{n} E_{k}\right) \leq \min\left(1, \sum_{k=1}^{n} P_{k}\right)$$

2) Bi-component bounds (Kounias 1968; Hunter 1976; Ditlevsen 1979)

$$P_{1} + \sum_{i=2}^{n} \max\left(P_{i} - \sum_{j=1}^{i-1} P_{ij}, 0\right) \stackrel{!}{\to} P\left(\bigcup_{k=1}^{n} E_{k}\right) \stackrel{!}{\to} P_{1} + \sum_{i=2}^{n} \left(P_{i} - \max_{j < i} P_{ij}\right) \stackrel{!}{\to}$$

3) Tri-component bounds (Hohenbichler & Rackwitz 1983; Zhang 1993)

$$P_{1} + P_{2} - P_{12} + \sum_{i=3}^{n} \max\left[0, P_{i} - \sum_{j=1}^{i-1} P_{ij} + \max_{k \in \{1, 2, \dots, i-1\}} \sum_{\substack{j=1 \ j \neq k}}^{i-1} P_{ijk} \xrightarrow{\frac{1}{j}} P\left(\bigcup_{i=1}^{n} E_{i} \xrightarrow{\frac{1}{j}} P_{1} + P_{2} - P_{12} + \sum_{i=3}^{n} \left[P_{i} - \max_{k \in \{2, 3, \dots, i-1\}} \left(P_{ik} + P_{ij} - P_{ijk}\right)\right]\right]$$

Existing method: (3) bounding formulas (contd.)

Parallel System

- Uni-component bounds (Boole 1854; Fréchet 1953)

$$\max\left(0,\sum_{k=1}^{n}P_{k}-(n-1)\right) \leq P\left(\bigcap_{k=1}^{n}E_{k}\right) \leq \min_{k}P_{k}$$

- No higher-order bounds available.
- **Note:** De Morgan's rule can be used to convert a parallel system to a series system, allowing use of bi- and tri-component bounding formulas for series systems.

General System

- No bounding formulas exist.

Existing methods: (4) FORM approximation

- For parallel and series system
- Find the corresponding volume in standard normal space based on FORM analyses of component events
- > Errors depend on the level of nonlinearity and complexity of domain.

System reliability: challenges

Complexity of system problems

- large number of components, component states, cut sets, link sets, etc.
- difficulty in identifying cut sets or link sets
- computational challenges (speed and memory)
- Dependence between component states
 - "environmental dependence" or "common source effect"
 - members and materials by the same manufacturer or supplier
 - analysis as "independent components" is simple, but may be misleading.
- Diversity/Lack of available information on components
 - missing information
 - various types of information
 - should be flexible in obtaining information

II. Bounds on System Reliability by Linear Programming ('LP Bounds')

Bounds by linear programming (LP)

Probabilities of basic MECE events: $p_i \equiv$

$$p_i \equiv P(e_i), i = 1, 2, \dots, 2^n$$

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. *Journal of Engineering Mechanics*, ASCE, 129(6): 627-636.

Merits of LP approach

- \checkmark Bounds for general systems.
- \checkmark Any type of information on component probabilities can be used.
 - Equality: $P_{ij} = 0.02$
 - Inequality: $P_{ij} \le 0.01, \ 0.05 \le P_i \le 0.07, P_3 \le P_2$
 - Partial: $P_1 = 0.01$, $P_2 = ?$, $P_3 = 0.03$
- Finds the *narrowest* possible bounds for the given information.
 (This is not guaranteed for existing formulas for series systems involving bi- or higher-order component probabilities.)
- Can be used to compute importance and sensitivity measures, and updated system reliability.

Application to structural system reliability

Statically determinate truss (series system)

Daniels' parallel system

Cantilever beam – bar (general system)

5.0 m

 E_2

 E_{5}

 E_4

T

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. Journal of Engineering Mechanics, ASCE, 129(6): 627-636.

Application to electrical substation systems

• Component failure event, *E_i*

	\mathcal{T}		$E_i = \{ \ln R_i -$	$\ln A - \ln S_i \leq 0$	$\}, i = 1,, n$
•	᠆᠆᠆᠋᠆᠆ᢩᢣᢄ᠆᠆᠆᠆	↔	i i i	Ĺ	
	(1) DS_{1} (4) CB_{1} (6) PT (8) DB_{1}	(11) FB ₁	A = LN(mear)	=0.15, c.o.v.=0.5)	PGA
	$\langle (3) DS_3 \rangle$	↓ ↓ (10) TB	$S_i = LN$ (mear	n=1, c.o.v.=0.2) loc	cal site effect
			$R_i = LN(mea$	n,c.o.v.,corr.) equij	pment capacity
			DS: Disconn	ect Switch (0.4, 0.	.3, 0.3)
	(2) DS_2 (5) CB_2 (7) DE_2 (9) DB_2	(12) FB ₂	CB: Circuit E	Breaker (0.3, 0.3, 0).3)
	(/) P1 ₂		PT: Power T	ransformer (0.5, 0	.5, 0.5)
Two-transmission-line substations		DB: Drawout Breaker (0.4, 0.3, 0.3)			
			TB: Tie Breaker (1.0, 0.3, 0.3)		
		FB: Feeder Breaker (1.0, 0.3, 0.3)			
	Case	Uni-comp.	Bi-comp.	Tri-comp	M.C. δ=0.01
		•	_ : comp:		
	As shown in figure	1.13x10 ⁻¹² ~0.202	0.0436~0.146	0.0616~0.0942	0.0752
No	As shown in figure o information available on TB (E_{10})	1.13x10 ⁻¹² ~0.202 1.82x10 ⁻¹¹ ~0.202	0.0436~0.146 0.0436~0.146	0.0616~0.0942 0.0615~0.0943	0.0752 N/A
Nc Nc	As shown in figure to information available on TB (E_{10}) to information available on CB ₁ (E_4)	1.13x10 ⁻¹² ~0.202 1.82x10 ⁻¹¹ ~0.202 1.26x10 ⁻⁹ ~0.202	0.0436~0.146 0.0436~0.146 0.0267~0.147	0.0616~0.0942 0.0615~0.0943 0.0395~0.1360	0.0752 N/A N/A

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming and applications to electrical substations. *Proc. of ICASP9*, San Francisco, USA, July 6-9.

Multi-scale system reliability analysis

System of four electrical substations

 $(n = 59: 5.76 \times 10^{17} \text{ design variables})$

System decomposition

- consider a subset of the components of a system as "super-components"
- bounds on marginal and joint probabilities of the super-components are computed by LP approach
- the computed bounds are used as constraints in solving the LP problem for the entire system
- reduced to 35 LP problems, the largest of which has $2^{15} = 32,768$ variables
- multi-scale system modeling
 - helps the analyst see the "big picture," while not disregarding system details
 - particularly effective when many similar subsystems exist
 - allows different teams of analysts to work on different subsystems (parallel computing)
System reliability updating

In the analysis of system reliability, it is often of interest to compute the conditional probability of a system or subsystem event, given that another system or subsystem event is known or presumed to have occurred.

★ Examples:
$$P(E_i | E_{system})$$
, $P(E_i | \overline{E}_{system})$, etc.
$$P(B | A) = \frac{P(AB)}{P(A)} = \frac{\sum_{r \in AB} p_r}{\sum_{r \in A} p_r}$$
 ~ Nonlinear function of **p**'s

The bounds on the conditional probabilities can be obtained after a few iterations of a parameterized LP problem (Dinkelbach 1967).

* Der Kiureghian, A. and J. Song (2008). Multi-scale reliability analysis and updating of complex systems by use of linear programming. *Journal of Reliability Engineering & System Safety*, 93(2): 288-297.

System reliability updating (contd.)

Updated failure probabilities of equipment items in Substation 4

Туре	Equipment No.	$P(E_i)$	$P(E_i \mid E_{sys})$	$P(E_i \mid \overline{E}_{sys})$
DS	56, 58, 62, 64	0.00371	0.243 ~ 0.375	0.000431 ~ 0.00125
	59, 61, 65, 67	0.00371	0.175 ~ 0.372	0.000431 ~ 0.00182
	68	0.00371	0.331 ~ 0.468	0
CB	57, 63	0.00953	0.506 ~ 0.660	0.00345 ~ 0.00458
	60, 66	0.00953	0.338 ~ 0.623	0.00357 ~ 0.00613
РТ	69	0.00232	0.206 ~ 0.292	. 0
-				

Identification of critical components and cut sets

- LP approach can identify components and cut sets which make significant contributions to the system failure probability by iteratively solving parameterized LP's.
- Importance Measures (IM)

quantifies participation in system failure probability

- Fussell-Vesely:
- Risk Achievement Worth:
- Risk Reduction Worth:
- Boundary Probability:
- Fussell-Vesely Cutset IM:

$$FV_{i} = P(\bigcup_{k:E_{i} \subseteq C_{k}} C_{k}) / P(E_{system})$$
$$RAW_{i} = P(E_{system}^{(i)}) / P(E_{system})$$

$$RRW_i = P(E_{system}) / P(E_{system}^{(i)})$$

$$BP_i = P(E_{system}^{(i)}) - P(E_{system}^{(i)})$$

$$FVC_k = P(C_k) / P(E_{\text{system}})$$

Identification of critical components and cut sets (contd.)

* Song, J. and A. Der Kiureghian. Component importance measures by linear programming bounds on system reliability. *Proc. of ICOSSAR9*, Rome, Italy, June 19-23.

Sensitivity and optimal upgrade

General-purpose LP algorithms provide the sensitivity of an optimal solution with respect to the values in the right-hand side vector, b.

Optimal upgrade of system reliability within the limit of upgrade cost (*in progress*)

 $\begin{array}{ll} \min_{\mathbf{x}} \max_{\mathbf{p}} & \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{x}) \\ \text{subject to} & \mathbf{a}_{1} \mathbf{p} = \mathbf{b}_{1}(\mathbf{x}), & \mathbf{a}_{2} \mathbf{p} \ge \mathbf{b}_{2}(\mathbf{x}) \\ & \mathbf{Q} \mathbf{x} \le \mathbf{q}, & \mathbf{m}^{\mathrm{T}} \mathbf{x} \le m_{c} \\ & \mathbf{x} : \text{binary integers} \end{array}$

- ~ minimize the upper bound of P_{sys}
- ~ component failure probabilities: f(actions)
- ~ constraints on the actions (workability, cost)
- ~ indicators for upgrade actions (1: yes, 0: no)

LP Bounds approach and decision-making

457.646 Topics in Structural Reliability In-Class Material: Class 17

General system by cut set formulation

 -	_	-	
0	0	0	$\overline{E_1} \cdot \overline{E_2} \cdot \overline{E_3}$
o	о	х	$\overline{E_1}\cdot\overline{E_2}\cdot E_3$
o	х	о	$\overline{E_1}\cdot E_2\cdot \overline{E_3}$
х	о	о	$E_1\cdot \overline{E_2}\cdot \overline{E_3}$
	:		:
	:		:

① Link set: a subset of components whose joint () assures () of the system

 $L = \{ \}$

② "Minimum" link sets ~ link sets with no r_____ component

 $L_{\min} = \{ \}$

③ "Disjoint" Link set

$$L_{disj} = \{ \}$$

$$\bigstar (\overline{E}_{sys}) = \bigcup_{k=1}^{Nlink} L_k \qquad = \bigcup_{k=1}^{Nlink} \bigcap_{i=L_k} \overline{E}_i$$

De morgan's law

 $\therefore E_{sys} = \bigcap_{k=1}^{Nlink} \left(\bigcup_{i=L_k} \right)$

457.646 Topics in Structural Reliability

In-Class Material: Class 18

© FORM approximation (Hohenbichler & Rackwitz 1983)

Joint normal CDF of $\mathbf{Z} \sim N(\mathbf{0}; \mathbf{R})$

 $=1-\Phi_m(,\cdots,;\mathbf{R})$

Where $\Phi_m(\boldsymbol{\beta};\mathbf{R}) = \int_{-\infty}^{\beta_1} \cdots \int_{-\infty}^{\beta_m} \varphi_m(\mathbf{Z};\mathbf{R}) d\mathbf{z}$

→ better linearization point? "joint design point" Hard to find or may not exist

Note: One could find such important domain using an adaptive sampling technique

Kurtz, N., and J. Song (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. *Structural Safety*. Vol. 42, 35-44.

③ General system?

 \Rightarrow No direct FORM approximation

Risk-quantification of Complex Systems by Matrix-based System Reliability Method

Junho Song

Department of Civil and Environmental Engineering Seoul National University

Matrix-based Formulation

Matrix-based formulation of system failure:

$$P(E_{sys}) = \mathbf{c}^{\mathrm{T}}\mathbf{p}$$

* Example:
$$P(E_1E_2 \cup E_3) = p_1 + p_2 + p_3 + p_4 + p_5$$

= $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$.
 $\begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 \end{bmatrix}^T$

- c: "event" vector ~ describes the system event of interest
- **p:** "probability" vector ~ likelihood of component joint failures

Identification of event vector, c

Matrix-based event operations:

$$\mathbf{c}^{\overline{E}} = \mathbf{1} - \mathbf{c}^{E}$$

$$\mathbf{c}^{E_{1}\cdots E_{n}} = \mathbf{c}^{E_{1}} \cdot \mathbf{c}^{E_{2}} \cdot \mathbf{c}^{E_{n}}$$

$$\mathbf{c}^{E_{1} \cup \cdots \cup E_{n}} = \mathbf{1} - (\mathbf{1} - \mathbf{c}^{E_{1}}) \cdot \mathbf{c}^{E_{2}} \cdot \mathbf{c}^{E_{n}}$$

- Efficient and easy to implement by matrix-based computing languages, e.g. Matlab®, Octave
- Can construct directly from event vectors of components and other system events
- Can develop/use problem-specific algorithms to identify event vectors

Identification of event vector, c

Event vectors for component events:

$$\mathbf{C}_{[1]} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{C}_{[i]} = \begin{bmatrix} \mathbf{C}_{[i-1]} & \mathbf{1} \\ \mathbf{C}_{[i-1]} & \mathbf{0} \end{bmatrix} \quad \text{for } i = 2, \dots, n$$

- **0** and **1** denote the column vectors of 2⁽ⁱ⁻¹⁾ zeros and ones
- After C_[n] is constructed, the *i*-th column of the matrix is the event vector of the *i*-th component event.

Computation of probability vector, p

 Iterative matrix-based procedure for statistically independent (s.i.) components

Statistical dependence b/w components

By total probability theorem,

$$P(E_{sys}) = \int_{\mathbf{s}} P(E_{sys} | \mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$
$$= \int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$
$$= \mathbf{c}^{\mathrm{T}} \widetilde{\mathbf{p}}$$

- Utilize conditional s.i. of components given an outcome of random variables S causing component dependence e.g. Earthquake magnitude for a bridge system
- Event vector c is independent of this consideration ~ no need to construct the probability vector for new system events

"What if not explicitly identified?"

 Example: approximation by Dunnett-Sobel (DS) correlation matrix (1955)

$$Z_i \sim N(\mathbf{0}, \mathbf{R}), \ \rho_{ij} = r_i \cdot r_j$$
$$Z_i = \sqrt{1 - r_i^2} \cdot U_i + r_i S,$$

- Z_i , i=1,...,n are conditional s.i. given S=s
- Fit the given correlation matrix with a DS correlation matrix with the least square error
- Generalized DS model (Song and Kang, Structural Safety)

$$Z_i \sim N(\mathbf{0}, \mathbf{R}), \quad \rho_{ij} = \Sigma_{k=1}^m (r_{ik} r_{jk})$$
$$Z_i = \sqrt{1 - \Sigma_{k=1}^m r_{ik}^2} \cdot U_i + \Sigma_{k=1}^m (r_{ik} S_k)$$

Conditional prob./importance measure

Conditional probability Importance Measure (CIM)

$$CIM_{i} = P(E_{i} | E_{sys}) = \frac{P(E_{i}E_{sys})}{P(E_{sys})}$$

Fussell-Vesely IM

$$FV_i = \frac{P(\bigcup_{k:C_k \supseteq E_i} C_k)}{P(E_{sys})}$$

- $P(E_{sys}')/P(E_{sys}) = (c'^{T}p) / (c^{T}p)$
- Once the system reliability is done, only additional task is to find the event vector for a new system event

Parameter sensitivity of system reliability

Statistically independent components

$$\frac{\partial P_{sys}}{\partial \theta} = \mathbf{c}^{\mathrm{T}} \frac{\partial \mathbf{p}}{\partial \theta}$$

 $D(F) = a^{T}n$

Statistically dependent components

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(2), 148-156.

Appl. I: Connectivity of a transportation network

* Kang, W.-H., J. Song, and P. Gardoni (2008) "Matrix-based system reliability method and applications to bridge networks," *Reliability Engineering & System Safety*, Vol. 93, 1584-1593.

Point of seismogenic rupture on the fault

- Post-earthquake disconnection from the critical facility
- Fragilities for bridges (Gardoni et al. 2003)
- Deterministic attenuation relationship used
- For given magnitude, the bridge component failures are conditional s.i.

Connectivity of a transportation network

Conditional probability of disconnection of cities

Probability of disconnection of cities

Connectivity of a transportation network

Conditional probability of disconnection of counties

Prob (No. of failed bridges $\geq k$)

Connectivity of a transportation network

Importance measure of components w.r.t. the likelihood of at least a disconnection

Appl. II: Damage of a bridge structural system

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(2), 148-156.

- Nielson (2005) developed analytical fragilities of bridge components such as bearings, abutments and columns
- Identified the statistical dependence between demands
- Probability that at least one component fails (series system)
- Performed MCS to account for component dependence

Damage of a bridge structural system

* Safety Factor $F_i = \ln C_i - \ln D_i$ * Fragility $P(LS_i \mid IM) = P(F_i \leq 0 \mid IM)$ $= P \left(Z_i \leq -\frac{\mu_{F_i}}{\sigma_{F_i}} | IM \right)$ $=\Phi\left|-\frac{\mu_{F_i}(IM)}{\sigma_{F_i}(IM)}\right|$ $\rho_{Z_i Z_j} = \rho_{F_i, F_j} = \frac{(\zeta_{D_i} \cdot \zeta_{D_j})}{(\zeta_{C_i}^2 + \zeta_{D_i}^2)^{1/2} (\zeta_{C_j}^2 + \zeta_{D_j}^2)^{1/2}} \cdot \frac{\rho_{\ln D_i, \ln D_j}}{(\rho_{\ln D_i, \ln D_j})}$ * Correlation

* Fitting by DS-class corr. matrix: average of percentage error ~ 3%

Damage of a bridge structural system

System fragility (at least one)

P(No. of failed components $\geq k$)

Appl. III: Progressive failure of a truss structure

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(2), 148-156.

 $P(\overline{E}_{sys}) = P[\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6} \cup (E_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{7}\overline{E}_{8}\overline{E}_{9}\overline{E}_{10}\overline{E}_{11})$ $\cup (\overline{E}_{1}E_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{12}\overline{E}_{13}\overline{E}_{14}\overline{E}_{15}\overline{E}_{16}) \cup \cdots$ $\cup (\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}E_{6})(\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})]$

Progressive failure of a truss structure

$P(\overline{E}_{sys}) = P[\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6} \cup (E_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{7}\overline{E}_{8}\overline{E}_{9}\overline{E}_{10}\overline{E}_{11})$ $\cup (\overline{E}_{1}E_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{12}\overline{E}_{13}\overline{E}_{14}\overline{E}_{15}\overline{E}_{16}) \cup \cdots$ $\cup (\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}E_{6})(\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})]$

Disjoint link sets (36 \rightarrow 11)

 $P(\overline{E}_{sys}) = P(\overline{E}_1\overline{E}_2\overline{E}_3\overline{E}_4\overline{E}_5\overline{E}_6) + P(\overline{E}_1\overline{E}_2\overline{E}_3\overline{E}_4\overline{E}_5\overline{E}_6\overline{E}_7\overline{E}_8\overline{E}_9\overline{E}_{10}\overline{E}_{11})$ $\dots + P(\overline{E}_1\overline{E}_2\overline{E}_3\overline{E}_4\overline{E}_5\overline{E}_6\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})$

Perfect correlation

7 systems with 6 components

Progressive failure of a truss structure

- System collapse fragility curve given abnormal load
- Verified through MCS
- Importance of members (components)
- Sensitivity of fragility w.r.t. design parameters

Appl. IV: Multi-scale SRA of lifeline networks

* Song, J., and S.-Y. Ok (2010). Multi-scale system reliability analysis of lifeline networks under earthquake hazards. *Earthquake Engineering and Structural Dynamics*, Vol. 39(**3**), 259-279.

"Divide and Conquer" approach

- Lower-scale system reliability analyses are performed for "supercomponents" and followed by higher-scale system reliability analyses
- Proposed to facilitate the use of LP bounds method (Song and Der Kiureghian, 2003) for large-size systems
- MSR method is a good tool for SRA at multiple scales

Advantages

- Multi-scale modeling of a system seeing big picture without disregarding the details
- Helps identify important components and parameters at multiple scales
- Collaborative risk management
- Facilitates parallel computing

Example: MLGW gas network

MLGW Gas Transmission System in Memphsis and Shelby County, TN

- Gas pipeline network of Memphis Light, Gas, and Water (MLGW), Shelby County, TN
- A simplified network in Chang et al. (1996) was modified based on comments from R. Bowker (MLGW)
- 37-node and 40-arc network: nodes representing pipelines and stations
- Earthquake hazard scenarios: Epicenter at N35.54°-W90.43° at Blytheville, AR
- Fragilities of pipelines and stations HAZUS-MH
- PGV and PGA maps from *MAEviz*

Failure prob. of pipeline segments

• Failure probability of the *i*-th segment of a pipeline

 $P_i = 1 - \exp(-v_i \cdot \Delta l_i)$

- Failure occurrence rate of a pipeline (HAZUS-MH: FEMA 2003) $v_i = k \cdot (PGV_i)^{\gamma}$
- Uncertainty in PGV (Adachi & Ellingwood, 2007)

$$PGV_{i} = PGV_{i} \times \varepsilon_{i} \longrightarrow$$
Lognormal r.v. (median = 1, c.o.v. = 0.6)

→ Attenuated PGV (Fernandez and Rix 2006)

Spatial Correlation (Wang & Takada, 2005)

$$\rho_{\ln PGV_i, \ln PGV_j} = \rho_{\ln \varepsilon_i, \ln \varepsilon_j} = \exp(-\parallel \mathbf{x}_i - \mathbf{x}_j \parallel / L_{corr})$$

Generalized Dunnett-Sobel (Song and Kang, 2008)

 $Z_i = \ln \varepsilon_i / \zeta_i \sim N(\mathbf{0}, \mathbf{R}) \rightarrow$ Find gDS that fits best

(←) Discretization error

choose number of segments considering corr. length

Multi-scale SRA using MSR Method

Higher-scale

$$P(E_{sys}) = \mathbf{c}^{\mathrm{T}}\mathbf{p}$$
$$\frac{\partial P(E_{sys})}{\partial \theta} = \mathbf{c}^{\mathrm{T}}\frac{\partial \mathbf{p}}{\partial \theta} = \mathbf{c}^{\mathrm{T}}\hat{\mathbf{P}}\frac{\partial \mathbf{P}}{\partial \theta}$$

→ MSR analysis using failure probability and sensitivity of links $P_i, \frac{\partial P_i}{\partial \theta}$ $i=1,...,n_{link}$

$$P_{1} = \mathbf{c}_{1}^{\mathrm{T}} \mathbf{p}_{1}$$
$$\frac{\partial P_{1}}{\partial \theta} = \mathbf{c}_{1}^{\mathrm{T}} \frac{\partial \mathbf{p}_{1}}{\partial \theta} = \mathbf{c}_{1}^{\mathrm{T}} \hat{\mathbf{P}}_{1} \frac{\partial \mathbf{P}_{1}}{\partial \theta}$$

→ MSR analysis using failure probability and sensitivity of segments $P_{(i)}, \frac{\partial P_{(i)}}{\partial \theta}$ $i=1,...,n_{seg}$

Correlation between pipelines

Higher-scale: service nodes Prob. of Disconnection at **Node** 2

Probabilistic inference and sensitivity

Conditional Probabilities

Parameter Sensitivity

Gate Station

Regulato

Other State
 Link Node

17

6 30

- Conditional probability of link failure probability given observed system event (e.g. disconnection)
- Sensitivity of system failure probability with respect to parameters in PGV-based model for failure occurrence rate: $v_i = k \cdot (PGV_i)^{\gamma}$
Appl. V: Post-hazard flow capacity of a network

Example: Modified Sioux-Falls network Red: bridges; Circles: Starting & Ending points

- □ Traffic flow capacity between two points in a network → determined by combinations of bridge damage
 - **q** : a vector of network flow capacity for bridge failure combinations (obtained by maximum flow capacity analysis)

 $\boldsymbol{\mu}_{\mathcal{Q}} = \boldsymbol{q}^{\mathrm{T}} \boldsymbol{p} : \text{average post-hazard flow} \\ \text{capacity}$

$$\sigma_Q^2 = (\mathbf{q}. \mathbf{*} \mathbf{q})^{\mathrm{T}} \mathbf{p} - (\mathbf{q}^{\mathrm{T}} \mathbf{p})^2$$

: variance of post-hazard flow capacity

$$\bigcup P(Q < a) = \sum_{\forall i: q_i < a} p_i$$

: probability that flow capacity is lower than *a*

Multi-state Fragility

Fragility curves (Gardoni *et al.* 2002, 2003)

⇒ Only two states, "connected" or "disconnected"

 $\begin{array}{l} P(Complete \ failure) = 0.3 \times P_f \\ P(Heavy \ damage) = 0.45 \times P_f \\ P(Moderate \ damage) = 0.25 \times P_f \\ P(No \ damage) = 1 - P_f \end{array}$

 $F(Complete \ failure) = 0$ $F(Heavy \ damage) = 0.3 \times Full \ capacity$ $F(Moderate \ damage) = 0.7 \times Full \ capacity$ $F(No \ damage) = 1.0 \times Full \ capacity$

Uncertainty quantification of flow capacity

 Capacity distribution for a given seismic intensity (M=7.0)

□ Statistical parameters of flow capacity (M=6.0~8.5)

$$\boldsymbol{\mu}_{Q} = \mathbf{p}^{\mathrm{T}} \mathbf{f}$$
$$\boldsymbol{\sigma}_{Q} = (\mathbf{p}^{\mathrm{T}} (\mathbf{f} \cdot \mathbf{f}) - \boldsymbol{\mu}_{Q}^{2})^{1/2}$$

$$\delta_Q = \sigma_Q / \mu_Q$$

Probability with number of failed bridges

Analysis Results

Conditional flow capacity (For 10th bridge, M=7.0)

Analysis Results

Flow capacity with deterioration

□ Assumptions

 $P(T, Complete failure) = P(Complete failure) \times (1.0+0.0005 \times T^2)$ $P(T, Heavy damage) = P(Heavy damage) \times (1.0+0.015 \times T)$ $P(T, Moderate damage) = P(Moderate damage) \times (1.0-0.015 \times T)$ P(T, No damage) = 1 - P(T, Complete failure) - P(T, Heavy damage) - P(T, Moderate damage)

, where T:[Years]

 $\boldsymbol{\mu}_{Q}(t) = \boldsymbol{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\mathbf{p}}(t)$

 $\sigma_{\mathcal{Q}}(t) = \sqrt{(\mathbf{q}. * \mathbf{q})^{\mathrm{T}} \mathbf{p}(t) - \mu_{\mathcal{Q}}^{2}(t)}$

Extension to multi-hazard environment

* Lee, Y.-J., J. Song, P. Gardoni, and H.-W. Lim. (2010). Post-hazard flow capacity of bridge transportation network considering structural deterioration of bridges, *Structure and Infrastructure Engineering*, Accepted for Publication.

- More realistic assumptions
 - Multi-state fragility estimates w.r.t. drift capacity levels
 - Attenuation relationship (PSA & PGV)
 - Deterioration fragility estimates (Choe *et al.* 2007)
 - Multi-state flow capacity level proportional to number of open lanes
 - Deterioration scenarios
- Area-to-area flow capacity
- Further analysis for uncertain earthquake magnitude

Progress of Structural Deterioration (Corrosion) by Sea Air

Analysis Results

Application VI: FE system reliability analysis

* Lee, Y.-J., J. Song, and E.J. Tuegel (2008). Finite element system reliability analysis of a wing torque box. *Proc. 10th AIAA NDA*, April 7-10, Schaumburg, IL.

- FE reliability analysis: component vs. system
 - System-level risk is a logical function of multiple component events characterized by failure modes, locations and load cases
 - Using MSR methods, the system-level risk and parameter sensitivities are estimated based on the results of FE "component" reliability analysis.

Example: FE-SRA of bridge pylon system

- Bridge pylon system
 - Consists of 2 arms each has 13 stiffeners and 23 diaphragms
 - Yielding failure considered in this example
 - Uncertainties in <u>Young's modulus</u>, <u>yield strength</u> and <u>scale factors of load</u> <u>cases</u> (dead, live, in-service wind and out-of-service wind loads) considered
 - Two load combinations considered: LC1 = D+L+Wi, LC2 = D+Wo

FE component reliability analysis

	Component event	Failure probability (\times 10 ⁻⁴)
(E_1 (LC1; 1 st spot on right body)	1.295
	E_2 (LC1; 1 st spot on left body)	1.295
	E_3 (LC1; 1 st spot on right stiffener)	0.606
Components	E_4 (LC1; 1 st spot on left stiffener)	0.606
identified	E_5 (LC2; 1 st spot on right body)	6.996
	E_6 (LC2; 1 st spot on left body)	6.996
	E_7 (LC2; 1 st spot on right stiffener)	2.445
	E_8 (LC2; 1 st spot on left stiffener)	2.445
ſ	E_9 (LC1; 2 nd spot on right body)	0.430
Truncated due to	E_{10} (LC1; 2 nd spot on left body)	0.430
ingi correlation	E_{11} (LC2; 2 nd spot on right body)	4.044
	E_{12} (LC2; 2 nd spot on left body)	4.044

Identification of significant components

- Deterministic FE analysis using the mean values of random variables → identify "hot spots" for each load combination
- FE reliability analysis for identified "hot spots" by FORM → neglect if (1) Pf is too low or (2) highly correlated with other (more likely) component events

Correlation between components

• Correlation b/w components are computed by $\rho_{ij} = \hat{\alpha}_i^{T} \hat{\alpha}_j$

Correlation	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8
E_1	1	0.814	0.708	0.744	0.646	0.502	0.448	0.476
E_2		1	0.744	0.708	0.502	0.646	0.476	0.448
E_3			1	0.683	0.423	0.451	0.680	0.429
E_4				1	0.451	0.423	0.429	0.680
E_5					1	0.887	0.820	0.842
E_6						1	0.842	0.820
E_7		S	Symmetri	c			1	0.801
E_8								1

FE system reliability analysis by MSR

- FE-SRA by MSR
 - Probability of most dominant component: 6.996x10⁻⁴ vs. system failure probability 1.550x10⁻³ → component reliability analysis may underestimate the risk significantly
 - Using component failure probability and sensitivity, the MSR method computes the system level parameter sensitivity
 - Can analyze other system events just by replacing event vector c

$$P(E_{sys}) = P\left(\bigcup_{i=1}^{8} E_{i}\right) \cong P\left[\bigcup_{i=1}^{8} \beta_{i} - Z_{i} \le 0\right]$$
$$= \int_{\Omega} \varphi_{N}(\mathbf{z}; \mathbf{R}) d\mathbf{z}$$
$$= \int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$

]	Random variables	$\delta_i = \frac{\partial P_1}{\partial \mu_i} \sigma_i$	$\eta_i = \frac{\partial P_1}{\partial \sigma_i} \sigma_i$
	Diaphragm (Left)	-0.0004	0
	Diaphragm (Right)	-0.0003	0
Young's	Body (Left)	-0.6480	1.8018
modulus	Body (Right)	-0.6624	1.8159
	Stiffener (Left)	0.3463	1.3114
	Stiffener (Right)	0.3558	1.3198
	Dead load	0.5130	0.0171
	Live load	2.1175	1.8348
т 1	In-service wind load (In-plane)	2.9923	14.873
Load scale	In-service wind load (Out-of-plane)	0.4900	1.9121
Tactor	Out-of-service wind load (In-plane)	13.989	66.648
	Out-of-service wind load (Out-of-plane)	2.3301	8.599
	Body (Left)	-8.0319	8.8381
Yield	Stiffener (Left)	-2.5299	2.925
strength	Body (Right)	-8.0583	8.8729
	Stiffener (Right)	-2.5132	2.9001

App. VII: Reliability-Based Design Optimization

System RBDO by MSR method

RBDO of Truss system: Minimize the cross section areas under target failure probability of system collapse

Using MSR method, we can consider

- Effects of load re-distributions (sequential failures)
- Effects of correlation between components

Nguyen, T.H., J. Song, and G.H. Paulino (2010). "Single-loop system reliability-based design optimization using matrix-based system reliability method: theory and applications," J. of Mechanical Design, ASME, Vol. 132, 011005-1~11.

System RBTO by MSR method

RBTO of 2D or 3D continuum: Minimize the volume or compliance under target failure probability of *system* failure

Nguyen, T.H., Paulino, G.H., and Song, J., and Le, C.H., "A Computational Paradigm for Multiresolution Topology Optimization (MTOP)," *Structural and Multidisciplinary Optimization*, vol. 41(4), 525-539.

457.646 Topics in Structural Reliability

In-Class Material: Class 19

Multivariate normal integrals

$$\mathbf{Z} \sim N(\mathbf{0}; \mathbf{R})$$

$$F(\mathbf{a},\mathbf{b};\mathbf{R}) = \int_{a_1}^{b_1} \cdots \int_{a_m}^{b_m} d\mathbf{z}$$

If $a_i = -\infty$, $i = 1, \cdots, m$, it becomes Joint

$$\mathbf{Z} \sim N(\mathbf{0}; \mathbf{R})$$

$$\Phi_m(b_1,\cdots,b_m;\mathbf{R}) = \int_{-\infty}^{b_1}\cdots\int_{-\infty}^{b_m} d\mathbf{z}$$

I) Ditlevsen & Madsen (1996)

$$m = 2: \Phi_2(b_1, b_2; \rho_{12}) = + \int_0^{\rho_{12}} \phi_2(b_1, b_2;)d\rho$$

$$\underline{\qquad} \text{assumption} \quad \text{error by} \underline{\qquad} \text{assumption}$$

Note: double-fold integral involving $(-\infty, b_i) \Rightarrow$ single-fold integral in $(0, \rho_{12})$

Note: $\rho_{12} > 0$: s.i assumption under/overestimate

 $\rho_{\rm 12}$ < 0 : s.i assumption under/overestimate

m = 3 Song & ADK (2005) double-fold integral

II) Sequentially Conditioned Importance Sampling (SCIS)

(Ambartzumian et al. 1998)

~sequentially sampling based on conditional PDF

given sampled value

~"scis.m" (developed by Prof. Young Joo Lee at UNIST available at http://systemreliability.wordpress.com/software/

of

III) Product of Conditional Marginals (Pandey & Sarkar 2002)

$$\Phi_m(\mathbf{b};\mathbf{R}) \cong \prod_{k=1}^m \Phi\left(\frac{b_k - \mu_{k|k-1}}{\sigma_{k|k-1}}\right)$$

- \rightarrow reasonable accuracy & very efficient
- \rightarrow parallel or series
- \rightarrow error \uparrow as $m \uparrow$
- \rightarrow Improved PCM (Yuan & Pandey 2006)

IV) Sequential Compounding Method (Kang & Song 2010)

- \rightarrow applicable to <u>general</u> system
- \rightarrow efficient and accurate
- \rightarrow handle large *m*
- $\rightarrow\,$ when the same component event appears multiple times $\,\rightarrow\,$ difficult

 \rightarrow parameter sensitivity of system reliability using SCM (Chun, Song, and Paulino, 2015, *Structural Safety*)

- V) Matrix-based System Reliability (MSR) Method (Kang & Song 2008) (Kang et al. 2012)
- VI) Method by Genz (1992) <u>http://www.math.wsu.edu/faculty/genz/homepage</u> Transformations to uniform hypercube

- \rightarrow Parallel system
- \rightarrow Very accurate & efficient even for large-size system
- \rightarrow Integration by qusai-MCS
- \rightarrow mvncdf.m in Matlab

Genz, A., and Bretz, F. (2009) *Computation of Multivariate Normal and t Probabilities, Lecture Notes in Statistics*, Springer-Verlag, NY.

457.646 Topics in Structural Reliability

In-Class Material: Class 20

V. Structural Reliability under Model & Stastical Uncertainties

(Ref.: "Analysis of Structural Reliability under Model and Statistical Uncertainties: A Bayesian Approach" ~ eTL)

Formulation of Reliability Problems under Epistemic Uncertainties

① Reliability Problem with Aleatoric uncertainties (only)

 $P_f = \int f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$ **X**: r.v's representing aleatoric uncertainties in the problem

- \rightarrow Use component and/or system reliability method
- 2 Reliability Problem under Aleatoric & Epistemic certainties

Three approaches for estimating reliability under epistemic uncertainties

Suppose $f_{|\theta|}(\theta)$ is available,

1 Point estimate of Reliability: $P_f(\theta)$ at $\theta = \hat{\theta}$

 $\hat{m{ heta}}$: point estimate (representative) of $m{ heta}$

Seoul National University Dept. of Civil and Environmental Engineering Instructor: Junho Song junhosong@snu.ac.kr

 $100 \times p(\%)$ confident that β is b/w x and o

First, find mean and variance of $\beta(\theta)$

Parameter sensitivity (e.g. FORM)

Second, assume $\beta \sim N(\mu_{\beta}, \sigma_{\beta})$

 $\langle \beta \rangle_{100 \times p(\%)} = \mu_{\beta} \pm c_{p} \sigma_{\beta}$ (if $\tilde{\beta}$ available, $\tilde{\beta} \pm c_n \sigma_{\beta}$) $\left\langle P_{f}\right\rangle_{100\times p(\%)} = \Phi\left[-\left(\tilde{\beta}\pm c_{p}\sigma_{\beta}\right)\right]$ $P_f = \Phi(-\beta)$ Then, $f_{\boldsymbol{\theta}_{f}}\left(\boldsymbol{\theta}_{f}\right)$, $f_{\boldsymbol{\theta}_{g}}\left(\boldsymbol{\theta}_{g}\right)$??

(Review) Rel. Analysis under Epistemic Uncertainties (Model or Statistical)

- $P_f(\hat{\theta}), \ \beta(\hat{\theta})$ ① Point Estimate $\tilde{P}_{f} = E_{\theta} \left[P_{f} \left(\theta \right) \right]$ ② Predictive Reliability $\langle \beta \rangle_{100 \times p(\%)} = \mu_{\beta} \pm c_{p} \sigma_{\beta}$ ③ Bounds $f_{\theta_f}(\theta_f)$? $f_{\theta_s}(\theta_g)$?
- **Bayesian Parameter Estimation** 0

$$f(\mathbf{\theta}) = c \cdot L(\mathbf{\theta}) \cdot p(\mathbf{\theta})$$

- (1) $P(\boldsymbol{\theta})$: () distribution
 - represents state of our knowledge () making observations (objective information)
 -) info. such as "engineering judgment" may incorporate (-

rule

$$P(A|B) = \frac{1}{P(B)} \cdot P(B|A) \cdot P(A)$$

f **L p**

Seoul National University Dept. of Civil and Environmental Engineering

Computation of c and posterior statistics

$$c = \left[\int L(\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta}\right]^{-1}$$

$$\mathbf{M}(\boldsymbol{\theta}) = \int \boldsymbol{\theta} \cdot f(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int \boldsymbol{\theta} \cdot c \cdot L(\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta}$$

$$\boldsymbol{\Sigma}_{\boldsymbol{\theta}\boldsymbol{\theta}} = \int \boldsymbol{\theta}\boldsymbol{\theta}^{T} f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T}$$

$$\left\{ \boldsymbol{\Sigma}_{\boldsymbol{\theta}\boldsymbol{\theta}} = \int \boldsymbol{\theta}\boldsymbol{\theta}^{T} f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T} \right\}$$

multi-fold integrals

How?

Convenient forms for special distribution (directly update statistics "conjugate")

Special numerical algorithms (Geyskens et al. 1993)

Sampling methods (MCS, importance sampling, \cdots)

Probabilistic Shear Strength Models for RC Beams by Bayesian Updating Based on Experimental Observations

Junho Song*

Associate Professor Department of Civil and Environmental Engineering Seoul National University, Korea

Won Hee Kang Kang Su Kim Sungmoon Jung

University of Western Sydney, Australia University of Seoul, Korea Florida A&M-Florida State University, USA

Probabilistic shear strength models

- Empirical formulas are widely used for code provisions and designs
 - ~ based on simplified mechanics rules and limited amount of experimental observations.
- Inaccurate description of physics & missing variables \rightarrow **biases** and **scatters**
- Need probabilistic shear strength models that correct the biases and quantify the uncertainties based on comprehensive database of experimental observations

Probabilistic models by Bayesian updating*

 * Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"
 Journal of Engineering Mechanics, Vol. 128(10)

Probabilistic models by Bayesian updating*

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"

Journal of Engineering Mechanics, Vol. 128(10)

Explanatory functions $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{\nu} \theta_i h_i(\mathbf{x}) + \sigma \varepsilon$ Nonlinear transformation to achieve "homoskedasticity" $f(\mathbf{\Theta}) = \kappa L(\mathbf{\Theta}) p(\mathbf{\Theta})$ **Bayesian parameter** estimation

Database of 106 columns

- Remove an explanatory terms with the highest c.o.v. (most uncertain)
- Continue until the mean of σ starts increasing significantly

Table 2. Explanatory removing process for joint shear strength, equations (1) and (8)

Step	1	2	3	4	5	6	7	8	9	10
f_{c}^{\prime}	0	0	0	0	0	0	0	0	0	0
JP	0	0	0	0	0	0	0	0	0	Х
BI	0	0	0	0	0	0	0	0	Х	Х
IL	0	0	0	0	0	0	0	Х	Х	Х
$1 - e/b_c$	0	0	0	0	0	0	Х	Х	Х	X
TB	0	0	0	0	0	Х	Х	Х	Х	Х
$A_{\rm sh,pro}/A_{\rm sh,req}$	0	0	0	0	Х	Х	Х	Х	Х	X
$h_{\rm b}/h_{\rm c}$	0	0	0	Х	Х	Х	Х	Х	Х	Х
$b_{\rm b}/b_{\rm c}$	0	0	Х	Х	Х	Х	Х	Х	Х	Х
$s_{\rm pro}/s_{\rm req}$	0	Х	Х	Х	Х	Х	Х	Х	Х	Х
Mean of σ	0.150	0.150	0.150	0.150	0.151	0.156	0.165	0.186	0.231	0.359

O: Included explanatory term

X: Not-included explanatory term

Kim, J., LaFave, J., and Song, J. (2009)

"Joint Shear Behavior of Reinforced Concrete Beam-Column Connections" Magazine of Concrete Research, Vol. 61(2), 119-132.

Shear transfer mechanism

Joint ASCE-ACI Committee 426 (1973) & 445 (1998)

Variables affecting shear strengths

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

(1) Concrete compressive strength: f_c '

~ tensile strength increases the shear strength (approximated in terms of compressive strength)

(2) Member depth: d

- ~ shear strength decreases as the member depth increases ("size effect")
- (3) Shear span-to-depth ratio: a/d
 - ~ shear strength increases as the ratio decreases ("arch action" of "deep" beam)

(4) Amount of longitudinal reinforcement: ρ

~ shear strength increases as the reinforcement increases ("dowel action")

Empirical shear strength models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

Model	Formula	characteristics
ACI 11-3	$V_{c}=rac{1}{6}\sqrt{f_{c}^{\prime}}b_{w}d$	accounts for compressive strength only
ACI 11-5	$V_c = \left(0.158\sqrt{f_c'} + 17\rho \frac{V_u d}{M}\right) b_w d$	compressive strength + ρ
Zsutty	$V_c = 2.2 \left(f_c' \rho \frac{d}{r} \right)^{1/3} b_w d$	more accurate than ACI models
Eurocode Draft	$V_{c} = 0.12k (100\rho f_{c}')^{1/3} b_{w} d$	tends to underestimate (conservative)
Okamura & Higai	$V_c = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_c')^{1/3} \left(0.75 + \frac{1.40}{a/d} \right)^{1/3} b_w d$	good without severe biases
Tureyen & Frosch	$V_c = \frac{5}{12} \sqrt{f_c'} b_w c$	tends to overestimate for deep beams
Bazant & Yu	$V_{c} = 1.1044 \cdot \rho^{3/8} b_{w} \left(1 + \frac{d}{a} \right) \sqrt{\frac{f_{c}' d_{0} d}{1 + d_{0} / d}}$	mechanics-based, semi-empirical, accurate ₈
Russo et al.	$V_{c} = 0.72 \xi \left[\rho^{0.4} (f_{c}')^{0.39} + 0.5 \rho^{0.83} f_{y}^{0.89} \left(\frac{a}{d}\right)^{-1.2 - 0.45(a/d)} \right] b_{w} d$	semi-empirical, large database

Shear strength database

* Reineck, K.H., Kuchma, D.A., Kim, K.S., and Marx, S. (2003) "Shear database for reinforced concrete members without shear reinforcement" ACI Structural Journal, Vol. 100(2)

															f'c (MPa) :	10	20						30			40	50 /	60	70	80	100) 120
Microsoft Facel - Rf anickfar per	rabi yis													- /	V of Tests .	2	:0			151				10	4	1:	5 16	29	17	4	2	4
(B) File Edit View Insert Form	at Icols Dat	a Window	Heb											Type	sum .	. –	20						171			275	290.0	306	335	352		208
0880.000	BADP		9.0.	. Σ	01 <u>71</u>	14.4		Arid		0 - B / U				4 28	 d (mm) -	40	20		~~													
A7 + 5				90	AT A1		B		- 14						u(mm).	10			00							300	<u> </u>	400		<u>ow a</u>	0	2000
٨	8	C	D	E	F	G	н	1	J	K L	м	N	0	P	V of Tests .		68						209				37		43	13	25	8
1															sum	: -		-	0							277	,	24/4		267.22	0	200
2 Shear Database for	r RC men	nbers v	without	trans	verse	reinfor	cemer	nt (US ur	nit)						- (14)		0.75		° 40	-			~ ~			2//	~ ~ ~	314		30/ 3/	0	380
5	11/														P / (%) :	0.1	0.75	1.0	120	5	1.5		2.0				30	,		4.0		-' ^U
8 Reference Information	00		1	Geometr		1	Secto	nal forces an	d strains	1	1	Concret	e	/	V of Tests :		30	28	30	-24		67			120				67		32	
9	1 10 11	shape	bw	1	d	ald ()	BWM	u p	ein	"control Styles	t fc	flc	**best	fit,test		. –				-	440		470									
Autor	Beam Name	- NIR share	(2)	(21)	(2)	(-)	(-) M 84	ar h		specimen (pc)	(pst)	(100)	nethod	(DEL)	20.00		30	08	88	в	112		179				296	9		300		398
Adhar Caline/1996)	IT2	Pedare	1417	12.30	10.04	2.92	1.22	0.00085	0.00042	wana am	7612.5	7735.0		561.2	a/d :	2.4						3.0		3	.5			- 4	.0	5.0	6.0	180
Adebur, Collins (1996)	ST2	R	14.17	12.20	18.94	2.88	1.88	0.00079	0.00039	cyl	7612.5	7231.9	50	561.2	1 of Taste ·				155				70			02			4	5	20	0
Adebur, Collins (1996)	ST3	R	11.42	12.20	10.94	2.88	1.88	0.00072	0.00036	cyl	7148.5	6791.1	57	\$87.3	o or reala .				100							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-	·	20	~
Adebur, Collins (1996)	ST8	R	11.42	12.20	10.94	2.88	1.88	0.00054	0.00027	cyl	6699.0	6364.1	59	561.2	5U M	:						155		2	25			- 32	23	365	388	398
Adebar, Colline (1996)	ST16	R	11.42	8,27	7.01	4.49	3.49	0.00093	0.00046	cyl	7467.5	7094.1	59	482.9	219.2 0.12 4																	
Adebar, Colline (1996)	ST23	R	11.42	12.20	10,94	2.88	1.82	0.00117	0.00059	cyl	8540.5	8113.5	ap .	730.8	6145 0.75 1.	2																
Ahmad, Kahloo (1996)	Al	R	500	10.00	8.00	4.00	3.00	0.00095	8+000.0	cy3	9047.2	8394.8			627.2 0.50 1.	5																
Ahmad, Kahloo (1906)	A2	R	5.00	10.00	8.00	3.00	2.00	0.00076	0.00038	cy3	9047.2	8394.8			627.2 0.50 1.	2																
Ahmad, Kahloo (1906)	A3	R	5.00	10.00	8.00	2.70	1.70	0.00064	0.00032	cy3	9047.2	8394.8			627.2 0.50 1.	2																
Ahmad, Kahloo (1906)	A3	R	5.00	10.00	8.19	3.00	2.00	0.00116	8,000.0	cy3	9047.2	\$394.8			627.2 0.50 0.					معا	ا ام م					1:			! -			
Ahmed, Kahloo (1986)	Bl	R	5.00	10.00	7.94	4.00	3.00	0.00066	0.00033	ey3	9962.3	9464.2			649.1 0.50 2	<u>1</u>			nec	:KE	a r	DV Va	arious	S S	elec	tior) CI	rite	eria			
Ahmad, Kahloo (1986)	B2	R	5.00	10.00	7.94	3.00	2.00	0.00039	0.00030	cy3	9962.3	9464.2			649.1 0.50 2	C .						- J		•••	0.00							
Ahmad, Kahloo (1986)	B3	R	5.00	10.00	7.94	2.70	1.70	0.00073	0.00037	ry3	9962.3	9464.2		-	649.1 0.50 2	<u> </u>		م : ام		_	ام م				ר <i>ר</i>	2	-	:11 -		1 1 E		
Ahmad, Kahloo (1986)	B7	R	5.00	10.00	8.19	4.00	3.00	0.00125	0.00062	cy3	9962.3	9464.2			649.1 0.30 0.			- OIS	scu	ISS	sea	DV A	101- <i>F</i>	121		ווטל	ILLI	ITTE	e 2	44D)	
6 Ahmad, Kahloo (1986)	BS	R	5.00	10.00	8.19	3.00	2.00	0.00087	0.00044	cy3	9962.3	9464.2		-	649.1 0.30 0:			••••														
7 Ahmad, Kahloo (1906)	89	R	2.00	10.00	8.19	2.10	1.10	0.00127	0.00064	cy3	99623	9464.2			649.1 0.30 0.																	
8 Ahmai, Kahloo (1930)	CI	K	200	10.00	120	4,00	3.86	8,000.0	0.00029	cy3	90668	9087.7		-	6398 0.50 2																	
3 Ahmai, Kahioo (1980)	02	X	280	10.00	12	3.00	280	0.00054	0.00027	cy3	90008	9087.7			6393 0.50 2	5			0 -	. In .			ما الديم من	1	مام لام	-1-						
Ahmai, Kahoo (1960)	03	X	200	10.00	1.0	2.10	1.0	0.00042	0.00021	cys	90000	9081.7		-	6393 030 2			59	o S	sn	ear	stre	enatn	Tes	SE DA	ла						
FI RAmat, Kataloo (1960)	07	<u>x</u>	200	10.00	8.13	4.00	3.00	0.00088	0.00044	cys	90000	9083.3		-	6393 8.30 1.						••••	0110										
Annai, Kanoo (1960)	00		5.00	10.00	0.13	3.00	1.00	0.00056	0.00029	cys	9,000	9083.7			(393 0.0 1.																	
Annia, Kalao (1960)	2	-	2.00	10.00	6.13	4.50	2.00	0.000.00	0.00020	cys	9,000	9003.7		21.4.1	2220 0.0 1.																	
 APARBI(1777) ATATU(1975) 	10	÷	200	6.95	500	400	3.0	0.00007	0.000.92	cyi mt	30900	33033	0	3141	3380 0.23 0.								1 4	r								
APAIR(1977)	10	1	3.00	1.13	200	9.00	3.00	0.00000	0.00046	cyi	41,000	39423	1	333.4	3000 020 0				sed	В	41	test	data	t n	r thig	s st	ING	V				
1 ASASBI(1971)	10	1	200	5.15	500	3.40	2.40	0.00102	0.00064	cyi mt	40.00	3942.3	1	203.0	3300 020 0	3			000			1001	uulu			5.00	uu	y				
Aserblas Buts Colles (2002)	10		11.01	20.22	200	300	1.00	0.00042	0.00024	cyi	3900.0	3102.0	1	343.9	303.1 0.20 0.							•							`			
Angenica, periz, come (2003)	09130	R D	11.01	39.31	36.0	2.94	1.92	0.00030	8,00034	Reviewing					* x	1		(5	/ d:	at	<u>ה ימ</u>	miss	ina a	ndd	reaz	ate s	SI7	es)			
Available Rest Colleg (2003)	DBLAD	0	11.01	30.77	36.0	200	1.92	0.000/0	0.00035	1227	9월 3	03	明白で	Reply with	garges Egd Review			`		a	.		mg u	ษษ	· Sac		2.2	20	/			
A & AL SDR LIS (Examples / an	aural /		1 11.01	1.00	2042	*74	1.76	0.0009	0.00.04		1	1		1		ř																
A A M/ 200 03 Y standes Y st	Cawa \												1.1	_	-1	1																
any l			0		1			Long of		er en l'anne en en			2000ml																			~
🖡 Start 👌 🕘 🎧 🕄 🌷	Draft_SCSM	1	Adob 1	e Reader - [Sard	sonpss.do	x - Microsof	t 💽 Micro	soft PowerPoi	nt 🔾 Shear J	Bayesian	4	Microsoft Exe	ed - RC	M % % 119A	М															Q Q	J

Overall errors of the existing models

 $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \boldsymbol{\Theta} + \boldsymbol{\sigma}\boldsymbol{\varepsilon}$

- μ_{θ} : overall bias of the existing model
 - μ_σ ~ : overall scatter of the existing model

ACI 11-3

Bayesian updating with bias-correction (H1)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$

• μ_{σ} : approximately represents the **uncertainties after the bias correction** (scatter) • $h_i(\mathbf{x}): 2, \rho, \frac{a}{d}, \frac{E_c}{E_s}, \frac{d_a}{d}, \frac{d}{h}, \frac{b_w}{h}$ dimensionless explanatory terms

Bayesian updating with bias-correction (H2)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma\varepsilon$$

- Logarithms are applied to the explanatory functions.
- Consistent with the product forms of the deterministic $C(\mathbf{x}, \mathbf{\Theta}) = c(\mathbf{x})h_1(\mathbf{x})^{\theta_1} \cdots h_p(\mathbf{x})^{\theta_p} \exp(\sigma \varepsilon)$ formulas

1.5	Model	Posterior means of σ						
1-		Constant bias	H_1	H_2				
	ACI 11-3	0.382	0.222	0.165				
	ACI 11-5	0.335	0.218	0.177				
	Eurocode Draft	0.223	0.172	0.165				
	- Tureyen & Frosch	0.245	0.178	0.167				
-1	Zsutty	0.244	0.185	0.168				
_15	Okamura & Higai	0.176	0.159	0.157				
'0.001 0.01 (ρ	D.1 Bazant and Yu	0.166	0.156	0.154				
ACI 11-3	Russo et al.	0.156	0.146	0.146				

Calibration of existing models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \lim_{k \to \infty} (\mathbf{x}_{i}) + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma \varepsilon$$

Use the fractions of the empirical formulas as the explanatory functions

e.g. Zsutty's model

$$V_c = 2.2 \left(f_c' \rho \frac{d}{a} \right)^{1/3} b_w d$$

$$h_i(\mathbf{x}): 2, f_c', \rho, \frac{a}{d} b_w d$$

Do not drop explanatory terms with large c.o.v.'s

Explanatory functions do not have to be dimensionless
 ~ may be more effective in representing the physics than the dimensionless terms

$$\mu_{\sigma} = 0.166 \cong 0.168$$
 (posterior mean by $\ln[c(\mathbf{x})] + \sum_{i=1}^{r} \theta_i \ln[h_i(\mathbf{x})] + \sigma\epsilon$)

Construction of new models

Select some dimensional terms to make the same dimension as quantity and add more non-dimensional terms. Perform the Bayesian parameter estimation by models such as

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \sum_{i=1}^{p} \theta_i \ln[h_i(\mathbf{x})] + \sigma \epsilon \qquad \text{Product}$$

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \sum_{i=1}^{l} \theta_i \ln[h_i(\mathbf{x})] + \ln\left[\prod_{i=l+1}^{m} h_i^{\theta_i} + \prod_{i=m+1}^{n} h_i^{\theta_i}\right] + \sigma \epsilon \qquad \text{Product of}$$

Sums

Do not drop "dimensional" explanatory terms

Useful when

(1) there exist no empirical models that can be used as a base model.

(2) the effects of explanatory terms are not well known.

Shear strength example: tried 17 explanatory terms

 \rightarrow Similar forms & parameter values with the two best formulas (with smaller μ_{σ})

C Zsutty's

$$V_{c} = 2.2 \left(f_{c}' \rho \frac{d}{a} \right)^{1/3} b_{w} d$$
C Okamura & Higai

$$V_{c} = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_{c}')^{1/3} \left(0.75 + \frac{1.40}{a/d} \right)^{1/3} b_{w} d$$
"Probabilistic" Models

General form

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[\hat{C}(\mathbf{x}, \boldsymbol{\theta})] + \sigma \varepsilon \longrightarrow C(\mathbf{x}, \boldsymbol{\Theta}) = \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \cdot \exp(\sigma \varepsilon)$$

Capacity ~ follows the lognormal distribution

Mean and c.o.v. are derived as

$$\mu_{C}(\mathbf{x}) = \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\boldsymbol{\theta}}) \cdot \exp(\boldsymbol{\mu}_{\sigma} \boldsymbol{\varepsilon}) \cong \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$
$$\delta_{C}(\mathbf{x}) = \delta_{C} = [\exp(\boldsymbol{\mu}_{\sigma}^{2}) - 1]^{1/2} \cong \boldsymbol{\mu}_{\sigma} \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$

Conditional pdf of capacity for given x

$$f_C(c \mid \mathbf{x}) = \frac{1}{\sqrt{2\pi\mu_{\sigma}c}} \exp\left[-\frac{1}{2}\left(\frac{\ln c - \ln \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\theta})}{\boldsymbol{\mu}_{\sigma}}\right)^2\right]$$

Predictive pdf of capacity for unknown x

$$f_C(c) = \int_{-\infty}^{\infty} f_C(c \mid \mathbf{x}) \cdot f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}$$

15

Performance of probabilistic models

Performance of probabilistic models

Performance of probabilistic models

- e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study
- Box plots of errors ~ show that the developed models are unbiased and have consistently good performance for the whole ranges of the parameters.

Other Applications

- Shear strengths of RC beams with shear reinforcements (W.-H. Kang, J. Song, and K.S. Kim)
- Seismic strengths of buckling-restrained bracings (B.M. Andrews, J. Song, and L.A. Fahnestock) (Andrews et al. 2009a, 2009b)
- Strengths/ of RC beam-column connections (J. Kim, J.M. LaFave, and J. Song)
- Statistical validation/verification of concrete FEM (H.H. Lee and D.A. Kuchma)
- Shear strengths of RC "deep" beams (strut-and-tie models) (Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song, 2014)
- Course term projects
 - Strengths of concrete-filled tubes (Mark Denavit)
 - Fracture toughness (Tam H. Nguyen)

References

- Gardoni, P., A. Der Kiureghian, and K.M. Mosalam (2002). "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations." *Journal of Engineering Mechanics*, ASCE, 128(10): 1024-1038 [→ Seismic capacity of RC columns]
- Song, J., W.-H. Kang, K.S. Kim, and S. Jung. "Probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on experimental observations," under review [→ Shear strengths of RC beams without stirrups]
- Kang, W.-H., J. Song, and K.S. Kim (2007). "Probabilistic shear strength models for reinforced concrete beams with shear reinforcements by Bayeisan updating." *Proc. 18th Engineering Mechanics Division Conference of ASCE (ASCE EMD 2007)*, June 3-6, Blacksburg, VA. [→ Shear strengths of RC beams with stirrups]
- Kim, J., J.M. LaFave, and J. Song. Joint shear behavior of RC beam-column connections, under review [→ RC beam-column connections ~ strength & corresponding strain]
- Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song (2014). "New strut-andtie-models for shear strength prediction and design of RC deep beams." *Computers and Concrete*, 14(1): 19-40 [→ Shear strength of deep RC beams]

457.646 Topics in Structural Reliability In-Class Material: Class 21

(a) Likelihood function $L(\theta)$ for distribution (statistical) parameters θ_f

(e.g. μ, σ, λ, ξ...)

① Measured value are available, $\mathbf{x}_i, i = 1, \dots, N$

Assuming the observations are s.i.

$$L(\boldsymbol{\theta}_{f}) \propto P(\bigcap_{i=1}^{N} \mathbf{X} = \mathbf{x}_{i} | \boldsymbol{\Theta}_{f} = \boldsymbol{\theta}_{f})$$

$$= \prod_{i=1}^{N} P(\mathbf{X} = \mathbf{x}_{i} | \boldsymbol{\Theta}_{f} = \boldsymbol{\theta}_{f}) \quad (\because s.i.)$$

$$\propto \prod_{i=1}^{N} f_{\mathbf{x}}(\mathbf{x}_{i} | \boldsymbol{\theta}_{f})$$

e.g. $\mathbf{x} = \{x\}$ uni-variate normal $N(\mu, \sigma^2)$

Two samples observed: 12.3($\leftarrow x_1$), 13.5($\leftarrow x_2$) $f(\theta) = cL(\theta) \cdot P(\theta)$

$$L(\boldsymbol{\theta}_{f}) \propto \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{12.3-\mu}{\sigma}\right)^{2}\right) \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{13.5-\mu}{\sigma}\right)^{2}\right)$$

$$* L(\mathbf{\theta}) \begin{cases} \text{MLE} & \mathbf{\theta}_{\text{MLE}} = \arg \max L(\mathbf{\theta}) \end{cases} \xrightarrow{\begin{array}{c} \partial L \\ \partial \theta \end{array}} = 0 \\ \text{prefer } \frac{\partial \ln L}{\partial \theta} = 0 \\ \text{Bayesian Parameter Extimation} \end{cases}$$

$$f(\mathbf{\theta}) = c \cdot L(\mathbf{\theta}) \cdot p(\mathbf{\theta})$$

- 2 No direct measurement x of available, but a set of events that involve x are available
 - e.g. no measurement for compressive strength of concrete f'_c ($\leftarrow \mu, \sigma, \lambda...$)

available but spalling observed under a certain condition

Inequality events : $h_i(\mathbf{x}) \le 0, i = 1, \dots, N$

Equality events : $h_i(\mathbf{x}) = 0$

Seoul National University Dept. of Civil and Environmental Engineering

a) Inequality

e.g.
$$h_i(\mathbf{x}) = -C(\mathbf{x}) + D(\mathbf{x}) \le 0$$
 no failure observed

$$h_i(\mathbf{x}) = C(\mathbf{x}) - D(\mathbf{x}) \le 0$$
 failure observed

$$L(\mathbf{\theta}_{f}) \propto \prod_{i=1}^{N} P(h_{i}(\mathbf{x}) \leq 0 | \mathbf{\theta}_{f})$$
$$= \prod_{i=1}^{N} \int_{h_{i}(\mathbf{x}) \leq 0} f_{\mathbf{x}}(\mathbf{x}; \mathbf{\theta}_{f}) d\mathbf{x} \Rightarrow \text{ structural reliability analysis}$$

b) Equality

e.g. $h_i(\mathbf{x}) = a(\mathbf{x}) - a_o = 0$

 $a(\mathbf{x})$: fatigue crack growth model, e.g. Paris law

 a_o : measured crack size

$$L(\boldsymbol{\theta}_{f}) \propto \prod_{i=1}^{N} \lim_{\delta \to 0} P[0 < h_{i}(\mathbf{x}) \le \delta]$$
$$= \prod_{i=1}^{N} \frac{\partial}{\partial \delta} P[h_{i}(\mathbf{x}) - \delta \le 0] \Big|_{\delta=0}$$

 $\begin{aligned} & \frac{\mathsf{Proof}}{\lim_{\Delta\delta\to 0}} \frac{P[h_i(\underline{\mathbf{x}}) - \delta - \Delta\delta \leq 0] - P[h_i(\underline{\mathbf{x}}) - \delta \leq 0]}{\Delta\delta} \Big|_{\delta=0} \\ & = \lim_{\Delta\delta\to 0} \frac{P[h_i(\underline{\mathbf{x}}) - \Delta\delta \leq 0] - P[h_i(\underline{\mathbf{x}}) \leq 0]}{\Delta\delta} \\ & \propto \lim_{\Delta\delta\to 0} P[0 \leq h_i(\underline{\mathbf{x}}) \leq \Delta\delta] \end{aligned}$

 $\nabla_{\delta} P_f |_{\delta=0}$: can be considered as parameter sensitivity of P_f w.r.t δ (model parameter)

FORM-based (Madsen, 1987)

Good review & new development (Straub, 2011)

> a trick to transform equality constraint to _____ constraint

Solution Likelihood function for limit-state model parameters, $L(\theta_{p})$

e.g.
$$g(\mathbf{x}; \boldsymbol{\theta}_g) = V_c(\mathbf{x}; \boldsymbol{\theta}_g) - V_d(\mathbf{x}; \boldsymbol{\theta}_g) \le 0$$
$$\frac{1}{6} \sqrt{f_c} b_w d \quad \text{(ACI 11-3)}$$

① Statistical model (using original deterministic model)

 $y = \hat{g}(\mathbf{x}; \mathbf{\theta}_g) + \sigma \varepsilon$ ~ submodel or limit state function

e.g.
$$\theta_1 f_c^{\theta_2} b_w d$$
 (ACI 11-3) $\theta_g = \{\theta_1, \dots, \theta_n, \sigma\}$

- **x**: observable input parameters (f_c , b_w , d,...)
- \mathbf{y} : observable output parameters (V_c)
- $\mathbf{\theta}_{_g}$: uncertain model parameters ($heta_{_1}, \ heta_{_2} \cdots$)
- $\sigma\epsilon\,$: uncertainty due to missing variables and/or inexact mathematical form
 - ε: std. normal r.v " assumption
 - σ: magnitude of model error (uncertain parameter)
 - \rightarrow constant over **x** " assumption
 - $\mu_{\varepsilon} = 0$: <u>unbiased</u> model

e.g.
$$\ln y = \ln \hat{g}(\mathbf{x}, \boldsymbol{\theta}_g) + \sigma \varepsilon$$

①' Statistical model (based on deterministic model, Gardoni et al. 2002)

$$y = \hat{g}(\mathbf{x}) + \gamma(\mathbf{x}; \mathbf{\theta}_g) + \sigma \varepsilon$$

 $\hat{g}(\mathbf{x})$: original deterministic model (e.g. $\frac{1}{6}\sqrt{f_c}b_w d$)

- $\gamma(\mathbf{x}; \boldsymbol{\theta}_g)$: corrects the bias
- $\sigma\epsilon$: remaining scatter

e.g. RC beam w/o stirrups shear capacity (Song et al. 2010, Structural Eng & Mechanics)

 $\ln V = \ln \hat{v}(\mathbf{x}) + \Sigma \theta_g \ln h_i(\mathbf{x}) + \sigma \varepsilon$

 $\hat{v}(\mathbf{x})$: 8 models from codes & papers

 $h_i(\mathbf{x})$: explanatory terms from the shear transfer mechanism

Seoul National University Dept. of Civil and Environmental Engineering

② Likelihood function $L(\boldsymbol{\theta}_g)$?

Observed event Equality: $y = y_i$, $i = 1, \dots, m$ know v_c when failed

Inequality:
$$\begin{cases} y > a_i & i = m + 1, \dots, m + n \\ y > b_i & i = m + 1, \dots, m + n + N \end{cases}$$
 No failure up to Vc
Failed but do not know when

Model $Y = \hat{g} + \gamma + \sigma \varepsilon$

a)
$$P(Y = y_i) = P(\sigma \varepsilon = y_i - \hat{g}(\mathbf{x}) - \gamma(\mathbf{x}, \theta_g))$$

$$P(Y = y_i) \propto f_Y(y_i) \qquad f_Y(y_i) = f_Q(q) \cdot \frac{dq}{dy_i}$$

$$= f_Q(q_i) \cdot \frac{dq}{dy} \qquad f_Q(q) = f_\varepsilon(\varepsilon) \cdot \frac{d\varepsilon}{dq}$$

$$= f_\varepsilon(\varepsilon_i) \cdot \frac{d\varepsilon}{dq} \qquad q = \sigma \cdot \varepsilon$$

$$= \frac{1}{\sigma} \varphi \left(\frac{y_i - \hat{g} - \gamma}{\sigma} \right)$$

b) $P(Y > a_i) = P(\hat{g} + \gamma + \sigma \varepsilon > a_i)$

$$= P(\sigma \varepsilon > a_i - \hat{g} - \gamma)$$
$$= \Phi\left(-\frac{a_i - \hat{g} - \gamma}{\sigma}\right)$$

c) $P(Y < b_i) = P(\hat{g} + \gamma + \sigma \varepsilon < b_i)$

$$= P(\sigma \varepsilon < b_i - g - \gamma)$$
$$= \Phi\left(\frac{b_i - g - \gamma}{\sigma}\right)$$

$$\therefore L(\theta_g) = \prod_{i=1}^m \frac{1}{\sigma} \varphi\left(\frac{y_i - \hat{g} - \gamma}{\sigma}\right) \times \prod_{i=m+1}^{m+n} \Phi\left(-\frac{a_i - \hat{g} - \gamma}{\sigma}\right) \times \prod_{i=m+n+1}^{m+n+N} \Phi\left(\frac{b_i - \hat{g} - \gamma}{\sigma}\right)$$

* Matlab codes for "Model Development by Bayesian method"

→ MDB (by Prof. S.Y. Ok at Hankyoung univ. for educational purpose)

457.646 Topics in Structural Reliability

In-Class Material: Class 22

VI. Simulation Methods

(Ref. CRC Chapter 20 Stochastic Simulation Methods for Engineering Predictions)

```
Simulating uniform random variable U(0,1)
```

 \rightarrow Basic in generation of random numbers

 \rightarrow () sequence from <u>a seed number</u>

- \rightarrow Desirable to have a () period and () sampling
 - % Matlab : rand()

 \rightarrow could choose a random number generation algorithm

→ default: Mersenne Twister (Matsumoto & Nishimura 1997)

→ Period: $2^{19936} - 1$

 \rightarrow "Very fast"

Demo

 $X_v = [100 \ 1000 \ 10000]$ for i=1:3 $X = rand(X_v(i),1);$ subplot(3,1,i) hist(X,sqrt(Xv(i))); end

Generate random numbers according to CDF

Consider $Y \sim U(0,1)$

"standard uniform"

Seoul National University Dept. of Civil and Environmental Engineering

(1) Generate $y_i, i = 1, \dots, N$

per $\backsim U(0,1)$

(2) Find corresponding $x_i, x_i = \dots, i = 1, \dots, N$

Generate general dependent variables

 $\begin{aligned} \mathbf{X} &= \{X_{1}, \cdots, X_{n}\}^{T} \text{ defined by } \begin{cases} \text{joint PDF } f_{\mathbf{X}}(\mathbf{x}) \\ \text{joint CDF } \mathbf{F}_{\mathbf{X}}(\mathbf{x}) \end{cases} \\ \begin{cases} y_{1} &= F_{X_{1}}(x_{1}) \\ y_{2} &= F_{X_{2}|X_{1}}(x_{2} \mid x_{1}) \\ \vdots \\ y_{n} &= F_{X_{n}|X_{1}\cdots X_{n-1}}(x_{n} \mid x_{1}\cdots x_{n-1}) \end{cases} \\ \begin{cases} x_{1} &= F_{X_{1}}^{-1}(y_{1}) \\ x_{2} &= F_{X_{2}|X_{1}}^{-1}(y_{2} \mid x_{1}) \\ \vdots \\ x_{n} &= F_{X_{2}|X_{1}}^{-1}(y_{2} \mid x_{1}) \\ \vdots \\ x_{n} &= F_{X_{n}|X_{1}\cdots X_{n-1}}^{-1}(y_{n} \mid x_{1}\cdots x_{n-1}) \end{cases} \end{aligned}$ (1) Simulate $\{y_{1}, \cdots, y_{n}\}^{T}$ $\begin{cases} z_{1} &= F_{X_{1}}^{-1}(y_{2} \mid x_{1}) \\ \vdots \\ x_{n} &= F_{X_{n}|X_{1}\cdots X_{n-1}}^{-1}(y_{n} \mid x_{1}\cdots x_{n-1}) \end{cases} \\ \end{cases} \end{aligned}$ (2) Find $\{x_{1}, \cdots, x_{n}\}^{T}$ $Using (\leftarrow)$

Simulation of normally distributed RV's *(Box & Muller 1958)

- → homework
- ** Matlab mvrnd(\mathbf{M}, Σ, N)cf. normrndGenerate N samples of $\mathbf{X} \sim N(\mathbf{M}, \Sigma)$ $\mathbf{u} \sim N(\mathbf{0}, \mathbf{I})$ $\mathbf{X} = \mathbf{D}\mathbf{L}\mathbf{u} + \mathbf{M}$

© Generate random numbers from Nataf distribution

Seoul National University Dept. of Civil and Environmental Engineering

- i. Find \mathbf{R}_0 (Liu & ADK, 1986)
- ii. Generate **u** from N(0, I) (or **y** from U(0, 1) & transform)
- iii. Compute $\mathbf{Z} \sim \mathbf{L}_0 \mathbf{u}$ (or $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{R}_0)$)
- iv. Compute $x_i = F_{X_i}^{-1}$ (), i=1,...,n

Monte Carlo Simulation

Compare

mean (rand(3,1))

mean (rand(100000,1))

"MCS is an extremely bad method. It should be used only when all alternative methods are worse" –Alan Sokal (1996)

Note: \hat{P}_{f} is random

 \downarrow

How much variability? $\delta_{\hat{P}_{\epsilon}}$

 q_i : Bernoulli random variable

 $\begin{bmatrix} 1 & \text{with} & p = \\ 0 & 1 - p = \\ E[q_i] = \\ Var[q_i] = \\ = \\ = \\ = \\ = \\ = \\ \end{bmatrix}$

• $E[\hat{P}_f] =$

"unbiased" estimator of true P_f

• $Var[\hat{P}_{f}] =$

=

$$\Rightarrow \quad \delta_{\hat{P}_{f}} = = \frac{1}{\sqrt{N}} \sqrt{\frac{1 - P_{f}}{P_{f}}}$$

Quantifies variation of \hat{P}_{f}

Used as a measure of convergence

See MCS. m

* Minimum No. of Simulation to achieve $\,\overline{\delta}\,$

Target c.o.v
$$\overline{\delta} = \frac{1}{\sqrt{N_{\overline{\delta}}}} \sqrt{\frac{1 - P_f}{P_f}}$$

 $\therefore N_{\overline{\delta}} = \frac{1 - P_f}{\overline{\delta}^2 \cdot P_f}$
e.g $P_f = 0.01$ $\overline{\delta} \qquad N_{\overline{\delta}}$
 $0.01 \qquad \simeq 10^6$
 $0.05 \qquad \simeq 4.0 \times 10^4$
 $0.10 \qquad \simeq 1.0 \times 10^4$

* How to improve accuracy of simulation

$$\delta_{P_f} = \frac{\sqrt{Var[\hat{P}_f]}}{E[\hat{P}_f]} = \frac{\frac{1}{\sqrt{N}}\sqrt{Var[q_i]}}{E[q_i]} = \frac{1}{\sqrt{N}} \cdot \delta_{q_i}$$

1 Increase N

2 Decrease δ_{q_i}

457.646 Topics in Structural Reliability In-Class Material: Class 23

Importance sampling

Need to compute integral (in general)

$$I_{t} = \int g(\mathbf{x}) d\mathbf{x}$$

= $\int \left[\frac{g(\mathbf{x})}{h(\mathbf{x})} \right] h(\mathbf{x}) d\mathbf{x}$
= $g(\mathbf{x})$: general function
 $h(\mathbf{x})$: sampling PDF having non-
values where $g(\mathbf{x})$ is non-

Procedure:

i. Sample
$$\mathbf{x}_i$$
, $i = 1, \dots, N$ according to

ii. Compute
$$q_i$$

iii. Estimate
$$\hat{I}_{t} = \frac{1}{N} \sum_{i=1}^{N} q_{i}$$

To have accuracy (& efficiency), the variance in q must be small. If $g(\mathbf{x}) \ge 0$, $h(\mathbf{x}) = g(\mathbf{x})$ is the best choice.

* Application to reliability problem:

$$P_{f} = \int_{x} I(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
$$= \int_{x} \left[\frac{I(\mathbf{x})}{2} f_{\mathbf{X}}(\mathbf{x}) \right] \cdot d\mathbf{x}$$
$$= E \begin{bmatrix} 1 \end{bmatrix} \text{ relative to}$$
$$q_{i} =$$

Sampling density (non-zero) where $g = I \cdot f \neq 0$

Find $h(\mathbf{x})$ such that

$$Var[\frac{I_f}{h}]_h$$
 $Var[I]_f$

c.o.v of $\hat{P}_{_{f}}$, $\delta_{_{\hat{P}_{_{f}}}}$ for importance sampling?

$$\hat{P}_f = \frac{1}{N} \sum_{i=1}^N q_i \qquad \qquad X, x_1, \cdots, x_N \overline{X} = \frac{1}{N} \{x_1 + \cdots + x_N\}$$

Seoul National University Dept. of Civil and Environmental Engineering

$$\mu_{\hat{P}_f} = \frac{1}{N} \sum_{i=1}^{N} E[q_i] \rightarrow \overline{\hat{P}}_f = \frac{1}{N} \sum_{i=1}^{N} \overline{Q}$$

Settimate on the

of
$$\hat{P}_f$$
 (=sample mean of)

$$\sigma_{\hat{P}_{f}}^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N} Var[q_{i}] \rightarrow S_{\hat{P}_{f}}^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N} S_{q}^{2} = \frac{1}{N} S_{q}^{2}$$

 \checkmark Estimate on the variance of $\hat{P}_f = \frac{1}{N} \times \text{sample variance of } q_i$'s

$$\delta_{\hat{P}_f} = \frac{\sqrt{S_{\hat{P}_f}}}{\bar{P}_f} = \frac{\frac{1}{\sqrt{N}}S_q}{\bar{Q}} \qquad (\frac{If}{h}, \frac{If}{h}, \cdots, \frac{If}{h}) \qquad x_i \leftarrow h(\mathbf{x})$$

Importance sampling $P_f = \int_x \left[\frac{lf}{h}\right] \cdot h(\mathbf{x}) d\mathbf{x} = E\left[\frac{lf}{h}\right]$

$$Var\left[\frac{If}{h}\right]_{h} \ll Var\left[I\right]_{f}$$

Selection of sampling density

Shinozuka (1983)

 \rightarrow not good because zero density assigned to failure cases $q_i = \frac{I \cdot f}{h}$

2 Harbitz (1986)

Rα

Seoul National University Dept. of Civil and Environmental Engineering

$$c \int_{\|\mathbf{u}\| \ge \beta} \varphi_n(\mathbf{u}) d\mathbf{u} = c \cdot P(\|\mathbf{u}\| \ge \beta) =$$

$$P(\|\mathbf{u}\| \ge \beta) = 1 - P(\|\mathbf{u}\| \le \beta)$$

$$= 1 - P(\|\mathbf{u}\|^2 \le \beta^2) = 1 - P(u_1^2 + \dots + u_n^2 \le \beta^2)$$

$$= 1 - X_n^2(\beta^2)$$

Chi-square distribution n degree of freedom

$$\therefore c=$$

$$q_i = \frac{I \cdot f}{h} = =$$

How to simulate according to $h(\mathbf{u})$?

- i. Simulate $\mathbf{u}_i \sim N(\mathbf{0}, \mathbf{I})$
- ii. Compute $\hat{\alpha}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$
- Simulate R^2 iii. uniformly distⁿ over surface $R^{2} = u_{1}^{2} + \dots + u_{n}^{2} \quad (\sim X_{n}^{2}())$ But truncate $R^2 < \beta^2$ $\chi^2 dist^{\underline{n}}$ → PDF of R^2 $F_{R^2}(r^2) = \frac{X_n^2(r^2)}{1 - X_n^2(\beta^2)}$ ► R² ß² Compute $R \cdot \hat{\alpha}$ iv.) h(Note: Not effective as n 1 Volume inside sphere is almost 0 $1 - X_n^2(\beta^2) \cong 1$ as n increases ③ Melchers (1989) $h(\mathbf{u}) = N($) e.g. $\Sigma = \sigma^2 I$ (FERUM's Importance Sampling Option)

Seoul National University Dept. of Civil and Environmental Engineering

④ Series system

- $h(\mathbf{u}) = \sum_{i} w_{i} h_{i}(\mathbf{u}) \text{ where } h_{i}(\mathbf{u}) \leftarrow N(\mathbf{u}_{i}^{*}, \boldsymbol{\Sigma})$
- w_i : weight ($\propto \beta_i^{-m}, m > 0$)

Challenges

① $h(\mathbf{x}) = 0$ where $I(\mathbf{x}) \neq 0 \Rightarrow$ does not converge

2 Multiple design points?

$$h(\mathbf{u}) \Rightarrow wh(\mathbf{u}) + w_0 \varphi(\mathbf{0}, \mathbf{I})$$

ADK & Dakessaian (1998)

- ③ System problems
 - i. Where?
 - ii. Cost of finding the importance points

- ※ Adaptive Importance Sampling
 - (1) Directional Simulation

- (2) Sequentially Conditioned Importance Sampling (SCIS) (→multinomal prob. calc.)
- (3) Adaptive Importance Sampling based on Cross-Entropy using Gaussian Mixture (Kurtz and Song, 2013); using von Mises Fisher mixture (Wang and Song, 2016)

457.646 Topics in Structural Reliability

In-Class Material: Class 24

VIII-1. Probability-Based Structural Design Code

- \rightarrow Cornell. C.A (1969) A probability-based structural code (J. ACI)
- \rightarrow Ravindara & Galambos (1978) Load & resistance factor design for steel structures

(J. Str. Eng, Div. ASCE)

Load & Resistance Factor Design (LRFD)

Replaced allowable stress design (ASD) (→safety factor)

⇒ Probability-based code

i. R_n : " " resistance

$$\rightarrow$$
 code formula (e.g. $V_c = \frac{1}{6}\sqrt{f_c} b_w d$)

 \rightarrow nominal values used (material & dimension)

: given in " " force, e.g. bending moment, axial force, shear force

ii.
$$\phi$$
: " " Factor ~ ϕ 1

(Dimensionless) conservatism due to the uncertainties in R

iii.
$$Q_m$$
: mean load effect

 \rightarrow in generalized force (structural analysis)

iv. γ : "Load" factor~ γ 1

Conservatism due to

- ① Potential overload
- 2 Uncertainty in load effect calculation

v. Limit-State

- "U "limit-states
- e.g. frame instability, plastic mechanism formed incremental collapse
- "S "limit-states
- e.g. excessive deflection, excessive vibration, premature yielding or slip

 LRFD codes suggest formulas for (), methods to compute () from loads

 provide () & ()

 for each structural element (Q_m) from loads

 to satisfy the () reliability level

Measure of (target) reliability

(or conservatism)

 \Rightarrow use

Want to split so that factors for R & Q can be determined independently

 $(\mu_{\scriptscriptstyle R},\,\mu_{\scriptscriptstyle Q},\,\delta_{\scriptscriptstyle R},\,\delta_{\scriptscriptstyle Q})?$

© Uncertainties in the Resistance, R

 R_n : nominal resistance by codes

M : "M"aterial ~

F: "F"abrication ~

P: "P"rofessional ~

$$(1) \quad \mu_R \quad \Box \quad \Box \quad$$

(2)
$$\delta_R$$
? $\ln R =$

$$Var[\ln R] = \xi_R^2 =$$

Note
$$\xi_X^2 \square \delta_R^2$$
 when $\delta \square 1$

$$\therefore \delta_{\scriptscriptstyle R} \cong$$

Our Content of Cont

 $Q = E(C_D AD + C_L BL)$ (5)

(1) μ_Q (1)

$$\begin{split} \delta_{Q} &\cong \delta_{E}^{2} + \delta_{c_{DAD}+c_{L}BL}^{2} \\ & \textcircled{2} \\ &= \delta_{E}^{2} + \frac{c_{D}^{2}\mu_{A}^{2}\mu_{D}^{2}(\delta_{A}^{2} + \delta_{D}^{2}) + c_{L}^{2}\mu_{B}^{2}\mu_{L}^{2}(\delta_{B}^{2} + \delta_{L}^{2})}{(c_{D}\mu_{A}\mu_{D} + c_{L}\mu_{B}\mu_{L})^{2}} \end{split}$$

Finding target reliability index β

Initially, Eq. (3) & $\,\mu_{\scriptscriptstyle R},\mu_{\scriptscriptstyle Q},\delta_{\scriptscriptstyle R},\delta_{\scriptscriptstyle Q}\,\,\rightarrow\,$ existing, e.g. allowable stress code

 \rightarrow can back-calculate target reliability index β embedded in the existing code

For example, 1969 AISC simply supported beams:

 $\beta \cong 3.0$ (member), $\beta \cong 4.5$ (connections)

→ Provided starting points (and calibrated later)

 $\ensuremath{\textcircled{}}$ Load & Resistance Factors for given target $\ensuremath{\beta}$

Eq. (1)
$$\phi R_n \ge \sum_k \gamma_k Q_{km} = \gamma_E (\gamma_D C_D \mu_D + \gamma_L C_L \mu_L)$$

Eq. (3) $\exp(-\overline{\alpha} \cdot \beta \cdot \delta_R) \cdot \mu_R \ge \exp(\overline{\alpha} \cdot \beta \cdot \delta_Q) \cdot \mu_Q \leftarrow$ expressions derived for $\mu_R, \mu_Q, \delta_R, \delta_Q$

From the LHS of Eq. (1) and Eq. (3): $\phi = \exp(-\alpha\beta\delta_R)\frac{\mu_R}{R_n}$ where $\alpha = 0.55$

From the RHS:

$$\begin{cases} \gamma_E = \exp(\alpha\beta\delta_E) \\ \gamma_D = 1 + \alpha\beta\sqrt{\delta_A^2 + \delta_D^2} \\ \gamma_L = 1 + \alpha\beta\sqrt{\delta_B^2 + \delta_L^2} \end{cases}$$

i) If
$$\beta \uparrow \begin{cases} \phi \\ \gamma \end{cases}$$

ii) $\frac{\mu_R}{R_n} > 1$, If $\frac{\mu_R}{R_n} \uparrow$, ϕ

Review in Nguyen, Song & Paulino (2010)

VIII-2. Reliability-Based Design Optimization (RBDO)

s.t.
$$P[g(\mathbf{d}, \boldsymbol{\mu}_{\mathbf{x}}) \leq 0] \leq P_f^t$$

 $\mathbf{d}^{L} \leq \mathbf{d} \leq \mathbf{d}^{u}$

$$\boldsymbol{\mu}_{\mathbf{x}}^{L} \leq \boldsymbol{\mu}_{\mathbf{x}} \leq \boldsymbol{\mu}_{\mathbf{x}}^{u}$$

Where

Reliability Index Approach (RIA; Enevaldsen & Sorensen 1994)

 $\min_{\mathbf{d},\mathbf{\mu}_{\mathbf{x}}} f(\mathbf{d},\mathbf{\mu}_{\mathbf{x}})$

s.t. β β^t

 $\beta^{t} \leftarrow \text{target reliability index } -\Phi^{-1}[P_{f}^{t}]$

 $\beta \leftarrow$ generalized reliability index

$$\beta = -\Phi^{-1}[$$

∧ By FORM analysis (or others)

Seoul National University Dept. of Civil and Environmental Engineering

 \Rightarrow may not be able to provide an optimal solution if the failure does not occur in the feasible domain

◎ Performance Measure Approach (PMA; Tu et al., 1999) ※ double-loop

$$\min_{\mathbf{d}, \boldsymbol{\mu}_{\mathbf{x}}} f(\mathbf{d}, \boldsymbol{\mu}_{\mathbf{x}})$$

s.t. $g_p = F_g^{-1} \Big[\Phi \Big(-\beta^t \Big) \Big] \ge 0$ $(\Phi^{-1}[-\beta^t] = P^t)$

"Performance function" = quantile of g at P^{t}

$$g_n \ge 0 \iff P_f \le P_f^t$$

$$\Leftrightarrow \beta \ge \beta^t$$

Equivalent RBDO

How to find g_p ?

They proposed (instead of solving FORM target β)

$$g_p = \min_{\mathbf{u}} G(\mathbf{d}, \mathbf{u})$$

s.t. $\|\mathbf{u}\| = \beta^t \quad \Rightarrow \text{ Minimizes g instead of } \|\mathbf{u}\|$

~ facilitates gradient-based optimization (using $\frac{\partial g}{\partial \mathbf{d}}$) \Rightarrow Overcomes the problems in RIA (1)

.....(1)

Is this g_p really $F_g^{-1} [P_f']$?

Set a new limit-state function

Single-Loop PMA (Liang et al., 2004)

Replace the optimization in (1) with an approximation (but non-iterative)

system equation, i.e, Karush-Kuhn-Tucker (KKT)

condition

 $\nabla_{\mathbf{u}} G(\mathbf{d}, \mathbf{u}) + \lambda \nabla_{\mathbf{u}} (\|\mathbf{u}\| - \beta^t) = 0$ ($\lambda \rightarrow$ Lagrange Multiplier)

 $\|\mathbf{u}\| - \beta^t = 0$

- i. Solve KKT to get $\mathbf{u} = \tilde{\mathbf{u}}$
- ii. Evaluate $\hat{\alpha}$ at $\mathbf{u} = \tilde{\mathbf{u}}$
- iii. Approximate design point by

$$\mathbf{u}^t = \boldsymbol{\beta}^t \cdot \hat{\boldsymbol{\alpha}}^t$$

iv. Check $g(\mathbf{u}^t) \square g_p \ge 0$

Single loop RBDO

min $f(\mathbf{d}, \mathbf{\mu}_{\mathbf{x}})$ d,µ,

s.t. $g_p \square g(\mathbf{d}, \mathbf{x}(\mathbf{u}^t)) \ge 0$

457.646 Topics in Structural Reliability

In-Class Material: Class 25

VIII-3. Random fields

~ Random quantity distributed over ______ field (space or time)

Ex1) Spatial Distribution of Random Ground Motion Intensity)

Ex2) Spatial distribution of material property (Young's Modulus)

Ex3) Ground acceleration time history $\ddot{x}_{g}(t)$

Iscretization of Random field \rightarrow Random <u>vector</u>

Theoretical Representation of R.F

$$v(\mathbf{x}), \ \mathbf{x} \in \Omega$$
 random field in domain Ω

Partial descriptors:

$$\begin{cases} \mu(\mathbf{x}): \text{ mean function } E[v(\mathbf{x})] \\ \sigma^{2}(\mathbf{x}): \text{ variance function } E[v^{2}(\mathbf{x})] - \mu^{2}(x) \\ \rho(\mathbf{x}, \mathbf{x}'): \text{ correlation coefficient function } \rho_{v(\mathbf{x})v(\mathbf{x}')} \end{cases}$$

For Gaussian R.F. the above gives a complete specification

For Nataf R.F., also specify $F_{v}(v; \mathbf{x})$

For general RF's, specify joint PDF of () and ()

for,
$$x, x' \in \Omega$$
, $f_{vv}(v(x), v(x'))$

e.g. _____ Random field

~ _____ does not change over the domain $\ \Omega$

$$v(\mathbf{x}), \quad x \in \Omega$$

$$\begin{bmatrix} \mu(\mathbf{x}) = \\ \sigma^2(\mathbf{x}) = \\ \rho(\mathbf{x}, \mathbf{x}') = \\ F(v; \mathbf{x}) = \end{bmatrix}$$

Note; This doesn't mean $v(\mathbf{x}) = v$ (not constant over the domain)

How to capture this from $\rho(\mathbf{x}, \mathbf{x}')$?

Correlation length

~ measure of the distance over which significant loss of correlation occurs

Examples

•
$$\rho(\Delta x) = \exp\left(-\frac{\Delta x}{a}\right)$$

 $\theta = \int_{0}^{\infty} \exp\left(-\frac{\Delta x}{a}\right) d\Delta x$
 $= -a \exp\left(-\frac{\Delta x}{a}\right) \Big|_{0}^{\infty} = a$
• $\rho(\Delta x) = \exp\left(-\frac{\Delta x^{2}}{a^{2}}\right)$
 $\theta = \int_{0}^{\infty} \exp\left(-\frac{\Delta x^{2}}{a^{2}}\right) d\Delta x$
 $= \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-\frac{\Delta x^{2}}{a^{2}}\right) d\Delta x$
 $= \frac{1}{2} \sqrt{\pi} a$

 $\theta \propto a$

457.646 Topics in Structural Reliability

In-Class Material: Class 26

© Discrete Representation of RFs (Summary: Sudret & ADK 2000; 2002 PEM)

① Mid-point method

$$v(\mathbf{x}) \simeq \hat{v}(\mathbf{x})$$
$$= v(\mathbf{x}_{c}), \ \mathbf{x} \in \Omega_{e}$$

(constant in each Ω_{a})

• Represented by a constant r.v.

over each RF element

• Positive definiteness problem of \mathbf{R} ... if RF element size is small relative to θ

Recommended size of RF element size

$$\frac{\theta}{10} \sim \frac{\theta}{15} \le \text{ RF size } \le \frac{\theta}{3} \sim \frac{\theta}{5}$$

Numerical stability (Positive definiteness)

Accurate representation

• Represented by a single r.v per Ω_e

• Variances are () \rightarrow _____-estimate P_f

Positive definiteness problem

③ Shape function method (←motivated by FE people)

$$v(\mathbf{x}) \simeq \hat{v}(\mathbf{x}) = \sum_{\substack{\text{element}\\\text{nodes}}} N_i(\mathbf{x}) v(\mathbf{x}_i)$$

• Represented by continuous function

to guarantee $\hat{v}(\mathbf{x}_i) = v(\mathbf{x}_i)$

- ④ Karhunen-Loève (KL) expansion (Gaussian RFs)
 - $\rightarrow\,$ Describe RF in terms of finite # of shape functions

_structure $\rho(\mathbf{x}, \mathbf{x}')$

defined over _____ domain

(no geometric discretization)

 \rightarrow Discretization based on

$$\begin{pmatrix}
\boldsymbol{\nu}(\underline{\mathbf{x}}) \\ \boldsymbol{\rho}(\underline{\mathbf{x}}, \underline{\mathbf{x}}')
\end{pmatrix}$$

Goal: Want to descrive $\rho(\mathbf{x}, \mathbf{x}')$ by

$$\rho(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$
Orthogonal shape (base) functions

Can find λ , φ by solving an integral eigenvalue problem, i.e.

$$\int_{\Omega} \rho(\mathbf{x}, \mathbf{x}') \varphi_i(\mathbf{x}') d\mathbf{x}' = \lambda_i \varphi_i(\mathbf{x}) \quad \text{(Fredholem integral eqn - 2nd kind)}$$

Note $\rho(\mathbf{x}, \mathbf{x}')$ is bounded, symmetric, (+) definite.

If so, one can find

 $\varphi_i(\mathbf{x})$: orthogonal $\int \varphi_i(\mathbf{x})\varphi_j(\mathbf{x})d\mathbf{x} = \delta_{ij}$

 λ_i : real & positive

Instructor: Junho Song junhosong@snu.ac.kr Can drop λ_i 's if $\lambda_r \cong 0$

Then using $\varphi_i(\mathbf{x})$, and λ_i , i=1,...,r, one can describe Gaussian RF v(x) by

$$\mathcal{K} \text{L expansion of Gaussian RF}$$
$$v(\mathbf{x}) \approx \hat{v}(\mathbf{x}) = \mu(\mathbf{x}) + \sigma(\mathbf{x}) \sum_{i=1}^{r} (u_i \sqrt{\lambda_i} \varphi_i(\mathbf{x})), \quad x \in \Omega \quad \Rightarrow \quad v(\mathbf{x}) \quad \Rightarrow \quad \{u_1, \dots, u_r\}$$

 $u_i \rightarrow N(0,1), u_i \text{ s.i}$

Let's check!

- i. Gaussian? Yes, function of u_i 's
- ii. $E[\hat{v}(\mathbf{x})] = \mu(\mathbf{x})$? $E[\hat{v}(\mathbf{x})] =$

iii.
$$Var[\hat{v}(\mathbf{x})] = E[()^{2}]$$

$$= E[\sum_{i=1}^{r} \sum_{j=1}^{r}]$$

$$= \sigma^{2}(\mathbf{x}) \sum_{i=1}^{r} \sum_{j=1}^{r} \sqrt{\lambda_{i}} \sqrt{\lambda_{j}} \varphi_{i}(\mathbf{x}) \varphi_{j}(\mathbf{x})$$

$$= \sigma^{2}(\mathbf{x}) \sum_{i=1}^{r} \lambda_{i} \varphi_{i}^{2}(\mathbf{x})$$

$$= \sigma^{2}(\mathbf{x})$$

(because $\rho(\mathbf{x}, \mathbf{x}) =$

)

=

iv.
$$\rho_{\hat{v}\hat{v}}(\mathbf{x}, \mathbf{x}') \stackrel{?}{=} \rho(\mathbf{x}, \mathbf{x}')$$
$$= E[(\hat{v}(\mathbf{x}) - \mu(\mathbf{x}))(\hat{v}(\mathbf{x}') - \mu(\mathbf{x}'))] / \sigma(\mathbf{x})\sigma(\mathbf{x}')$$
$$= E[\sum_{i=1}^{r} \sum_{j=1}^{r} u_i \sqrt{\lambda_i} \varphi_i(\mathbf{x}) u_j \sqrt{\lambda_j} \varphi_j(\mathbf{x}')]$$
$$= \sum_{i=1}^{r} \sum_{j=1}^{r} E[\qquad] \sqrt{\lambda_i} \sqrt{\lambda_j} \varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}')$$
$$= \sum_{i=1}^{r} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$
$$= \varphi(\mathbf{x}, \mathbf{x}')$$

- # of RV's:
- Represented by
 function
- No necessary
- Most efficient (in terms of # of)
- Requires solution of an integral eigenvalue problem.
- ⑤ Orthogonal expansion (eigen-expansion, but correlated rv's)
- 6 Optimal linear estimation (OLE)~ linear regression
- O Expansion OLE
 - : See Sudret & ADK (2000)

Nataf RF

- $v(\mathbf{x}) \Rightarrow F(v, \mathbf{x}), \ \rho_{ZZ}(\mathbf{x}, \mathbf{x'})$
- $v(\mathbf{x}) = F_v^{-1} \{ \Phi(\hat{Z}(\mathbf{x})) \}, \ Z(\mathbf{x}) \sim N(\mathbf{0}, \rho_{ZZ}(\mathbf{x}, \mathbf{x}')) \ (Z(\mathbf{x}) \rightarrow \text{Gaussian RF})$
- \Rightarrow Construct $Z(\mathbf{x})$ and discrete to $\hat{Z}(\mathbf{x})$

$$\Rightarrow v(\mathbf{x}) = F^{-1}\{\Phi(\hat{Z}(\mathbf{x}))\}$$

VIII-4. Response Surface Method (CRC Ch.19 & Mike Tipping's chapter)

Reliability Analysis, Uncertainty Quantification & Response Surface

Reliability Analysis

$$P_{f} = \int_{g(\mathbf{x}) \le 0} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} \rightarrow \text{ e.g. FORM/SORM } g(\mathbf{x}_{i}), \nabla g(\mathbf{x}_{i})$$
$$\rightarrow \text{ e.g. Sampling } q_{i} = I(\mathbf{x}_{i}) \text{ or } \frac{I(\mathbf{x}_{i}) \cdot f(\mathbf{x}_{i})}{h(\mathbf{x}_{i})}$$
$$\text{where } I(\mathbf{x}_{i}) = \begin{cases} 1 & g(\mathbf{x}_{i}) \le 0 \\ 0 & g(\mathbf{x}_{i}) > 0 \end{cases}$$

Uncertainty Quantification

"Process of determining the effect of input uncertainties"

on response metrics of interest (Eldred et al. 2008)

e.g.
$$E[g(\mathbf{x})^m] = \int_{\mathbf{x}} g(\mathbf{x})^m f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

(1) $g(\mathbf{x})$ Sometimes

Computationally costly for MCS

No analytical gradients but many RVs

 \Rightarrow FORM/SORM difficult

Experiments expensive (statistical analysis of experiment data infeasible)

② Idea: $g(\mathbf{x}) \simeq \eta(\mathbf{x}) \quad (\eta(\mathbf{x}) \leftarrow \text{"response surface" or "surrogate" model})$

⇒ Should fit $g(\mathbf{x}^{(i)})$ sufficiently well especially in the region that contributes most to P_f or $E[g(\mathbf{x})^m]$

- ③ History
 - Box and Wilson (1954): influential
 - Applied mostly in chemical, industrial eng. etc.

(Mostly for "experimental design")

- Rackwitz (1982) \Rightarrow Use RS for Structural Reliability Analysis
- Has been applied to random field, nonlinear structural dynamics, etc.
457.646 Topics in Structural Reliability

In-Class Material: Class 27

Basic formulation of RS models

True response of $g(\mathbf{x})$: $Z(\mathbf{x})$

$$Z(\mathbf{x}) = \eta(\underbrace{\theta_1, \cdots, \theta_p}_{\text{Model}}; \mathbf{x}) + \varepsilon$$

Model Input Zero mean
parameters (random) error term
$$\Rightarrow E[z - \eta] = E[\varepsilon] = 0$$

"unbiased" model

How to find θ ? What do data tell us?

Ref: Tipping, M.E. (2004)

"Bayesian inference: an introduction to principles and practice in machine learning" Advanced lectures on machine learning, pp.41-62

(Free codes and papers at miketipping.com)

$$\eta = \theta_{1} \exp(x) + \theta_{2} \ln x + \theta_{3} \cdots$$

$$\textcircled{O} \text{ Linear models (Linear in)}$$
Find $Z = \eta(\mathbf{x}; \mathbf{\theta}) + \varepsilon$

$$= \sum_{i=1}^{p} \theta_{i} q_{i}(\mathbf{x}) + \varepsilon$$
Model Basis
Parameter Function
(Shape function)
e.g. $q_{i}(\mathbf{x}) \propto \text{PDF of } N(\mathbf{x}^{(i)}, r^{2}\mathbf{I})$
from $\{\mathbf{x}^{(i)}, Z^{(i)}\}, i = 1, \cdots, m$

 $\mathbf{Z} = \mathbf{Q}\boldsymbol{\theta} + \boldsymbol{\epsilon}$

$$\begin{cases} Z^{(2)} \\ \vdots \\ Z^{(m)} \end{cases} = \begin{bmatrix} \vdots \\ q_1(\mathbf{x}^{(m)}) & \cdots & \cdots & q_p(\mathbf{x}^{(m)}) \end{bmatrix} \begin{pmatrix} \vdots \\ \theta_p \end{pmatrix} + \begin{cases} \vdots \\ \varepsilon^{(m)} \end{cases}$$

$$m \times 1 \qquad m \times p \qquad p \times 1 \qquad m \times 1$$

Five approaches (Tipping 2004)

- ① "Least-Square" Approximation (classic)
 - \Rightarrow Minimize sum of squared errors

$$E_D = \frac{1}{2} \sum_{i=1}^m (Z^{(i)} - \eta(\mathbf{x}^{(i)}, \theta))^2$$

= $\frac{1}{2} (\mathbf{Z} - \mathbf{Q} \mathbf{\theta})^T (\mathbf{Z} - \mathbf{Q} \mathbf{\theta})$
= $\frac{1}{2} \mathbf{Z} \mathbf{Z}^T + \frac{1}{2} (\mathbf{Q} \mathbf{\theta})^T (\mathbf{Q} \mathbf{\theta}) - \mathbf{Z}^T \mathbf{Q} \mathbf{\theta}$

$$\frac{\partial E_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\mathbf{Z}^T \mathbf{Q} + (\mathbf{Q}\boldsymbol{\theta})^T \mathbf{Q} = 0$$

Solve for θ ,

$$\boldsymbol{\theta}_{LS} = (\mathbf{Q}^T \mathbf{Q})^{-1} \mathbf{Q}^T \mathbf{Z}$$

% over-fitting?

e.g.
$$Z = \sin x + \varepsilon$$

 $\sin x \rightarrow$ true model, $\varepsilon \rightarrow$ noise

Figure 1 in Tipping (2004)

2 Regularization (by giving penalty on large θ)

$$\hat{E}(\mathbf{\theta}) = E_D(\mathbf{\theta}) + \lambda \quad \underline{E_W(\mathbf{\theta})}$$

$$E_{W}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{p} \theta_{i}^{2}$$

Standard choice

regularization harphi Discourage large value of θ

⇒ Smooth function

$$\frac{\partial E_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 \implies \boldsymbol{\theta}_{PLS} = (\mathbf{Q}^T \mathbf{Q} + \lambda \mathbf{I})^{-1} \mathbf{Q}^T \mathbf{Z}$$

* Appropriate value of λ ?

A common approach: Use "validation" data

Fig. 3. Plots of error computed on the separate 15-example training and validation sets, along with 'test' error measured on a third noise-free set. The minimum test and validation errors are marked with a triangle, and the intersection of the best λ computed via validation is shown.

* Probabilistic Regression

$$Z = \eta + \varepsilon !$$

e.g. $\varepsilon \sim N(0, \sigma^2)$ $\therefore Z \sim N(\eta, \sigma^2)$

Using this information one can construct likelihood function

$$L(\mathbf{Z} | \mathbf{x}, \mathbf{\theta}, \sigma^2) = \prod_{i=1}^n f(Z^{(i)} | \mathbf{x}^{(i)}, \mathbf{\theta}, \sigma^2)$$
$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \mathbf{\theta})\}^2}{2\sigma^2}\right]$$

③ Maximum Likelihood Estimation

Find θ that maximizes L() \Leftrightarrow Find θ that minimizes –InL()

$$-\ln L(\quad) = \frac{n}{2}\ln(2\pi\sigma^2) + \frac{1}{2\sigma^2}\sum_{i=1}^n \{Z^{(i)} - \eta(\mathbf{x}^{(i)}, \boldsymbol{\theta})\}^2 \qquad \Rightarrow \text{ error measure}$$
for $\underline{\boldsymbol{\theta}}_{LS}$

Therefore, MLE based on s.i. error assumption (i.e. $\varepsilon \sim N()$)

Gives

$$\boldsymbol{\theta}_{MLE} = \boldsymbol{\theta}_{LS}$$

(cf. Assuming errors are dependent? $\varepsilon \sim N(0, \Sigma)$

$$\rho_{ij} = \exp\left(-\frac{\left\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right\|}{L}\right) \Rightarrow \text{ "Kriging" Method (Satner et al. 2003)}$$

***** Bayesian Methods $f = c \cdot L \cdot p$

Introduce a prior distribution

$$p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{p} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left\{-\frac{\alpha}{2}\theta_{i}^{2}\right\}$$

$$= \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\theta_{i}^{2}}{2(\frac{1}{\alpha})}\right\} \qquad (\text{degree of belief about smooth model})$$

$$\alpha \uparrow \quad \text{Variability reduces } \underbrace{\bigwedge_{\boldsymbol{\theta}}}_{\boldsymbol{\theta}} \Rightarrow \text{ certain that } \overset{\nearrow}{\boldsymbol{\theta}} \text{ is around } 0$$

$$\Rightarrow \text{Become smooth}$$

 $\therefore \alpha \propto \lambda$

④ Maximum a posteriori (MAP) estimation (a Bayesian "shortcut")

$$f = c \cdot L \cdot p$$

$$P(\mathbf{\theta} | \mathbf{Z}, \alpha, \sigma^2) = c \cdot L(\mathbf{Z} | \mathbf{\theta}, \sigma^2) \cdot p(\mathbf{\theta} | \alpha)$$
Posterior Likelihood function prior

Find $\boldsymbol{\theta}$ where $P(\boldsymbol{\theta} | \mathbf{Z}, \alpha, \sigma^2)$ is maximum

e.g. Normal s.i errors ε , $Z \sim N(\eta, \sigma^2)$

$$-\ln(f) = \frac{1}{2\sigma^2} \sum_{i=1}^n \{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \mathbf{\theta})\}^2 + \frac{\alpha}{2} \sum_{i=1}^p \theta_i^2 \qquad \lambda = \alpha \sigma^2$$
$$-\sigma^2 \ln(f) = \frac{1}{2} \sum_{i=1}^n \{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \mathbf{\theta})\}^2 + \underbrace{\alpha \sigma^2}_{\mathbf{E}_p(\underline{\theta})} \qquad \lambda = \alpha \sigma^2$$
$$+ \underbrace{\alpha \sigma^2}_{\mathbf{E}_p(\underline{\theta})} \sum_{i=1}^p \theta_i^2 + \underbrace{\alpha \sigma^2}_{\mathbf{E}_w(\underline{\theta})} \sum_{i=1}^p \theta_i^2 + \underbrace{\alpha \sigma^2}_{\mathbf{E}_w(\underline{\theta})} + \underbrace{\alpha \sigma^2}_{\mathbf$$

* α, σ^2 ? no need to bother w/ Bayesian?

5 Full Bayesian ("Marginalization") integrate $P(\mathbf{Z} | \boldsymbol{\theta}, \boldsymbol{\alpha}, \sigma^2)$ $P(\mathbf{Z}) = \int P(\mathbf{Z} | \boldsymbol{\theta}) \cdot P(\boldsymbol{\theta}) d\boldsymbol{\theta}$ over all $\boldsymbol{\theta}$

Focus on

$$P(\mathbf{Z} | \boldsymbol{\alpha}, \sigma^2) = \int P(\mathbf{Z} | \boldsymbol{\theta}, \boldsymbol{\alpha}, \sigma^2) \cdot P(\boldsymbol{\theta} | \boldsymbol{\alpha}, \sigma^2) d\boldsymbol{\theta}$$

$$= \int P(\mathbf{Z} | \boldsymbol{\theta}, \sigma^2) \cdot P(\boldsymbol{\theta} | \boldsymbol{\alpha}) d\boldsymbol{\theta}$$

Simplified to
$$= \int P(\mathbf{Z} | \boldsymbol{\theta}, \sigma^2) \cdot P(\boldsymbol{\theta} | \boldsymbol{\alpha}) d\boldsymbol{\theta}$$

Closed-form available:

 $f_{\scriptscriptstyle N}(\mathbf{Z}, \alpha, \sigma^2)$ (Eq. 23 in Tipping, 2004)

* $P(\mathbf{Z}|\alpha,\sigma^2)$: Probability that you will observe \mathbf{Z} for given α,σ^2

Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure 3 (with the horizontal scale adjusted appropriately to convert from λ to α) along with the negative log marginal likelihood evaluated on the training data alone for that same model. The values of α and test error achieved by the model with highest marginal likelihood (smallest negative log) are indicated.

☆ Okham's Razar (or the law of parsimony):

"model should be no more complex than is sufficient to explain the data"

Other RS or UQ methods

① Kriging (Santner et al. 2003)

(Dubourg et al. 2010 IFIP)

 $\boldsymbol{\varepsilon} \sim N(\boldsymbol{0},\boldsymbol{\Sigma})$

e.g.
$$\rho_{ij} = \exp\left(-\frac{\left\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right\|}{L}\right)$$

- coincides at each point
- Interpolate b/w each point
- Can quantify confidence
- Regularization

② Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004)

$$g(\mathbf{x}) \to g(\hat{\mathbf{x}}) = \sum_{i=1}^{n} g(\mu_1, \dots, \mu_{i-1}, x_i, \mu_{i+1}, \dots, \mu_n) - (n-1)g(\mu_1, \dots, \mu_n)$$

$$\Downarrow$$

$$F[(g(\mathbf{x}))^m] \simeq F[(\hat{g}(\mathbf{x}))^m] = -\pi F[(\hat{g}(\mathbf{x}))^m]$$

$$E[(g(x))^{m}] \cong E[(\hat{g}(x))^{m}] \qquad \Pi \varphi(x_{i})$$
$$= \int (\hat{g}(x))^{m} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

Transform to s.i. space; Multivariate Integral \Rightarrow Multiple univariate Integral

③ Polynomials chaos (a good review by Eldred et al. 2008)

$$R = a_0 B_0 + \sum_{i_1=1}^{\infty} a_{i_1} B_1(\zeta_{i_1})$$

+
$$\sum_{i_1=1}^{\infty} \sum_{i_2=1}^{\infty} a_{i_1,i_2} B_2(\zeta_{i_1} \zeta_{i_2}) + \cdots$$

 $= \sum_{j=0}^{j} \alpha_{j} \psi_{j}(\zeta) \quad \rightarrow \text{ Orthogonal bases for given types of r.v's distribution}$

$$\alpha_{j} = \frac{\langle R, \psi_{j} \rangle}{\langle \psi_{j}^{2} \rangle} = \frac{\int R\psi_{j} f(\zeta) d\zeta}{\langle \psi_{j}^{2} \rangle} \xrightarrow[]{} \text{Important sampling, etc.}$$

$$\xrightarrow{\langle \psi_{j}^{2} \rangle} \xrightarrow[]{} \text{closed form available}$$

457.646 Topics in Structural Reliability

In-Class Material: Class 28

VII-4. Finite Element Reliability Analysis (Haukaas, 2006)

 \rightarrow summary and good findings

Equations of Motion and Randomness

"Weak" form of equilibrium:

$$\int_{\Omega} \delta u_i \gamma \ddot{u}_i d\Omega + \int_{\Omega} \delta u_{i,j} \sigma_{ij} d\Omega - \int_{\Omega} \delta u_i f_i d\Omega - \int_{\Gamma} \delta u_i \tau_i d\Gamma = 0$$

- γ : density, \ddot{u}_i : acc, $u_{i,j}$: strain, σ_{ij} : stress, f_i : body force, τ_i : traction
 - ① Basic random fields

 $C_{ijkl}(\mathbf{x})$, $\gamma(\mathbf{x})$: material properties (constants)

Tensor of material elastic constants, $\sigma_{ij} = C_{ijkl} \epsilon_{kl}$

 $f_i(\mathbf{x},t)$, $\tau_i(\mathbf{x};t)$: loads

Ω, Γ : geometry

- \Rightarrow Discretized to a random vector v
- \bigcirc Derived response is a function of \mathbf{v}
 - $\begin{array}{lll} u_i(\mathbf{x}, t, \mathbf{v}) & : \text{displacement} \\ \varepsilon_{ij}(\mathbf{x}, t, \mathbf{v}) & : \text{strain} \\ \varepsilon_{ij}^P(\mathbf{x}, t, \mathbf{v}) & : \text{plastic strain} \\ \sigma_{ij}(\mathbf{x}, t, \mathbf{v}) & : \text{stress} \\ \vdots \\ \mathbf{S}(\mathbf{x}, t, \mathbf{v}) & : \text{generic response vector} \end{array}$

③ FE models and r.v's

i. Nonlinear & Dynamic problem

 $\mathbf{M}(\mathbf{v})\ddot{\mathbf{u}}(t,\mathbf{v}) + \mathbf{C}(\mathbf{v})\dot{\mathbf{u}}(t,\mathbf{v}) + \mathbf{R}(\mathbf{u}(t,\mathbf{v}),\mathbf{v}) = \mathbf{P}(t,\mathbf{v})$

ii. Static problem

 $\mathbf{R}(\mathbf{u}(t, \mathbf{v}), \mathbf{v}) = \mathbf{P}(t, \mathbf{v})$

iii. Linear Static problem

 $\mathbf{K}(\mathbf{v}) \cdot \mathbf{u}(\mathbf{v}) = \mathbf{P}(\mathbf{v})$

- ④ FE reliability analysis
 - i. MCS $\mathbf{v}_i, i = 1, \cdots, N$
 - ii. Importance Sampling
 - iii. Response Surface $g \approx \eta(\mathbf{x})$

```
iv. Form (HLRF)
```

Initialize $\mathbf{u}_1 = \mathbf{u}(\mathbf{v}_1)$

 \downarrow

$$\mathbf{v}_{i} = \mathbf{v}(\mathbf{u}_{i}) \text{ skip if } i = 1$$

$$G(\mathbf{u}_{i}) = g(\mathbf{S}(\mathbf{v}_{i}), \mathbf{v}_{i})$$

$$\nabla_{\mathbf{u}}G(\mathbf{u}_{i}) = \nabla_{\mathbf{v}}g(\mathbf{v})J_{\mathbf{v},\mathbf{u}}$$

$$= (\nabla_{\mathbf{s}}g \cdot J_{\mathbf{s},\mathbf{v}} + \nabla_{\mathbf{v}}g) \cdot J_{\mathbf{v},\mathbf{u}}$$

$$\stackrel{\downarrow}{:} \text{ The same procedure}$$

$$: \qquad \text{e.g. FERUM-ABAQUS}$$

$$(Young Joo, Lee, 2012)$$

(a) Gradient $J_{s,v}$?

e.g.
$$\frac{\partial u_i}{\partial E}, \frac{\partial \sigma_i}{\partial P}, \cdots$$

Methods to get sensitivity $J_{\rm s,v}$

e.g. Linear Static Problem (suppose there is only one r.v. $\mathbf{v} = v$)

 $\mathbf{K}(v) \cdot \mathbf{u}(v) = \mathbf{P}(v) \rightarrow \mathbf{u} = \mathbf{K}^{-1}(v) \cdot \mathbf{P}(v)$

Stiffness displacement loads

① Finite Difference Method ("FFD" option of FERUM)

$$\mathbf{u}(v) = \mathbf{K}^{-1}(v) \cdot \mathbf{P}(v) \text{ original FE}$$
$$\mathbf{u}(v + \Delta v) = \mathbf{K}^{-1}(v + \Delta v) \cdot \mathbf{P}(v + \Delta v) \text{ (i.e. additional FE for each } v_i \text{ in } \mathbf{v})$$

$$\frac{\partial \mathbf{u}}{\partial v} \cong \frac{\mathbf{u}(v + \Delta v) - \mathbf{u}(v)}{\Delta v}$$

- \Rightarrow Need to solve FE again (for each r.v)
- \Rightarrow Can cause numerical errors
- ② Perturbation Method
 - $\mathbf{K}\mathbf{u} = \mathbf{P}$
 - $\Delta \mathbf{K} = \mathbf{K}(v + \Delta v) \mathbf{K}(v)$
 - $\Delta \mathbf{P} = \mathbf{P}(v + \Delta v) \mathbf{P}(v)$
 - $(\mathbf{K} + \Delta \mathbf{K})(\mathbf{u} + \Delta \mathbf{u}) = \mathbf{P} + \Delta \mathbf{P}$
 - $\mathbf{K}\mathbf{u} + \mathbf{K}\Delta\mathbf{u} + \Delta\mathbf{K}\mathbf{u} + \Delta\mathbf{K}\Delta\mathbf{u} = \mathbf{P} + \Delta\mathbf{P}$
 - $\therefore \Delta \mathbf{u} \cong \mathbf{K}^{-1}(\Delta \mathbf{P} \Delta \mathbf{K} \mathbf{u})$
 - \Rightarrow Do not have to re-solve FE
 - $\Rightarrow \text{ Error } (\Delta \mathbf{K} \Delta \mathbf{u} \approx 0)$
- ③ Direct Differentiation Method ('DDM' option for FERUM)

$$\mathbf{K}\mathbf{u} = \mathbf{P}$$

$$\frac{\partial \mathbf{K}}{\partial v} \mathbf{u} + \mathbf{K} \frac{\partial \mathbf{u}}{\partial v} = \frac{\partial \mathbf{P}}{\partial v}$$
$$\frac{\partial \mathbf{u}}{\partial v} = \mathbf{K}^{-1} \left(\frac{\partial \mathbf{P}}{\partial v} - \frac{\partial \mathbf{K}}{\partial v} \mathbf{u} \right)$$

- \rightarrow Do not need to solve FEM again
- \rightarrow No error

$$\rightarrow \frac{\partial \mathbf{K}}{\partial v} = \sum_{e} \frac{\partial \mathbf{K}^{e}}{\partial v} \quad (\frac{\partial \mathbf{K}^{e}}{\partial v} \leftarrow \text{direct stiffness method})$$

 \rightarrow Nonlinear static, nonlinear dynamic

- ④ Adjoint method
 - ➔ Tutorial by Prof. Andrew M. Bradley at Stanford University: <u>http://cs.stanford.edu/~ambrad/adjoint_tutorial.pdf</u>)

 $x \in \Re^{n_x}, p \in \Re^{n_p}, f(x(p)): \Re^{n_x} \to \Re$

Subject to h(x(p), p) = 0 for $h: \Re^{n_x} \times \Re^{n_p} \to \Re$

e.g. h=0 \rightarrow PDE equilibrium (mass \in p, displacement \in x, member force = f)

 $d_p f$? (total derivative of f w.r.t p)

Consider the Lagrangian

 $L(x, p, \lambda) = f(x(p)) + \lambda^{\mathrm{T}} h(x(p), p)$

$$d_{p}f = d_{p}L \quad (\because \text{ only on } h =)$$

$$= \partial_{x}fd_{p}x + d_{p}\lambda^{T}h + \lambda^{T}(\partial_{x}hd_{p}x + \partial_{p}h)$$

$$= f_{x}x_{p} + \lambda^{T}(h_{x}x_{p} + h_{p}) \quad (\because)$$

$$= (f_{x} + \lambda^{T}h_{x})x_{p} + \lambda^{T}h_{p}$$

Choose λ such that $h_x^{\mathrm{T}}\lambda = -f_x^{\mathrm{T}}$ ("adjoint equation") $\rightarrow \lambda^*$

Then we can avoid calculating ()

Then compute $d_p f$ as _____

 \Rightarrow Used for RBTO of structures under stochastic excitations (Chun, Song and Paulino, 2016)

VI. Simulation methods (contd.)

Latin Hypercube Sampling (Mckay et al. 1979)

Extension of "Latin Square" – appearing exactly once in each row and exactly once in each column)

(←) 7x7 Latin Square stained glass honoring R.A. Fisher's work on DOE

1 -

Evenly distribute sampling points to promote early convergence

- e.g. $\mathbf{X} = \{X_1, X_2\}$ uniform (0,1), s.i
- \Rightarrow 4 samples
 - Brute force MCS:

Samples are generated independently

No memory

Latin Hypercube Sampling:

There is only one sample in each row and column

(w/ memory)

Orthogonal Sampling: 1
 LHS + subspace sampled

w/ same frequency x_2

choose LHS combinations that satisfy orthogonal

1

Example) Y.S. Kim et al. (2009)

→ Seismic Performance Assessment of Interdependent Lifeline Systems

0

 $\Rightarrow\,$ Generated random samples of post-disaster conditions of network components using LHS

 x_1

Markov Chain Monte Carlo Simulation (MCMC)

 $P(\mathbf{Z}^{(m+1)} | \mathbf{Z}^{(m)})$ transition prob.

- → Use MCS to generate samples as a Markov chain (good for high-dimensional problem)
 - ① Metropolis-Hastings algorithm (Hastings, 1970)

~Accept/reject w/ probability (see next page)

② Gibbs sampling (Geman & Geman 1984)

See next page: Sample "one" element each time based on

Conditional distribution given the outcomes of the other elements

e.g. $P(Z_1, Z_2, Z_3)$ **Z**

sample $Z_1^{\tau+1}$ by $P(Z_1 | Z_2^{\tau}, Z_3^{\tau})$

$$Z_2^{\tau+1}$$
 by $P(Z_2 | Z_1^{\tau}, Z_3^{\tau})$
 $Z_3^{\tau+1}$ by $P(Z_3 | Z_1^{\tau}, Z_2^{\tau})$

③ Subset Simulation (Au & Beck, 2001)

Use MCMC algorithm to compute $P(F_{i+1}|F_i)$

* Generating samples of a bi-variate Gaussian distribution using Metropolis algorithm

A simple illustration using Metropolis algorithm to sample from a Gaussian distribution whose one standard-deviation contour is shown by the ellipse. The proposal distribution is an isotropic Gaussian distribution whose standard deviation is 0.2. Steps that are accepted are shown as green lines, and rejected steps are shown in red. A total of 150 candidate samples are generated, of which 43 are rejected.

* Generating samples of a bi-variate Gaussian distribution using Gibbs sampling

Illustration of Gibbs sampling by alternate updates of two variables whose distribution is a correlated Gaussian. The step size is governed by the standard deviation of the conditional distribution (green curve), and is O(l), leading to slow progress in the direction of elongation of the joint distribution (red ellipse). The number of steps needed to obtain an independent sample from the distribution is $O((L/l)^2)$.

Reference: "Pattern Recognition and Machine Learning" by Christopher M. Bishop (2006)

© Extrapolation-based MCS (Naess et al. 2009)

$$g(\lambda) = g - \mu_g (1 - \lambda) \qquad \qquad \lambda = 0: \qquad g(\lambda) = g - \mu_g \qquad P_f \square 50\%$$
$$0 \le \lambda \le 1 \qquad \qquad \lambda = 1: \qquad g(\lambda) = g \qquad P_f \square 1$$

Generate samples $\{g_1, \cdots, g_n\}$ and use to estimate

$$ilde{P}_{\!_{f}}(\lambda) \!=\! rac{N_{_{f}}(\lambda)}{N} \;\; {
m while \; varying \;} \lambda$$

Fitted to $\underset{\lambda \to 1}{\cong} q(\lambda) \cdot \exp\{-a(\lambda - b)^c\}$ (can assume constant q), i.e.

$$\tilde{P}_f(\lambda) \underset{\lambda \to 1}{\cong} q^* \cdot \exp\{-a^*(\lambda - b^*)^{c^*}\}$$

Find a, b, c, q by fitting and extrapolate as $\tilde{P}_{f}(\lambda)$ as $\lambda \rightarrow 1$

 \Rightarrow Has been applied to component/system (Naess et al. 2009)

and large-size system problems (Naess et al. 2010)

Fig. 9. Plot of $\log \hat{p}_f(\lambda_j)$ for Example 4: Monte Carlo (·); fitted optimal curve (--); reanchored empirical confidence band (···); fitted confidence band (-·). $\log q = -0.303$, a = 16.231, b = 0.252, c = 1.591.

-0	
-0	Many thanks for your hard work in this semester to learn theories of
-0	structural reliability and their applications. I wish you the very best on
.0	your course work, research and future career.
.0	Cheers, 2011
.0	Junho
.0	
	1 1-5