Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability
In-Class Material: Class 01

[. Introduction

Uncertainties in Engineering
@ ( ) : Inherent randomness (or physical fluctuation)

e.g. earthquake intensity (PGA, PGV, ...), wind velocity, maximum flow rate

= ( ) be reduced
® ( ) : uncertainty due to insufficient ( )
- ( ) uncertainty: imperfect or simplified model (e.g. 3D—2D)

missing variables or effects
- ( ) uncertainty: insufficient data
e.g. “sample mean is not the true mean”

= ( ) be reduced by investing more in knowledge and data

Der Kiureghian, A., and O. Ditlevsen (2009). Aleatory or epistemic? Does it matter? Structural
Safety, 31: 105-112

Uncertainty, Risk and Decisions

- S~
7 ~
| \
\ ,‘ -
\“_-”\ ,/f"" "--...\
A
- ! | —> -
,’-——--..._"\/ \\ -‘,/
’ ~—-
! \
\ [
S L7
Decision making under ( ) leads to ( )
Need to quantify ( ) caused by ( )

457.646 Topics in Structural Reliability (Theory)

- Focus: methods for quantifying risk & applications

- Provide overview and applications of “ " reliability methods
= The word “ " does not refer to physical structures (buildings and bridges, ...)
= inan ( ) & ( ) manner
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Part 2: Basic theory of probability & statistics (< 3 weeks) (ref. A&T textbook)

Part 3: Structural Reliability Analysis (SRA) - Component

A

- Reliability index: S\yeosm » Bl
- Reliability methods: FORM, SORM, etc. (how to integrate ~\)

Part 4: Structural Reliability Analysis (SRA) - System

A

- Reliability methods developed to handle system failure domains
: “System” reliability methods

Part 5: Structural Reliability under Epistemic Uncertainty

P= [ f0¢)dx

g(x; )=0
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Part 6 : Simulation Methods

A

= Monte Carlo simulations
= Efficient Sampling methods

Part 7: Uncertainty Quantification

Y =9(x)

\a
/\
S

input distributions
Find distributions of output

Part 8: Applications
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ll. Basic theory of Probability and Statistics
1. Set Theory

Why do we need ‘set theory’ in uncertainty analysis?

- Uncertainty: a ( ) of possible ( )
e.g. toss a coin
roll a dice

weight of a car

- Probability: numerical measure of the ( ) of an event (i.e. a group of outcomes)
of interest ( ) the other possible outcomes

e.g. “unfair coin”

H:T= P(H)=
<
T
- Uncertainty analysis starts with ( ) the collection of all possible outcomes

- Principles of set theory are essential tool for this task.

2. Definitions

(@) Sample space ( ): the set of ( ) possible outcomes
Sample point ( ):an( ) outcome
e.g.

e

U

Criteria Sample space Examples
“Discrete”: ( ) quantities zf{f typhoons at city Ain a year
Continuous? — .
. . . % of congested traffic in Seoul
Continuous”: ( ) quantities 5= )
“Finite” : ( ) S={ }
Can count ( ) and ( )
sample points? “Infinite” : ( ) S={ }
( ) or ( ) S ={ }
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(b) Event ( ): any collection of sample ( ) or any (
e.g. Baseball: outcomes of each “at-bat”
S=
discrete or continuous?
infinite or finite?
“A hitter reaches a base”
E=
(c) Some notable events

o ( ) event: E=

- Occurs with certainty

o ( ) event: E=

- cannot occur

e Complementary event of E: ( ) or ( )

- An event that contains ( ) the sample points that are (

- e.g. “at-bat” outcomes

E: “a hitter reaches a base”
E=

-eg. S= :

=gl
Il

Instructor: Junho Song
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) of sample space

)in E
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(d) Venn diagram: ( ) & ( ) representation of the sample space, sample
points and events

=S

*  GUI-based interactive learning tools for Venn diagrams (and other statistical concepts) are
available at http://www.stat.berkeley.edu/~stark/Java/Html/
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Set Operations > useful for ( ) reliability analysis
@® “Union” of events: E; E,
B An event that contains all the sample points that are in E E,

S

E-

e.g., Concrete mixing

- E,: shortage of water E (concrete can't be produced) =

- E,: shortage of sand

- E;: shortage of gravel

- E,: shortage of cement

e.g., Wind

- E, : blown off due to pressure

- E,: missile-like flying objects

e.g., Bridge pier under EQ

- E,: reaches displacement capacity E=E E,

- E,: reaches shear capacity

x AuS =
AUg=
AU A=

If Ac B ,then AUB =
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@ “intersection” of events E;, E, or

: an event that contains all the sample points that are bothin E;  E,

S

E-

% A-S=
A-g=

A-A=
If Ac B ,then AB =

e.g.,
freeway A (Ea)
freeway C (Ec)
freeway B (Eg)
No evacuation by freeway E =
e.g.,

E1
Pollutant released

E2
Purification point X E3

Filter X

Exposed to pollutant E =
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Operation Rules

. El ) E2 =
Commutative Rule
EE, =
E, UE,)UE, = _
Associative Rule (& 2) 3
(E,E,)E, = _
E UE))E, =
Distributive Rule (& 2)E
(ElEZ) |\ E3 =
(UEi) =
De Morgan’s Rule =
(ﬁEi) =
i=1

Relationship between events

® Mutually Exclusive events: EE, =

B Cannot occur together

— E: Ez
B eg E and E

m E--E and E, iefl,n}

n
@ Collectively Exhaustive events: _ulEi =
1=

B The union constitutes the sample space

% MECE:
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2. Mathematics of Probability (measure of likelihood of event)

Four approaches for assigning probability of events

Example : Prob. (a “Yut” stick

Approach Description shows the flat side)
Notion of Relative frequency based on empirical
Relative data, Prob. = (# of occurrences) / (# of

Frequency observations)

On a Priori Derived based on elementary

Basis assumptions on likelihood of events
On
Subjective Expert opinion (“degree of belief”)
Basis
Bal\t/lsi()a(tign Mix the information above to assign
. probability
Information

Axioms of Probability

“Axioms”: Statements or ideas which people accept as being the foundation of theory

. P(E) 0
Il P(S) 1
l. M.E E, &E,:P(E,UE,)=

As a result,
@ <P(E)< (~P(S)=P(C U )= + = )
@ P(g) = (" P(Sug) = + = )
® P(E)= (- P(EUE) = )
@ P(E,VUE,)=P(E) P(E) P(EE,)
«Addition Rule” £~ E:

B Venn Diagram
®  Formal Proof P(E,UE,) =P(E,UEE,)=P(E,)+P(EE,)

P(Ez) = P(ElEZ) + P(EEz)

“Inclusion-Exclusion Rule”

PIOE)=Y P(E)-Y Y P(EE)+ Y Y Y PEEE) ++ () xP(E ~E,)
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Conditional Probability & Statistical Independence
D Conditional Probability

m C.Pof given

P(E,|E,)=

occurred
=

@ P(E|S)=
@ “Multiplication Rule”: P(E,E,) =
( P(E|E,)= )
- P(EE,E,) =
- P(E,---E,) =

@ All the other prob. rules should be applicable to conditional probabilities as long as all
the prob. are defined within the same space

- P(El V E2| Ea) =
- P(E1E2|E3) =
- PE|E) =

(5 Statistical Independence: The occurrence of one event does not affect the likelihood
of the other event

- P(E1|E2):
- P(E,JE) =
- P(RE,) =

cf. Mutually Exclusive P(E,E,)=0
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Total Prob. Theorem

Setting: E, E,,..

L E,

events

\

S

En
%o A A 0
o A A ]
\ ] E \
P(E) — Not easy to get directly
P(E |E;) — Easier to get
P(E)=>
i=1
Proof:
Examples:
(1) Seismic hazard analysis:
P(E) =
E2
’I
,l
f',
Fault1 .. Fault2
i \
: PGA>0.5g?
O
Fault3

E3

Instructor: Junho Song
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/Slte

Ground Surface

FIG. 3.1 TYPE | SOURCE (BASIC CASE)

Der Kiureghian, A. (1976). A line source-model for seismic
risk analysis, Ph.D. dissertation, University of Illinois at
Urbana-Champaign, Urbana, USA.
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(2) Probability of structural failure under an uncertain input intensity: Fragility

A PF I sa)

P(F)=>

Sa

Bayes Theorem

_ P(E|E)

P(E|E) =

e Decision making
e Parameter estimation
e Inference

Example)

—_ —_
— —_—
—_— —_—

Contaminated water purified

Measure of cleanness, X (0 : contaminated ~ 100 : clean)

P(E,) P(X <20|E))
1 0.1 0.9
2 0.3 0.2
3 0.6 0.01

X <£20 = Which one failed?

P(E,|X <20) =
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457.646 Topics in Structural Reliability
Normal (Gaussian) Distribution

1. Normal distribution

e Best known and most widely used. Also known as distribution.

e According to , the sum of random variables converges to
a normal random variable as the number of the variables increases, no matter what
distributions the variables are subjected to.

e Completely defined by the and the of the
random variable.

(a) PDF: X ~ N(u,0%)

f (x) = rcexp{—i(%j } —0< X<

008 T T T T T T T
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Figure 1. PDF’s of normal random variables with different values of p
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Figure 2. PDF’s of normal random variables with different values of o

(b) CDF: no closed-form expression available
X
Fy (X) = J.fx(X)dX, —0<X<®
(c) Parameters: pu, o

o W of the random variable, i.e. p=p, =E[X]

e o of the random variable, i.e. 6 =0, = {E[(X — )2]}0'5

(d) Shape of the PDF plots

e Symmetric around X =

e Achangein p, the PDF horizontally by the same amount.

e The larger the value of ¢, gets, the more the PDF becomes
around the central axis.
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la.

Standard normal distribution

e A special case of the normal distribution: p, = ,O0y = .
e The CDF of the standard normal distribution can be used for computing the CDF of any
general normal random variable.

(@ PDF: U ~N( , %)

ou) = ! exp —iu2 —0< U< o0
2 2 ’
(b) CDF:

d(u) = Ju'(p(u)du, —o<U<ow

- no closed-form expression available, but the table of the standard normal CDF ®(-)
can be found in books or computer software (e.g. See Appendix A of A&T)

(c) Inverse CDF of standard normal distribution: ®*(-)
Qu,)=p < u,=07(p)
(d) Symmetry around u =

d(-u)=1-Dd(u)

U, =-U,

- The table of the standard normal CDF is often provided for positive u values only,
but using the symmetry one can find the CDF for negative values as well.

(e) One can compute the CDF of a general normal random variable X ~ N (u,cz) by use
of the CDF of the standard normal random variable U ~ N (0,1?) as follows.

F,(@)=P(X <a)
Tl 1 x-np ?
i@ce“’{ (5 Hd

f[: )\/i” exp(—%u jcdu
)

:q)[

Hence, P(a<X <b)=F,( )-F( ):(D(—j_q)(—j
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Example 1: Given a standard normal distribution, find the area under the curve that lies

(a) totherightofu=1.84

(b) between u=-1.97 and u=0.86

Example 2: The drainage demand during a storm (in mgd: million gallons/day):
X ~ N(1.2,0.4%) . The maximum drain capacity is 1.5 mgd.

(a) Probability of flooding?

(b) Probability that the drainage demand during a storm will be between 1.0 and 1.6 mgd?

(c) The 90-percentile drainage demand?
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X PHI(x) X PHI(x) X PHI(x) X PHI(x) X PHI(x)
0.00 0.5 0.90 0.81593987 1.80 0.96406968 2.70 0.99653303 3.60 0.999840891
0.01 0.50398936 0.91 0.81858875 1.81 0.96485211 271 0.99663584 3.61 0.999846901
0.02 0.50797831 0.92 0.82121362 1.82 0.9656205 2.72 0.9967359 3.62 0.999852698

0.03 0.51196647 0.93 0.82381446 1.83 0.96637503 2.73 0.99683328 3.63 0.999858289
0.04 0.51595344 0.94 0.82639122 1.84 0.96711588 2.74 0.99692804 3.64 0.999863681
0.05 0.51993881 0.95 0.82894387 1.85 0.96784323 2.75 0.99702024 3.65 0.99986888
0.06 0.52392218 0.96 0.83147239 1.86 0.96855724 2.76 0.99710993 3.66 0.999873892
0.07 0.52790317 0.97 0.83397675 1.87 0.96925809 2.77 0.99719719 3.67 0.999878725
0.08 0.53188137 0.98 0.83645694 1.88 0.96994596 2.78 0.99728206 3.68 0.999883383

0.09 0.53585639 0.99 0.83891294 1.89 0.97062102 2.79 0.9973646 3.69 0.999887873
0.10 0.53982784 1.00 0.84134475 1.90 0.97128344 2.80 0.99744487 3.70 0.9998922

0.11 0.54379531 1.01 0.84375235 1.91 0.97193339 2.81 0.99752293 3.71 0.99989637
0.12 0.54775843 1.02 0.84613577 1.92 0.97257105 2.82 0.99759882 3.72 0.999900389
0.13 0.55171679 1.03 0.848495 1.93 0.97319658 2.83 0.9976726 3.73 0.99990426
0.14 0.55567 1.04 0.85083005 1.94 0.97381016 2.84 0.99774432 3.74 0.99990799
0.15 0.55961769 1.05 0.85314094 1.95 0.97441194 2.85 0.99781404 3.75 0.999911583
0.16 0.56355946 1.06 0.8554277 1.96 0.9750021 2.86 0.99788179 3.76 0.999915043

0.17 0.56749493 1.07 0.85769035 1.97 0.97558081 2.87 0.99794764 3.77 0.999918376
0.18 0.57142372 1.08 0.85992891 1.98 0.97614824 2.88 0.99801162 3.78 0.999921586
0.19 0.57534543 1.09 0.86214343 1.99 0.97670453 2.89 0.99807379 3.79 0.999924676
0.20 0.57925971 1.10 0.86433394 2.00 0.97724987 2.90 0.99813419 3.80 0.999927652
0.21 0.58316616 1.11 0.86650049 2.01 0.97778441 291 0.99819286 3.81 0.999930517
0.22 0.58706442 1.12 0.86864312 2.02 0.97830831 2.92 0.99824984 3.82 0.999933274
0.23 0.59095412 1.13 0.87076189 2.03 0.97882173 2.93 0.99830519 3.83 0.999935928
0.24 0.59483487 1.14 0.87285685 2.04 0.97932484 2.94 0.99835894 3.84 0.999938483
0.25 0.59870633 1.15 0.87492806 2.05 0.97981778 2.95 0.99841113 3.85 0.999940941

0.26 0.60256811 1.16 0.8769756 2.06 0.98030073 2.96 0.9984618 3.86 0.999943306
0.27 0.60641987 1.17 0.87899952 2.07 0.98077383 2.97 0.998511 3.87 0.999945582
0.28 0.61026125 1.18 0.88099989 2.08 0.98123723 2.98 0.99855876 3.88 0.999947772
0.29 0.61409188 1.19 0.8829768 2.09 0.9816911 2.99 0.99860511 3.89 0.999949878
0.30 0.61791142 1.20 0.88493033 2.10 0.98213558 3.00 0.9986501 3.90 0.999951904

0.31 0.62171952 1.21 0.88686055 2.11 0.98257082 3.01 0.99869376 3.91 0.999953852
0.32 0.62551583 1.22 0.88876756 2.12 0.98299698 3.02 0.99873613 3.92 0.999955726
0.33 0.62930002 1.23 0.89065145 2.13 0.98341419 3.03 0.99877723 3.93 0.999957527
0.34 0.63307174 1.24 0.8925123 2.14 0.98382262 3.04 0.99881711 3.94 0.999959259
0.35 0.63683065 1.25 0.89435023 2.15 0.98422239 3.05 0.99885579 3.95 0.999960924
0.36 0.64057643 1.26 0.89616532 2.16 0.98461367 3.06 0.99889332 3.96 0.999962525
0.37 0.64430875 1.27 0.89795768 2.17 0.98499658 3.07 0.99892971 3.97 0.999964064

0.38 0.64802729 1.28 0.89972743 2.18 0.98537127 3.08 0.998965 3.98 0.999965542
0.39 0.65173173 1.29 0.90147467 2.19 0.98573788 3.09 0.99899922 3.99 0.999966963
0.40 0.65542174 1.30 0.90319952 2.20 0.98609655 3.10 0.9990324 4.00* 3.16712E-05

0.41 0.65909703 1.31 0.90490208 2.21 0.98644742 3.11 0.99906456 4.05 2.56088E-05
0.42 0.66275727 1.32 0.90658249 2.22 0.98679062 3.12 0.99909574 4.10 2.06575E-05
0.43 0.66640218 1.33 0.90824086 2.23 0.98712628 3.13 0.99912597 4.15 1.66238E-05
0.44 0.67003145 1.34 0.90987733 2.24 0.98745454 3.14 0.99915526 4.20 1.33457E-05
0.45 0.67364478 1.35 0.91149201 2.25 0.98777553 3.15 0.99918365 4.25 1.06885E-05
0.46 0.67724189 1.36 0.91308504 2.26 0.98808937 3.16 0.99921115 4.30 8.53991E-06
0.47 0.68082249 1.37 0.91465655 2.27 0.98839621 3.17 0.99923781 4.35 6.80688E-06
0.48 0.6843863 1.38 0.91620668 2.28 0.98869616 3.18 0.99926362 4.40 5.41254E-06
0.49 0.68793305 1.39 0.91773556 2.29 0.98898934 3.19 0.99928864 4.45 4.29351E-06
0.50 0.69146246 1.40 0.91924334 2.30 0.98927589 3.20 0.99931286 4.50 3.39767E-06
0.51 0.69497427 1.41 0.92073016 2.31 0.98955592 3.21 0.99933633 4.55 2.68230E-06
0.52 0.69846821 1.42 0.92219616 2.32 0.98982956 3.22 0.99935905 4.60 2.11245E-06
0.53 0.70194403 1.43 0.92364149 2.33 0.99009692 3.23 0.99938105 4.65 1.65968E-06
0.54 0.70540148 1.44 0.9250663 2.34 0.99035813 3.24 0.99940235 4.70 1.30081E-06
0.55 0.70884031 1.45 0.92647074 2.35 0.99061329 3.25 0.99942297 4.75 1.01708E-06
0.56 0.71226028 1.46 0.92785496 2.36 0.99086253 3.26 0.99944294 4.80 7.93328E-07
0.57 0.71566115 1.47 0.92921912 2.37 0.99110596 3.27 0.99946226 4.85 6.17307E-07
0.58 0.71904269 1.48 0.93056338 2.38 0.99134368 3.28 0.99948096 4.90 4.79183E-07
0.59 0.72240468 1.49 0.93188788 2.39 0.99157581 3.29 0.99949906 4.95 3.71068E-07
0.60 0.72574688 1.50 0.9331928 2.40 0.99180246 3.30 0.99951658 5.00 2.86652E-07
0.61 0.7290691 1.51 0.93447829 2.41 0.99202374 3.31 0.99953352 5.10 1.69827E-07
0.62 0.73237111 1.52 0.93574451 2.42 0.99223975 3.32 0.99954991 5.20 9.96443E-08
0.63 0.73565271 1.53 0.93699164 2.43 0.99245059 3.33 0.99956577 5.30 5.79013E-08
0.64 0.7389137 1.54 0.93821982 2.44 0.99265637 3.34 0.99958111 5.40 3.33204E-08
0.65 0.74215389 1.55 0.93942924 2.45 0.99285719 3.35 0.99959594 5.50 1.89896E-08
0.66 0.74537309 1.56 0.94062006 2.46 0.99305315 3.36 0.99961029 5.60 1.07176E-08

0.67 0.7485711 1.57 0.94179244 2.47 0.99324435 3.37 0.99962416 5.70 5.99037E-09
0.68 0.75174777 1.58 0.94294657 2.48 0.99343088 3.38 0.99963757 5.80 3.31575E-09
0.69 0.75490291 1.59 0.9440826 2.49 0.99361285 3.39 0.99965054 5.90 1.81751E-09

0.70 0.75803635 1.60 0.94520071 2.50 0.99379033 3.40 0.99966307 6.00 9.86588E-10
0.71 0.76114793 1.61 0.94630107 2.51 0.99396344 3.41 0.99967519 6.10 5.30342E-10

0.72 0.7642375 1.62 0.94738386 2.52 0.99413226 3.42 0.99968689 6.20 2.82316E-10
0.73 0.76730491 1.63 0.94844925 2.53 0.99429687 3.43 0.99969821 6.30 1.48823E-10
0.74 0.77035 1.64 0.94949742 2.54 0.99445738 3.44 0.99970914 6.40 7.76885E-11

0.75 0.77337265 1.65 0.95052853 2.55 0.99461385 3.45 0.99971971 6.50 4.01600E-11
0.76 0.77637271 1.66 0.95154277 2.56 0.99476639 3.46 0.99972991 6.60 2.05579E-11
0.77 0.77935005 1.67 0.95254032 2.57 0.99491507 3.47 0.99973977 6.70 1.04210E-11
0.78 0.78230456 1.68 0.95352134 2.58 0.99505998 3.48 0.99974929 6.80 5.23093E-12
0.79 0.78523612 1.69 0.95448602 2.59 0.9952012 3.49 0.99975849 6.90 2.60014E-12
0.80 0.7881446 1.70 0.95543454 2.60 0.99533881 3.50 0.99976737 7.00 1.27987E-12
0.81 0.79102991 1.71 0.95636706 2.61 0.99547289 3.51 0.99977595 7.10 6.23834E-13
0.82 0.79389195 1.72 0.95728378 2.62 0.99560351 3.52 0.99978423 7.20 3.01092E-13
0.83 0.79673061 1.73 0.95818486 2.63 0.99573076 3.53 0.99979222 7.30 1.43885E-13

0.84 0.79954581 1.74 0.95907049 2.64 0.9958547 3.54 0.99979994 7.40 6.80567E-14
0.85 0.80233746 1.75 0.95994084 2.65 0.99597541 3.55 0.99980738 7.50 3.18634E-14
0.86 0.80510548 1.76 0.9607961 2.66 0.99609297 3.56 0.99981457 7.60 1.47660E-14
0.87 0.8078498 1.77 0.96163643 2.67 0.99620744 3.57 0.99982151 7.70 6.77236E-15
0.88 0.81057035 1.78 0.96246202 2.68 0.99631889 3.58 0.9998282 7.80 3.10862E-15
0.89 0.81326706 1.79 0.96327304 2.69 0.9964274 3.59 0.99983466 7.90 0.00000E+00

* Note: For x>=4.0, 1-PHI(x) is given instead.
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Probability Distribution Models in Matlab® Statistics Toolbox

Full Name Short | Parameters |  Probability Density/Mass Function Mean Variance
. . . O<p<l ny nex
Binomial bino P ( jp @-p)™, x=01...,n np np(L- p)
n integer | \x
Geometric geo | o<p<1 p(l-p)*, x=012,... a-p)/p (- p)/ p?
Hypergeometric | hyge e eym-Kymy? K+N-M <x<K NK NXM-KM-N
Yperg yg K’N’M X \N=-x \NJ "' T M M M M-1
integers
Negative . 0<p<1 (r+x—lJ
. . nbin . p'@-p), x=01.. rl-p)/ r(l- p)/ p?
Binomial r integer X @-p/p a-p/p
Poisson poisSsS | o<a e x=0L. A A
Beta beta O<a,b B(a,b)*x**(1-x)**, 0<x<1 al(a+b) ab/(a+b+1)/(a+b)?
Chisquare chi2 |o<v x(D2e 22y 1) 0 < x v oy
Exponential exp | o<p ple 0<x M P2
TI(v, +V,)/2](v, /v,) 42 x4 /> V2 (v, +V, —2)
, 0<x _
F b0 r o, 2 g 0 =2 W, -2 (v, -4)
Gamma gam | o<ab b=r(a)*x*"e™", 0<x ab ab?
Lognormal logn | x0<¢ x e (2m) Y2 exp[-(Inx—1)2 /2E%], O<x (057 p(@h28)) _ g(21t?)
Normal norm | u,0<o ot (2n) V2 exp[-(x—p)?/26°] m o?
Rayleigh rayl | o<b xb2exp(—x?/2b?), 0<x b/ 2 (4-m)b?/2
T t O<v (vr) MPT((v+1)/2)T(v/2) @+ x? v) D2 0 vi(v-2)
Uniform unif | a<b (b-a)™*, a<x<b (a+b)/2 (b-a)?/12
Weibull weib | o<ab abx" e’ 0<x a’r@+b™ a " [C(l+2b™)-T’(A+b )]

Use shortnamepdf( ) to compute the probability density/mass function; shortnamecdf( ) to compute cumulative distribution
function; shortnamefit( ) to estimate parameters from data; shortnamernd( ) to generate random numbers; shortnamestat( )
to compute mean and variance for specified parameters; and shortnameinv( ) to compute the inverse cumulative probability.
Use Matlab® help to learn more about these commands.
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457.646 Topics in Structural Reliability
In-Class Material: Class 03

3. Random Variables, Prob. Functions & Partial Descriptors:

- Tools to associate uncertain q with probabilities
Random variables

© a variable that takes on one of the values in a specified set according to the
assigned probabilities

Example: X = the random number one can get from throwing a fair dice

‘67 Specified set:

Assigned probabilities:

Prob. Functions (mapping b/w & )

Functions for discrete random variables

D Probability Function ( ) of X
Py (x)= x> ()~
e.g. # of land falls of hurricanes/year
P, (X
A 2 Py (x)
0 0.10
04 t
1 0.40
2 0.30 03 +
3 0.15
02 t
4 0.05
01 t
: : . — X
¢ <P, (X) < o 1 2 3 4
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Pl@a<X<h)=)

eg. P0<X<2)=

@ Cumulative Function (

FX(X)E :z

ooR R

0 0.10
1 0.40
2 0.30
3 0.15
4 0.05
x I:x (a) = Z

Fy (~0)

Fy (o)

P(a< X <b) = -

Functions for continuous r.v.

@ Probability Function (

f, (X)=lim

AX—0

“Density” of Probability at X = X

Instructor: Junho Song
junhosong@snu.ac.kr

) of X

x-|F, ()

Fx(x)

08 T

06 +

04 1

02 +

) of X

Normalization rule

Area =
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" <f, (x)

[ £, ()dx=P( )=

P(a< X <b) = f, (x)dx a b eq. X €[0,1]

@ Cumulative Function ( ) of X

0
F=PX x)=[  d —eo in

the integral

% dF, (x) _
dx

non- ing

.Area V/
PDF CDF
Fy (~0)

Fy ()

Partial Descriptors of ar.v. :

(a) “Complete” description by probability functions:

(b) “Partial” descriptors: measures of key characteristics; can derive from ( )
Note:

o Expectation: E[]= T(-)fx (x)dx (continuous) or Y_ () Py (X) (discrete)

oo all x

e Moment: E[-X"] = Tx”fx(x)dx or ZX”pX(x)

all x

o Central Moment, E[(X —pu,)"]= T(x—ux)” fy (X)dx or Z(X—Hx)n Px (X)

o all x
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X Name Definition Meaning (PDF/CDF)
Location of the ( )
: of an area underneath ( )
- Mean, First moment,
i) x E[X]
IS
(&)
S
= The value of a r.v. at which
= F (x ) =05 values above and below it
c X \05
® | Median, Xg5 are lly probable.
e L F.' (0.5 I ic?
< . (0.5) symmetric”
[}
; The outcome that has the est
s probability mass or density
= Mode, X arg max fy ()
Average of squared deviations
Second-order
) central moment
Variance, Oy E[(X —puy)?]
= E[X*]-E[X]
S
S Radius of ( )
o
-‘Dﬂ Standard
s Deviation, /Gi
g ©x
35
(2]
5
s ed radius of ( )
Coefficient of G
. - X
Variation
(C.0.V), &, [y |
Third_order Central BehaViOI‘ Of two '[ai|S
f= moment normalized
()] - 3 > O
g | Coefficient of by O i
E | Skewness, y, X , <0
3 E[(X ~ px)°]
3
G x
Fourth-order central | “Peakedness” - more of the variance is due
* moment normalized | to infrequent extreme deviations, as
3 | coefficient of b c* opposed to frequent modestly-sized
% Kurtosis, Y =2x , deviations.
o E[(X —py )]
X
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Example: PDF and Log-PDF of Pearson type VII distribution with kurtosis of infinity (red), 2
(blue), and 0 (black) (source: Wikipedia)

! T T T T T I I T T T T T T T
0.53033 I — .............. ............ -. N ‘ ................. -
osf /2\\3;25 ————— :
P S S s s e s S s S e S S S
0.39894
0.35

0.3

0.25

0.2

0.15

0.1

0.05

P '/ N N S

-10-9 8 -7 6 54 -3-2-1012 3 456 7 8 9 10

4. Probability Distribution Models
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457.646 Topics in Structural Reliability
Lognormal Distribution

1. Lognormal distribution

distribution.
values only.

e Closely related to the
e Defined for

(a) PDF: X ~LN(%,¢?)

1 1(Inx=2)
fX(X)_\/ﬂgxeXp[_E[ c ]] 0<Xx<o

(b) CDF:

l:x(X)ZIfX(X)dX, 0<Xx<w

-> no closed-form expression available, but can be computed by use of the table of the
standard normal CDF ®(-) (as shown below)

(c) Parameters: A,

e A: mean of ,i.e. A=A, =E[ln X]

- 2 _ g2 2
8. C7=C% =0«

e (: standard deviation of

(d) Shape of the PDF plots

18

Lognormal PDF

16 A=0,0=05 || 0or 2=1,0=05]]
—e-0c=1 0k —esa=20=05

14
12}

1k
0.8}
0.6}
oaf f

0.2F¢

——1=0,§=025

Lognormal PDF

0.7F

0.6

0.5F

0.4F

0.3F

0.2F

——1=0,(=05

Figure 3. PDF's of lognormal random variables.
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(e) Relationship between normal and lognormal distribution:

“The logarithm of a random variable is a random variable.”
X ~LN(1,¢?) = InX ~N(4,¢?)
(f) Can obtain the CDF of lognormal X ~ LN(A,¢?) from the CDF of standard normal:

F.(@)=P(X <a)
=P(InX <Ina)  Since InX ~ N(4,¢?),

(")

(9) “The exponential function of a random variable is a
random variable.”

Y=InX
AR
X ~LN(A,Q) Y ~N(, Q)

<l e
X =e'

(h) (A, &) = (u,d) : Find the mean and c.o.v. from the distribution parameters

u=E[X]=exp(h+0.5,%)

S=clp=4exp(C?)-1 (=¢forg<<1)

(i) (u,6) = (A,C): Find the distribution parameters from the mean and c.o.v.
C=4/IN1+8%) (=8 ford<<1)
L =Inu-05In(1+5%)

() (X,5) <> (A): Relationship between the median and A4

_ _ Al
A=1InXys, X5 =€

(k) (1,8) = (X,5): Find the median from the mean and c.o.v.
n

X =
©es?

Note: X,; < for the lognormal distribution.
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Example 1: The drainage demand during a storm (in mgd: million gallons/day) is assumed
to follow the lognormal distribution with the same mean and standard deviation as Example
1 (mean 1.2, standard deviation 0.4). The maximum drain capacity is 1.5 mgd.

(a) Distribution parameters, i.e. A and {?

(b) Probability of the flooding?

(c) Probability that the drainage demand during a storm will be between 1.0 and 1.6 mgd?

(d) The 90-percentile drainage demand?

Example 2: Consider a bridge whose uncertain capacity against “complete damage” limit-
state caused by earthquake events is defined in terms of peak ground acceleration (PGA;
unit: g) that the bridge can sustain. Suppose the median of the capacity is 1.03g and the
coefficient of variation is 0.50. It is assumed that the capacity follows a lognormal
distribution.

(a) Distribution parameters of the lognormal distribution, i.e. A and {?

(b) The mean and standard deviation of the uncertain capacity, i.e. u and ¢?

(c) Suppose the peak ground acceleration from an earthquake event is 0.5g. What is the
probability that the structure will exceed “complete damage” limit state?
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Question: Which one more likely?

Case A: Heavy & Tall
Case B: Light & Tall

II-5. Multiple Random Variables

“Joint” Probability Functions

eg. P(X<20) = dx

P( N )="?

Need more information than ( ) and ( )
@ Joint Cumulative Distribution Function (CDF) YA
(Discrete/Continuous) < cf. CDF
Fey (X,y) = P( )

o F,(-0,—0)=
o Fyy(w0,0)=
« Fy(=0y)
Fav (20, y) = P( N )=P( )

@ Joint Probability Mass Function (discrete r.v's) <> cf. PMF

(@) De;‘inition Py (X, Y) = P( , )
(b) Fy(ab)=3
(c) Conditional PMF

Py (X|y) = S
(@) Py (xy)=>Pc(x), R (y)?

)x
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P()=3
=2

=( ) rule
(e) If X &Y are statically independent,

Px‘y (X|y):

< PY\X (y|x) R (y)

< Py (X, Y)
* In-class material on Joint PMF

@ Joint PDE (continuous r.v's)

foy (X, ¥)= lim

AX,Ay—0
(a) Joint cumulative distribution function (CDF)

Foy (6, Y)=P(X <X Y LY)

-

fxv (X' Y) =

(b) P(a<X <b,c<Y<d)=

(c) Conditional PDF

fx‘y (X|y)

Instructor: Junho Song
junhosong@snu.ac.kr

7.

. P(x< X <x+Ax )
= lim
Ax—0 AX

Can show

% Multiplication rule f,, (X,y) =
(si fy (X, y)=

fxv(x,y)
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(d) Joint PDF—marginal PDF?

fx (X) =j

|

Instructor: Junho Song
junhosong@snu.ac.kr

[xy(x,y)
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% See supplementary material on bivariate normal joint PDF

Covariance & Correlation Coefficient

— Partial descriptors or measures for dependence
@ Covariance V1
(a) Definition:
———t ~ Uy
Cov[X,Y]=E[ ]
o0 o0 b I x
=[] o (%, y)dycx |
o Hx
cf.c.ov. 8=

(b) Cov[X,Y]= —

(c) Cov[X,Y] >0 linear dependence ~ ——+——
=0 linear dependence @~ —F——
<0 linear dependence

= Not useful to measure/compare the strength of the linear dependence.
Why?

® Correlation Coefficient

(a) Dimensionless measure of linear dependence

Pxy

IA

b  <py


mailto:junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

Proof: Consider

f(@)
f(2) = [[[ax—py) = (y =1, I fy (. y)xdly
5 e ee i
=a®Var[X]-2a-Cov[X,Y]+Var[Y] 0 N L LA

-.D/4=(Cov[X,Y])?-Var[X]-Var[Y] 0

[Cov(X,Y)J -
“Var[X]-Var[Y] "~

SPyy
(c) What does p,, = & pyy = mean?

f(a)
Consider the case D=
e a

Cov[X, Y1)’ N
Var[X]

f(a) :Var[X](a—

CovIX.,Y]_ .

f(a)=0 at a= Varl]

Substituting this into f (a),

f@)= [ [I (X=t) = (Y~ 1 )T £ (%, )iy =0

—00 —00

.. for Y(x,Yy), the following (deterministic/probabilistic) and (linear/nonlinear)
relationship between X and Y holds:

ﬂY [~ A p = p 1= _1
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d) py,=0 < CovX,Y]=0

“No linear dependence”
HUn ”

(e) “Uncorrelated” vs “Statistical Independence”

Pxy =0

(E[XY]= ) - fxv (X1 Y):

—7?
Suppose Y=X? and X has a symmetric distribution in [-a, a]

E[XY]=
E[X]=
Cov[X,Y]=

«?

¥ Vector/matrix formulation for multiple RVs

2
Xl H’Xn Gl 2
) c
X=9: Ux = Lyx = ’
X
" Hx, sym .. o
() vector ( ) vector=E[X] ( ) matrix
2o = EL(X~ M, )(X - M,)T]= E[XX"] - M, M]
=DRD
where
D= ) =[ ] diagonal matrix of
1 P12 P13
1 .
R= , =[ ] matrix
| sym 1
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¥ X, and Ry, are and

- a'X,.a>0 (va=0) If no perfect linear dependence

(a simple proof: Y =a'X, o} =a'Z,,a>0)

- a'X,,a=0 for Ja if there exist linear dependence among X

Xl
eg. X;=2X, Y =1:X,-2X,=[L 2] _*|=0

2
o.=a'X,a=0

Instructor: Junho Song
junhosong@snu.ac.kr
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[I-6. Functions of Random Variables (See Supp. 03)

Consider Y = g(X)

(1) For input X: distribution model fx(x) or expectations (My, Xxx) available

(2) For output Y: distribution model ( ) or expectations ( , )?

Examples:
(1) Regional/inventory loss: L = Yi-, V;D; -> linear function

(2) Wind-induced pressure: P =% psz
Mathematical expectation of linear functions
n
Yo=a,+2.8,X;, k=1..,m
i=1

@ Algebraic formula (n < 3): See supp.

(@ Matrix formula:

For Y=A, + AX

where
Y &0 &; & C X
Y= Y.Z , AO — aZO , A— a:z,l a?,z a'2n and X= X.2
Ym a‘m,O am,l am,2 am,n Xn
MY ==
Tyy =

« Proof of Positive-definiteness of Xxx
Consider Y =a™X (A, = , A= )
Using the formula above,

ZYY=G%=
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% Linear transformation for standardization, i.e.,

Suppose X has and

Find Y = A, + AX

such that My = and Xyy =
MY = A() + AMX = (1)
Tyy = AZgAT = (2)

Since Xxx is positive semi-definite, Exx = LyLL (e.g. by

Therefore, =1 and
A= - Substitute to ()
Ay =
In summary,
Y =

Alternatively,

Lyx = DxRxxDx

= L}:LTE

Therefore, Ly = and Ly =

Y =

Instructor: Junho Song
junhosong@snu.ac.kr

decomposition)

-> This version is preferred because of numerical stability in decomposition (|p| <1).

Mathematical expectation of nonlinear functions

Ye = gk(x), k=1,-,m

Taylor series expansion around the mean point, x = My

dg
Y = g (Mx) + =k

e - M)+

XZMX

Matrix form

Y =g(My) + 3k, (X=My)

X=
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(O First-order approximation
(Scalar: See supp.)

My = g( )

(2 Second-order approximation
= Can use 2" order approximation from Taylor series expansion

= Not useful because higher-order moments are needed (y,x,---)

(® Accuracy of FO/SO approximation

Sources of large errors in approx.
- o,
1
- Nonlinearity in g(x) /\
-1 1
Example : U = K™P (Frame structure) sl :
Hx
Derived Distribution of Functions
Consider Y =g(X) where Y = {Y;,---,Y,,} and X = {Xy,---, X}
Given: fx(x) =2 fy(y)? X O Y X x Y
. —> . .
(» m = n, one-to-one mapping . .//—.>
I [ I
a) Discrete
A YN ‘
P (Vi Ya) P (Xm0 X,) e Tiks
b) Continuous >X; >
fe (Yo ¥a) Fe (%50 X5)

fy (y) = fx(x)-|det |
=f, (x)-|det B
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& oX, OX
“Jacobian”J, , = .

T
X, OX

Consider y =g(x), x =h(y)

Hf,(y) = f(h(y)|detd,  (h(y)|

¥ m=n=1
dh(y)
- =f —7
f, () = f, (%) x ( )‘ dy
Example: X ~ N(0,1?) y

a) Y=gX)=aX +b

One-to-one mapping?

f, ()= fx (%) W ¥

Distribution

b) T,, T, ~exponential r.v.’s (See supplement on “Other Distribution Models”)

fr (t,) =o-exp(-oat), t, >0
fT2 (tz) =B- exp(—Btz), >0

T,, T, : statistically independent

Y, =T, +T,
Yz :Tl _Tz

Joint PDF of { ?

|—1

f, (y) = fr(t)|detJ,,
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N N
oy, ot
‘Jy,t: 1 2 | _

Y ¥

o, ot
|det.Jy,t|_1 =
fY(y):

Inverse relationship

1
Tl :E(Y1+Y2)
1
Tz :E(Yl _Yz)
o o+ o—
f, () =7Bexp[— ZB Yy — 2B

Instructor: Junho Song
junhosong@snu.ac.kr

yz]’ y1>0-_y1< yz <y1

- Range of Y derived from the condition t,,t, >0 & t=h(y)
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II-6. Functions of Random Variables (contd.)

Derived Distribution of Functions (contd.)

A s A
@ m=n, but NOT one-to-one mapping e :
a) Discrete > X >Y
P (Yoo Ya) =

P (X0 %,)
roots of y = g(x)

b) Continuous

fY(Y) = Z

all roots of

y=9(x) |
Example c)
Y =g(X)=X?, X ~N(0,1%)
X =h(y)=
X, =h,(y) =

d dx
f,(y)=f, (xo‘d—xyi‘+ 00

—Lexp(—ixfj +Lexp(—lx2j =
Vor 2 NEYS 27

® m<n, one-to one mapping

Y Yl :gm(X17.“’Xn)

Yo =G XD e g
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Discrete
P.(y") =P (X)

Then,

P(y)=Y 2 P(X)
a) Continuous
fy.(y)dy,---dy,, = f (x)dx, ---dx, dx;,.; -~ dX,
f(y) = £ (0)|det Jy. |
= f,(9|detd,,|

¥ Mo KN
oX,  OX, OX.,
o7 o D
Jyx =] 0% OX,

)= [ G(0ldetdy | dx,,dx,

Example d)

Y =T,+T, «contd. From Example b)

f, (y)?
Y'Y, =T,+T,
Y,= T,
-1 -1
f(y") = £ (t)|det Jy,. | detdy |, =

-1
1x1

= f.(t)|det J,. |
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fy)=f, (=] dt,

=[HC )R C

- Lo py)-exp(-ay)l y >0

When « = /3, using I'Hopitals rule,

a0)
I|m f,(y)= I|m a(ﬂ) =a’yexp(-ay), y>0
op

@ m<n, NOT one-to one mapping
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II. Structural Reliability (Component)

Structural Reliability Analysis (contd.)

e.g. Shear failure of RC beam w/o stirrups

Source: https://www.youtube.com/watch?v=DPQIpT1ZvXY

“Limit-state” function

g(X) =V, -V,

:%ﬁbwd +&-V, <0

where X :{fc',bw,d,g,Vd,---} random variables

Failure Probability

Pr=P(@(x) )

“Structural Reliability Analysis”

(Anatomical + Systematic)

Three important tasks for structural reliability analysis:
1)
2)

3)

\ 4


https://www.youtube.com/watch?v=DPQIpT1ZvXY
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Joint Probability Distribution Models
@ Joint Normal X~ N(M,,XZ,,)

a) Joint PDF

1 1 Ty-1(y
fx(x)_W—dmexp[—E(x—Mx) X (X MX)}

2
n=1 f,(x)= ! exp{—l(x_ﬂj } Uni-variate normal PDF (See supp.)

N 270 2\ o

N=2 f,, (%,%)="f( ) Bi-variate normal PDF (See supp.)

b) Properties
e Joint distribution completely defined by

e All lower order distribution are

e X= M, = Zxx:

Given X, =X,, then X, ~N(M,,, %, ,)
Conditional mean and covariance

Ml\Z = M1 + ):'1,22;,12 (Xz - Mz)

X2 z“1,1|2 = z“1,1 - z“1,22‘;1222,1
. X, Xy
e.g. n=2, iie. X= =
X1 X2 X2
Xl - N (ﬂl‘zlajjz) pr = 0 (“ “)
X, — U
Hyp =ty + PO, [gj My, =
0,
of, =07 (1-p?) o}, =
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e Uncorrelated ( ) s.i for jointly normal
(ingeneral, p=00 si )

e Linear functions of X~ N(M,X) — follow

Y = AX+A,

fy (y) = (%) ‘JY,X = . det =
f, (y) exp{—%(x—Mx)TZ;i(x—l\/lx)}

In summary, X ~N(M,,X,,)
=Y ~N(M,,Z)

M, =

2'YY =

¢) Standard Normal

For univariate, ‘standard normal’ means, u= ,O =

-, For jointly normal,

M, =
ZXX_
Z~N(0, ) (z )—;-ex {—EZTR z}
, P2, )= (27z)n/2\/d? P 2 XX R
U-NO, ) gl )= —ex {—1 }
’ Pl I oy et P72 1

U used for FORM/SORM

For normal,

x=DLu+M

u=L"D(x-M)
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lll. Structural Reliability (Component)

Joint Probability Distribution Models

® Joint Lognormal
X+, X, are jointly lognormal if In X,,---,In X, are jointly
a) Parameters

A=E[ ]=Inp,-05In(1+35})

& =Var| |=In+38}) (=8 for & 1)
P = —In(L+p,5,3,)
GG
b) Properties
o Completely defined in terms of ( ) & ( )
e All lower order distribution are jointly
e Conditional distribution are jointly
e Uncorrelated 2 S.I.

e Product / Quotient of jointly lognormal r.v.’s follows

1
Px.inx, =§_i§jpij

@ General Joint Distribution Forms
e.g. Johnson & Kotz (1976)

= on multivariate prob. distribution models
@ Joint Distribution by conditioning (e.g. Bayesian Networks)
F O %) = F (X X0y X)X
® Joint Distribution model with :  Prescribed marginals: ,i=1---,n and

correlation coefficient matrix :
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e Read CRC Ch.14
e See Liu & Kiureghian (1986) a) Morgenstern
b) Nataf

% “Copula”: formula to construct joint PDF with marginal distributions
(Review by Jongmin Park (SNU): Term Project Report in 2014)

a) Morgenstern distribution

F(x) = ﬁ Fy (Xi)'{l"'zaij [1- Fy ()L - ij (X,)]}

i<j

Q) Can we derive F, (x) from F,(x)?
e, Xy, X, X, = then F (X)= ?

Q) Can we describe dependence using o; ?

inxj (Xi1xj) =
fxixj (Xi ' Xj) =
= T, (%) fy, () {1+ 0, [1—2F, COIL-2F (x,)]]
= < a; <
oy = 0
oy # 0
Therefore, o, is a parameter that represents (corr coeff.)

Il

But o P

Lin & Der Kiureghian (1986) showed

© © Xi— i X_u
Pu:”[ ciu }( - J]fx-xj(xi’xi)d)‘idxi

—00 —00 ]

~ 40,QQ, = |py|<030

Where Q. = TK Al j Fy. (xi)}f><i (x)dx. ~0.28
‘1l o
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Table 1: selected distribution

Table 2: Q,
Table 3 : maximum |pij|

= In summary, using Morgenstern’s model, you cannot describe X, X,

whose |pij| >0.30

b) Nataf model (Nataf, 1962) (“Gaussian Copula”)

X"'in(xi), i:].,"',n L Z"'N(O,R')
pa— , .
R= [pij] 2 R'= [pij]
Transformationto Z
zr)\
Z =
Why? X;

f () = T, (%)

() =106
O )=F ()

%
dz.
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lll. Structural Reliability (Component) - continued

Joint Probability Distribution Models

® Joint distribution models with marginal & corr. coeff (contd.)
a) Morgenstern: F, (), i=1..,n &ay but |pij|<0.30
b) Nataf model (Nataf, 1962)
% Joint PDF by Nataf model
f () = T, (2)-|det J, |

=9,(zR’)

{lj fx,(Xi)]—

Note:

FxI (Xi) = (I)(Zi)
fxi (x;)dx = ¢(z)dz,

* p; (corr. coeff. biw Z; and Z;)?

Pij = T T( j( ] fx,xJ (%, X;)dx;dx;

—00 —00

Py :”( j( j(pz(zi,zj;pi'j) dz,dz,

In general,

Pi |pij|

|pij | < A<1 may not cover the whole range of p;

p{j = F p; Liu&ADK (Table 4~6) for pairs of selected distribution types
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Table 9: Range of p; ~ wider (than Morgenstern)

Later used for transformation of dependent RVs intoU ~ N (0, 1)

X Z U

Elementary Structural Reliability Problem

<A

Describe the failure event in terms of & »
@ Failure: gxX)=9( , )= <0 S
s A
S |.
R)
© Failure probability : P, = P( <0)
P, = [ fos(r,s)drds
= j j fos (r]s)- f,(s)drds
:jj fos (r]s) dr f(s)ds
o f,(s)ds
fR&S aresi P = | ds
Fo(s) fr(T) Fs(s) fr(T)
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OR

P, = [[ e (s|r) fa (r)dsdr

r<s

= j j fye (3]r)dsfe (r)dr
= ] fo(r)dr
if .i :j dr

® Reliability Index by “Safety Margin,” g,

. Safety Margin
M =

Failure: {R-S<0} <{ <0}

{Uy, < }
% Standardization
o M ( EU,, 1=
Var[U,, ]=
For n RVs, U=L"'"D*(X-M)

By - reliability index by safety margin

Py

r-1 1)
-  r="7 —Bsm
Jr26% +82 —2r8,34pgs Hs BT Py
Bl P

F,, : depends on distribution of R and S

e.g. special case ~ R and S are jointly normal

Then U,, ~

Therefore P, =F;, (—Bgy)=
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% A. Cornell (1968. ACI codes)

Assumed R&S are jointly normal & used B, to compute P,

@ Reliability Index by “Safety Factor”

Failure :{ <0} (% used for LRFD ¢R >3 7Q, )
<{ <0}
<{u. <—}
l’l =
S B =———— (5'2; _
P, = FLIF (- )

= gpecial case: R & S are jointly lognormal
U, ~

LP=0( )

(LN) _

He

c$$:LN) _

( 1487 }
Infr- >
BN = 1+5; Hr

T I 82) —2IN(1+ peeBey) +INA+82) K

Safety factor-based reliability-index when R & S are jointly lognormal
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Second moment reliability index B,,rosm

MVFOSM

* Failure: g(x)<0 (NOT “elementary”)

 Use( ) & (

- Ang & Cornell (1974) ASCE Journal of Structural Engineering

Use ( ) order approximation to estimate &

P, :P(gSO):P(ugs )

hy & o

900=9( )+Y.

Instructor: Junho Song
junhosong@snu.ac.kr

) only. Therefore, can’t compute P, (index, not method)

of g(x)

FO _
“’g -

i=1 j=i+l
. My
. Puwrosw = —r5 =
Gg
If we assume u, ~N(O,1)
P, = d( )

= Popular for a while
= But problem

i.e. equivalent limit-state functions could give different B,,coru

9,(x) = X7 +3X, <0
g,(x) = gl(x%z =1+3%<0

1 1

equivalent = the same B,,/rorv ?
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Example: lack of invariance of second order reliability methods

Consider a structural reliability problem with two random variables X, and X, .
The mean vector and the covariance matrix of X, and X, are

|v|—5 5 [4 5
7110 T |5 25

Case1: g(X,,X,)=X{+3X,

Gradient Vg =[2X, 3]. Atthe mean point X=M,, Vg=[10 3.
First order approximation on p, and Gé:

H, =5°+3x10=55

o; = VgE,, Vg’ =925

Ky 55

B == = _-181
MVFOSM Gg \/@
P, = ®(-1.81)=0.0351
3X,

Case2: g(X,,X,)=1+

2
1

Vg =[-6X,X;° 3X,?].
At the mean point X=M,, Vg=[-0.48 0.12].
B, =1+3x10/25=2.20

o; = VgE,, Vg’ =0.706

Hy, 220
=0 = =2.62
BMVFOSM Gg 0706

P, = ®(-2.62)=0.00440

Although the two limit-state functions are equivalent ones with the same failure domains,
the second order reliability method yields different reliability indices and failure probability
estimates.

I
Summary:
Y He — Hs
BSM - - 2 2
Oy \/GR + 05 —26/05Pgs
Ay — A
B =“—F, for LN B = — R
(o) \/CR +Cs = 2CeCsPrnrins
FO
u g(M,)
Buvrosm = io = . (Oct19r4)

Oy - Vg(M,)x,,Vg(M x)T
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Hasofer-Lind Reliability Index, B, (JEM, May 1974)

(or Barosy “Advanced” FOSM)

nearest
point
—>» X : \ > u
M, T——  (My=0
Mx u=
gg | g_u =1
Linear Limit-State Function $ distance
g(x)=a,+a'x
=a,+a'( ) —)x —>u
=a,+a'M+a'DLu g(x)=0 G(u)=0
—b, +b"u=G(u) H'L D
b
B—“—G=b—° VS distance=u
o bl [b
Can have 4/_ sign always positive
For G(u)=b,+b"u
A b, =G(0) <0
N\ “—/ > (in failure domain)
F7d \ B <0
< A _
N E b,=G(0)>0
X
> (in safe domain)
\ N
>0
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H ~ VG 1] H H H "
i. a= _W : “Negative normalized gradient vector

: Unit row vector pointing toward the

T

N

e.g. linear function: a=—-——
[l

i, u : “Design point”
“Most probable failure point (MPP)”

“Beta point”

e.g. linear function : u” =-h ﬁ

B =ou

{|BHL|  distance between origin and u”

sign : directions of a and u”

e.g. linear function : B, :”%’”(: ”_GJ
Og

P, =F, (-Bu)

(reliable) (less reliable)

=G, g~N

Pf = q)(_ﬁHL)

domain

What if X~N(MX,ZXX) and g(x) linear?
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Hasofer-Lind Reliability Index, B, (contd.)

® Nonlinear Limit-State Function

Transform g( ) to G( ) by

i

« suppose one can find u”

* Linearize G(u)at U=

- 6w )+ ()

= =0

Reliability index

FO
Tr /uG ~ luG o)
Yy = FO °
O Og
FO
e =
&= =T
GG -
FO
. Mg _ _
*_FO - -
Og

In summary, the “distance” between the origin and the design point U™ in U- space
gives reliability index based on first-order approximation

FO

MVFOSM — at x=

FO

a |=

* Notel! o
HL F at u=

=
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% Procedure : i) Transform g(x) to G(u) using X=
i) Find
iii) Find at
V) By =

% Description of S, in X space?

u=
VGU)(u-u)=0 < 2 Vg(x)(x-x)=0
X=
Approx. Limit state space in u
Proof :
V,9(x)=V,G(u)x
X*=
X =
2. g7 =Vvg((x)(x-x")
FO
_Hg _
B ch° J FO at x=
FO
u M,
Cf. Buvrosu = to = 9M,) A) at x=

5" Va(M)Y o Va(M,)

® Finding the design point u”

A u" =argmin{ | }

—

Then evaluate a = at

=

A~

And compute B,, =au’

—
Y

= constrained nonlinear optimization problem
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Reviews on optimization algorithm of finding u”
- Liu & ADK (1990)
- Papaioannou et al. (2010)

HL-RF, SQP, GP, DFO

a) HL-RF algorithm (Rackwitz & Fissler 1978)

“Newton-Raphson-like algorithm” solve f (x) =0 for x=Xx ?

u, :initial point(e.g u,= M, =0 )

u

u, =( )x( )

i+1

To update u; to, Uu;,,, one needs

i+l
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G(u;) =

VUG(Ui) =

Iterate until 1)

2)

Instructor: Junho Song
junhosong@snu.ac.kr
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See Supplement, “HL-RF Algorithm for HL Reliability Index and FORM/SORM”
¥ Convergence Issue

Solution: Does not go full step, i.e. “step size” control

- Modified HL-RF (Liu & ADK 1990)

- Improved HL-RF (Zhang & ADK 1995)

U, =u +Ad, (A, stepsize<l)

d = (&iui +MJ&: —u;

[Vew)|

U4

(original HL-RF)

How? “Merit” function m(u) is defined such that m(u) is minimumat u=

Then, select A at each step such that m(u) d

~ T2
e.g. 1) Modified HL-RF: m(u):%Hu—auuT +%C'G(U)2

(m(u) can have minima that are not solution)

2) Improved HL-RF: m(u) :%”u”2 +c|G(u)

Select A suchthat m(u,,;) m(u;) because the direction vector

is a descent direction in terms of merit function

aslongas c> M
||VG(ui+1)||

¥ Zhang & ADK(1995) proved this based on so-called “Armijo’s rule” and provided detailed
updating rule for ¢ (but FERUM uses a simple rule)
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Example: g, byimproved HL-RF algorithm
Limit-state function g(X,, X,)=0.5X} - X, +3sin(2X,)

Mean vector and covariance matrix of X, and X,:

5 4 5
M=|_|, =
HESN
Gradient Vg=[X,+6co0s(2X,) -1]
Preparation:
2 0 1 05
D= . R=
0 5 05 1
1 0 1 0
R =LL" (Cholesky decomposition): L = , L=
0.5 0.87 -0.58 1.15
u(x)=L*D*(x-M,); x(u)=DLuU+M

1 0.5 0 2 0 ) )
J,, =L D" = ; J,u=DL= (constant since linear)

-0.29 0.23 25 4.33
Initialization:
i=1; g, =¢,=10""
. . 5 0
Starting point: x, =M = 3 ;U =u(x,) = 0

Scale parameter: G, =g (M) =0.5-5"-3+3-sin(2-5) = 7.87

Computation (1% step):

G(u,) =9(x,)=7.8679

2 0
VG(u,) =Vg(x,)J,, =[-0.03 —1]L5 433}:[—2.57 —4.33]
Q, =- 257 _4'3332=[0.51 0.86]
(2.57° +4.33)

Convergence check (1% step): Skipped.
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Update (15t—2"d):

Jus .
c>————=0;Set ¢, =10
" ve(uw) l
Current value of the merit function:

m(u,) = 0.5|u, | +¢,|G(u,)|= 0.5(0)" +10(7.87) = 78.7
dlz{o}u i Ch a —-u,
0] 0517 [0
— 1[5t 0.86]|  [+157 -
0] 5.03[|0.86] |0
[0.80
| 1.34

Try astep size: A =1 (original HL-RF)
u, =u, +Ad;

[O} [0.80} {0.80}
0 1.34 1.34
Check m(u,) <m(u,)

XZ:X(UZ)={6.59}

10.81
G(u,) = g(x,) = 0.5-6.592 —10.81+ 3sin(2- 6.59) =12.68
m(u,) = 0.5(6.59° +10.81%) +10(12.68) =126.82 > 78.7 N.G. (reject: A =1)

Try astep size: 41=0.5
u, =u, +Ad,;

{0} {0.80} {0.40}
= +(0.5) =

0 1.34 0.67
Check m(u,) <m(u,)

5.80

G(u,) = g(x,) =0.5-5.08° —6.91+3sin(2-5.08) = 7.42
m(u,) = 0.5(0.40° +0.67°) +10(7.42) = 74.60 < 78.7 O.K. (accept: 1=0.5)

Computation (2" step):
Vg =[X,+6co0s(2X,) -1]
G(u,)=7.42
VG(u,)=[0.18 -1]{2 ° }:[15.86 ~4.33]
25 4.33
&, =[-097 0.26]
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Convergence check (2" step):

G(u,) /G| _142 6045 e, N.G.

7.67
Hu2 —&ZUZ&ZTH =0.75>¢, N.G.

Update (2n4—3rd):

¢, >||u,|/|[VG(u,)||=0.05; set ¢, =10

Repeat until the convergence criteria are satisfied.

Note: If m(u,,,) > m(u;), reduce the value of A until you satisfy m(u,,,) <m(u,)
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¥ Santos, Matioli & Beck (2012)
New optimization algorithms for structural reliability Analysis

= provides a good review on HLRF, mHLRF and iHLRF
= proposes hHLRF and two Lagrangian methods
= nHLRF— as efficient as IHLRF & more robust

= Lagrangian— Less efficient than HLRF’'s but more general and probably more
suitable than HLRFs for large no. of rvs

Reliability Indices VS Reliability Methods

(ﬂSM’ ﬂSF’ ﬂMVFOSM’ ﬂHL ) (Pf)
Reliability indices

* Use partial & ( ie. V )
* Do not provide a framework to consider type of of input r.v's
« P, could be estimated for special cases only

(e.g., P, =®d(—B,) whenR, S~ Normal)

— Therefore, cannot be considered as reliability

cf. FORM/SORM ~ reliability methods

. 1) transformation to
design )
. achieve u ~ N(0, 1)
_ point
~ concept
P 2) procedure to get
(e Bu)
B, approach B, =au
a
ME X=DLu+M { Mu =0
EE z uu: I
> X » 1
g(x) =0

FORM/SORM
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Probability in the Uncorrelated Standard Normal Space

u~N(@,1) (cf. Z~N(O,R))

o(u) exp(—égnunz)

1
(271)”/2

=ﬂmm

Joint PDF

where ¢(u,) = Lexp(—%uf)

NEY
0 é X

~the probability density is completely defined by from origin

@ Exponential Decay of Density
In _r direction ﬁ

@ Rotational Symmetry

@ Exponential Decay of Density

In t direction X( ;
y ) ui

u” : Richest point in terms of prob. density

Therefore, approximation around U”should be good

@ FORM : First Order Reliability Method




Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability

In-Class Material: Class 13

@ First-order reliability method (FORM)

Pr = Probability in the linear half space determined by

FO approximation of failure domain at u =

= p
i)
G(u)ll +
= <0
Divide by [VG(u®))|
(u-u*)<0
Prorm = (U-u*<0
. p, = P( <0)
Consider Z=au=  + +---+
1) Type — (_____ function of )
i)y, -
" o} = 0()
Insummary Z~ ( ) L/-\
P=P(fow—~  <0) J
=P = Broru)

—o( )
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or

ii) From rotational symmetry

/>\Pl—> K '/7>u[-.
N

S

P=Pu g )=0( )

X SORM (p,): later

Probabilistic Transformation & Jacobian (to achieve U ~ )

.. Transformation (&Jacobian) depends on

J.,=DL

X,u

{x(u) =DLu+M
cf. Bu

7 Why do we need X(u) and Jy,

Gu)=9g( ) s need X; = X(u;)
V,Gu)=v,a( ) Jeu =

= Four cases

S Dependent

@
@) ®
@

@ X ~ statistically independent of each other

Each follows general distribution (F, (x) or f, (X))

fx (X) =
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= Transformation u==o"[ 1

n

Check f,(u)=0,(u; )=T] ?

i=1

fu(u): fX(X)| |
= X ‘]x,u =
U~
= Jacobian J,
9% . Ratio of PDFs
du,

Note I:x, (Xi) = cD(ui)

fxi (x)dx; = o(u;)du

@ X~ Correlated Normal, N(M, X)

X = X O u

= Transform
u= N(M,X) N (O, 1)

= Jacobian J, therefore S, Brorw for X~N( )
3 X ~ Nataf distribution : & available
G I e e N X(U)=DLU+M
Z; = :E= note{()_
kE— e B
X z | u
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= Transform U= Z=

J
= Jacobian {J”’X ~

X,U

@ Non-normal, non-Nataf, dependent RVs

e.g. Hohenbichler & Rackwitz 1981 (hamed, Rosenblatt’s transformation)

Transformation for non-normal, non-Nataf, dependent random variables

>> Rosenblatt’s transformation (Rosenblatt 1952; Hohenbichler & Rachwitz 1981)

Given:
1:x (X) = fxn (Xn | Xpyeees Xn—l) fxn,l(xnfl | Xpyeees anz)"' 1:xz (Xz | X1) fxl(x1)

~ conditional PDFs are available.

Transformation: triangular transformation

U, = Ol [ I:xl (X1)}
U, = CD_lI:sz (X, | Xl):|

u,= q)_l[Fxn (Xn | Xpyees Xn—l):l

** proof: U~ N(0,1)?
fy(u) = fy(x)|detd,,,

-1

N -1
= fx(x)[H Ji,i} (*+ J,, lower triangular matrix)
i=1

_f(x) o(u)  o(u,) o(u,)
() B 06 1%) f O X %)

= H(p(ui) (uncorrelated standard normal)
i=1
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Jacobian: J,, =[J;] where

A0
o(u,)
F O 1% %)
o(u;)
1 R (61X Xiy)

J. =

U]

o(u;) axj
0

** What does F, (X |,,...,X_;) mean?

Feox (40 %)

First of all, in (X | X0seey Xig) #

I:xl...xi_l (X17 ! Xi—l)

Instructor: Junho Song
junhosong@snu.ac.kr

. It is rather the conditional probability that

X, <X given X, =X, X,=X,,..., X, ; =X, thatis,

in (6 1 Xy %) = POX <6 [ X =X, Xy = %)

- J' F 06 1 %00 Xy )X,

X:

:I' f (X %) dx
DX X))

1 1 8iF(X1""’X‘)d

(X, Xiy) =, OX - OX
1 O F (X, X,)

(X X ) OX e OX

For example,

1 OF(x,%)
L) ox,

sz (Xz | X1) = f

’ I:X3 (X3 | Xi,XZ) =

1 0°F(X, X%y, %)
f(x,X%)  oxox
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457.646 Topics in Structural Reliability

In-Class Material: Class 14

FERUM: Finite Element Reliability Using Matlab®

FERUM (URL.: http://www.ce.berkeley.edu/FERUM) is an open source Matlab® toolbox for
structural reliability analysis, created by Dr. Terje Haukaas during his Ph.D. study at UC
Berkeley (currently at the University of British Columbia).

FERUMoCcore contains the core algorithms to perform FORM, SORM, Monte Carlo
simulations and importance sampling.

FERUMlIinearfecode is a simple finite element code provided with FERUM to
enable linear finite element reliability analysis with truss, beam or quad4 elements.
Limit-state functions can be defined in terms of displacement reponse from this code.
Gradients can be computed either by direct differentiation (DDM) or by a forward
finite difference scheme.

FERUMnonlinearfecode is an add-on to FERUMIlinearfecode to enable nonlinear
finite element reliability analysis. The J2 plasticity material is provided, and gradients
can be computed by direct differentiation (DDM) or by forward finite difference.
Truss and quad4 elements are available.

FERUMdynamicfecode is yet another extension of FERUMIlinearfecode to enable
limit-state functions being defined in terms of response quantities from a dynamic
finite element analysis.

FERUMIargedefofecode is an add-on to enable limit-state functions being defined
in terms of response quantities from a finite element code capable of large deformation
analysis.

FERUMsystems enables FERUM to perform system reliability analysis using the
Matrix-based System Reliability (MSR) method. This part of FERUM was created by
Bora Gencturk during his CEE491 term project, and is maintained by Junho Song.
FERUMrandomfield is an add-on to the simple finite element codes provided with
FERUM. It addresses the issue of characterizing material properties as random fields.
Options for the simple 1D case was provided with the initial versions of FERUM.
However, the main contributions to the current version have been made by Bruno
Sudret, who has also provided a user’s/theory manual for the random field part of
FERUM (see the User’s Guide section).

FERUMTfedeasconnection enables the finite element program FedeasLab developed
by Professor Filip Filippou at UC Berkeley to be connected to FERUM. This provides
for a quite powerful computational platform for finite element reliability analysis.
This part is maintained by Paolo Franchin.

FERUMexamples contains a collection of example input files for FERUM.

Recently, Dr. Jean-Marc Bourinet at the French Institute of Mechanical Engineering (IFMA)
further developed FERUM (Bourinet et al. 2009). His FERUM4.0 now offers new features
such as directional sampling, subset simulation, global sensitivity analysis and reliability-
based design optimization. URL: http://www.ifma.fr/lang/en/Recherche/Labos/FERUM



http://www.ce.berkeley.edu/FERUM
http://www.ifma.fr/lang/en/Recherche/Labos/FERUM
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FERUM Example (Example 14.3.1.1 ADK 2005)

Limit-state function for a short column (elastic-perfect-plastic) under axial force and axial
bending:

2
g(x)=1_ﬂ_&_(£]
sy Sy \Ay

m, : Normal y:yield stress
m, : Normal short column
P : Gumbel
: i S5;=0.030m?
y :Weibul S: — 0.015 :13] flexural moduli
= FERUM results A =0.190m?  cross sectional area
BFORM =2.47

u*={1.21 0.699 0.941 —1.80}"
X" ={341 170 3223 31.8}
a={0.491 0.283 0.381 —0.731}
P, [ ®(~Poon, ) = 0.00682
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% FERUM INPUTFILE

clear probdata femodel analysisopt gfundata randomfield systems results
output_Tfilename

output_filename = "output Chl4 Example.txt";

probdata.marg(l,:) = [ 1 2.5e5 2.5e5*0.3 2.5¢5 0 0 0 0 0];
probdata.marg(2,:) = [ 1 1.25e5 1.25e5*0.3 1.25e5 0 0 0 0 0O];
probdata.marg(3,:) = [15 2.5e6 2.5e6*0.2 2.5e6 0 0 0 0 0];
probdata.marg(4,:) = [16 4.0e7 4.0e7*0.1 4.0e7 0 0 0 0 0];
probdata.correlation = [1.0 0.5 0.3 0.0;

0.5 1.0 0.3 0.0;

0.3 0.3 1.0 0.0;

0.0 0.0 0.0 1.0];

probdata.parameter = distribution_parameter(probdata.marg);

analysisopt.ig_max = 100;
analysisopt.il_max = 5;
analysisopt.el = 0.001;
analysisopt.e2 = 0.001;
analysisopt.step _code = 1;
analysisopt.grad_flag = "DDM";
analysisopt.sim_point = "dspt”;
analysisopt.stdv_sim = 1;
analysisopt.num_sim = 100000;

analysisopt.target _cov = 0.0125;

gfundata(l).evaluator = "basic";
gfundata(l).type = “expression”;
gfundata(l) .parameter = "no-;
gfundata(l) .expression = "1-x(1)/0.030/x(4)-x(2)/0.015/x(4)-
(x(3)70.190/x(4))"2";
gfundata(l).dgdgq = { "-1/0.030/x(4)" ;
"-1/0.015/x(4)";
"-2*x(3)/0.190"2/x(4)"2";
*x(1)/0.030/x(4)"2+x(2)/0.015/x(4)"N2+2*x(3)"2/0.190"2/x(4)"3" };

femodel = 0;
randomfield.mesh = O;
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Second- Order Reliability Method (read CRC ch.14)

P, [ Prob in paraboloid in u ~ N(0, 1)
= p2

n-1
=P@B-u, +%Z1ciui2 <0)
i=1

(x : principal curvature in U, —u, plane)

% Formulas for p,

D Tvedt (exact; under the condition Bk, >-1)
_ 27T [ sHB)’ g L
_(P(B)Re{l\/;l'sexp{ 5 }H s }

@ (Karl) Breitung (simpler; derived earlier; approximate)

K >0 .x.z. p2 pl

k=0 —— p, P

|

P P, P

@ Improved Breitung

o)
D(- B)H '71+\I1(B) where y(B) = oLp)

(<—erratum in Ch.14)

% Howtoget x;'s, i=1---,n-1? (x: principal curvature)
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D Curvature-fitting SORM (see in-class material)

2

= Find ( ) matrix Hz{aéaG } at u=
u.ou.
i

: : : : 1
= Two rotations & eigenvalue analysis to obtain f-u, +EZKiuf <0

= Getting Hessian - Costly & Inaccurate

@ Gradient-based SORM (ADK & De Stefano 1991)

= Find the largest principal curvature from the trajectory of u's during

HL-RF search to get u”

= For the 2" largest, perform HL-RF in the subspace orthogonal to u. and

u, (that has the largest «;)
= stop searching when |k;|<e
= does not need H; can stop when |x|| small

= implementation issue?

@ Point-fitting SORM (ADK, Liu and Hwang 1987)

Fit by piecewise paraboloid surface

AU,

. e n-1
e Gu)JB-u, +%z o) . y?
S f,’ \‘.‘ i=1
sgn(u;) _
where a"" _ 24" -P) E)
Z(U?gn(u.))
—‘b b >
1 if <1
b =4[] if 1<[p|<3
3 if |B| >3
Merit: Insensitive to the noise in calculating g(x)
Does not require derivative calculations (H)
Drawback: 2x(n-1) fitting points = solve numerically

Not invariant (rotation not unique)
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In-Class Material: Class 15

¥ FERUM Example (SORM)

2
g =1-M_Me [P} g
sy Sy Ay

Brogy = 2.4661

(Curvature fitting)

-1.548x10™ A P
P PP 1P
K ¢—3.997x10 L9117 10 11110
8.903x10” / \
>
| 7/ N
Bsory = 2-3506(T), 2.3596(B), 2.341(iB)
Py >P;
(Point fitting) Bsorm < Brorm
+ p—
—6.2969x107 —4.0358x107
a1-1.1986x107 ~9.7461x10°°
-1.3778x10™ —-1.1050x107*"

Bsorm = 2-3599(T), 2.3693(B), 2.3537(iB)

See supplement, “Importance and Sensitivity Vectors” (by A. Der Kiureghian)

= Main reference: Bjerager & Krenk (1989)

FORM importance vector @

FORM approximation of the limit-state function

G(u);G(u*)+VG(u*)(u—u*)

= (B~au)
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Note GG'Z :( )Zuu( )

Contribution (percentage) of u,
to the total (variability)

of the limit-state function G'(u)

@ of aiz = measure of relative importance (contribution to the uncertainty) of
u,’s
@ of &, = nature of U;’s e.g., g(X)=R-S
G'(u)=B-au=p-

a; positive = U, capacity or demand

o, hegative = u; capacity or demand

I)
Question) Importance of u; = Importance of X,
i ) Independent : u, =CI)’1[FXi (%, )] OK

ii) Dependent: e.g., Nataf NOT OK

. @, does NOT Measure importance | of X ’s

Indicate the nature

when X,'s are
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Form importance vector ¥y (Question: contribution/nature of X;? Not u,'s)

s waz(g)

u = u(x) Break
\ 2 ? oc, into u;’s
X x=x(u) ¢ = @

—> u~N(0,I)

-

A X E = EFO(_X_) |
\ — G(u) =0
O % = x"%(u): linearized function
R S
+ X~N(M,ZX)

Transform to “normal equivalent” of x
Why? Want to keep ( ) distribution

Want to recover ( )

u(x)?

*)

X= X +J5Uu-u)

{u = u(X)+J,,(X=-x)

Note: Jacobians evaluated at x =

A

X ~N(M,X)
M
Y=

Substituting (*) into  G'(u) =B —au,

G'(u)=G"(X) =p—afu”+J,,(X-x)]
=p-au —-aJ,, (X-x)

= _&‘]u,x(s\( - X*)
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o = (-0J,,)E(-J,,7a")

—ad,, 3,710,773, TaT

u,x = u,x
= = ” ||2 = Contribution of each )A(i ?
> =DD + (£ -DD)
diagonal off-diagonal
ol=  aJ,(DD)J, a0 + al,, (£-DD)J,,"a’ =1

Contribution from variances afi Contribution from covariances COV[X;, X,

Then, how about using &JUYXIAD instead of a?

But not normalized yet.

Y=

i ) Magnitude of {/iz — contribution (importance) of X, or X
ii) Sign of 4, —nature of X or X

Note : G'(X) =—-aJ,,(X—X)

Y, positive — typer.v X

Y, negative — typer.v X

Note : when x are independent, a=7y?
r=J,, 90, ") =DD+(X-DD)

D=

. ad,,D
aJ, D

¥ FERUM Example (a and ¥)
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In-Class Material: Class 16

FORM importance vectors; a, ¥y

o 0
FORM parameter sensitivities of f3; a—g

(Bjerager & Krenk, 1989) (See Supp)

06 £ 0€0,: parametersin , 9(x:0,)

2
M P
e.g. g(X;eg):l_M__[F] <0 o0,={M, R}

u u

- 0€0,: parametersin f (x;0,)

eg. o, 1, p, A E D

(D Case 0€0, (distribution) * Derivations — see Supplement

Obtain a by FORM analysis

ou(

Derive 8—)(;9) from u(x,0) and evaluate itat x=x

= Vector version V, p=al,, (x',0,)

e.g. X~ S.i. Normal
u=L"D*(X-M)
=D(X-M)

u1: , u2 =
ou,

2 ey
o, 0o,
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@ Case 0e0, (limit-state function)

dg _ 1 og(x’,0)
do [v.Gw o) a0

N FORM "\ derive from g(x)

= Vector version

1 .
Vo B =1————V, g(x',0
9gB |VUG(U,9)” 999( g)
e.g.
M P
0040,) =15 ('S 0
PU
Gg
d a9 ..
X_ B X =
2 3

oP
Parameter Sensitivities of failure probability P, :a—ef ?

Recall P, = ®( )

dp,
do

Vector version:

VoPr = —o(=p)V,p

Parameter sensitivities w.r.t. alternative parameters

0,=0,(0,)

J— G —
N In z—0.5In[l+ (=)*
A o ; JZ [ (u) ]

s itz Sy
L H _

ef 0f(ef)
—

W, o
Vef.B :V()fB'
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% FERUM Input File for CRC CH14 Example (with Parameter)

clear probdata femodel analysisopt gfundata randomfield systems results
output_Tfilename

output_filename = “output Chl4 Example param.txt";

probdata.marg(l, :
probdata.marg(2, :
probdata.marg(3,:
probdata.marg(4,:

[ 1 2.5e5 2.5e5*0.3 2.5e5 0 0 0 0 0];
[ 1 1.25e5 1.25e5*0.3 1.25e5 0 0 0 0 O]
[15 2.5e6 2.5e6*0.2 2.5e6 0 0 0 0 0]:
[16 4.0e7 4.0e7*0.1 4.0e7 0 0 0 O 0];

v\ \/ \/

probdata.correlation = [1.

probdata.parameter = distribution_parameter(probdata.marg);

analysisopt.ig_max = 100;
analysisopt.il_max = 5;
analysisopt.el = 0.001;
analysisopt.e2 = 0.001;
analysisopt.step _code = 0;
analysisopt.grad_flag = “DDM*
analysisopt.sim_point = “dspt”
analysisopt.stdv_sim = 1;
analysisopt.num_sim = 100000;
analysisopt.target cov = 0.05;

gfundata(l).evaluator = "basic";
gfundata(l).type = “expression”;
gfundata(l) .parameter = "yes"; % "We have a parameter in the limit-state
function”
gfundata(l).thetag = [0.03]; % default value of S1
gfundata(l) .expression = "1-x(1)/gfundata(l).thetag(1l)/x(4)-
x(2)/0.015/x(4)-(x(3)/0.190/x(4))"2";
gfundata(l).dgdq = { "-1/gfundata(l).thetag(1)/x(4)" ;
"-1/0.015/x(4)";
"-2*x(3)/0.190"2/x(4)"N2";

*x(1)/gfundata(l).thetag(1l)/x(4)"2+x(2)/0.015/x(4)"2+2*x(3)"2/0.190"2/x (4
)37}

gfundata(l).dgthetag = {"x(1)/x(4)/gfundata(l) -thetag(1)”2"}; %
Derivative w.r.t. S1

femodel = 0;
randomfield.mesh = O;
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Importance Vectors Using Parameter Sensitivities

= Use VB and VB to quantify importance of random variables?

%»% — more to than
Oy Opy
@ Importance vector &
60=V,B-D
{@. BB
ony , oM, , oM,

Why?

+ X,'s Can have different units & dimensions (therefore p;'s) = make it
dimensionless

* Assume variations in p; oc
+ Changein B when g change by

@ Importance vector 1

n=Vyp6-D
(B B LB
0o, ' 0o, " 0o,

Change in B when o, change by

@ Upgrade worth 1,

AN
Iy ==V,P; D, D, = A6,
| op oP, } N
) o0, Change in 6; that can be

achieved by unit
- Der Kiureghian, Ditlevsen & Song (2007)

- Song & Kang (2009)
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Use of sensitivity / Importance Vectors

(VoB) (0,7,8,m)

@D To identify important rv's

@ To update B for small increment
B
= + > —- A6,
Bnew old Z ael i
® Reliability Based Design Optimization
i% needed to facilitate the use of ( )-based optimizers

@ To compute PDF of a function y(x)

F (0) =P(Y(x) <6)
=P(Y(X)—6<0) here consider Y(x)-0 as the limit state function g(x,0)

= (-p(0))
dF (0
f,(0) = gé )=—¢(—B(9))g—g

® To help gain insight of the reliability problem
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System reliability?

Failure event E,
Abnormal flight (engine) E,UE, A
Emergency E,E, > P(Eyy)?
Landing at nearby airport E.E, UEE, )




System reliability in structural engineering

Lifeline networks

e T

E..., = EFE,UE,E UEE UEEUEE,U

%}% 2 ; - system
! o O e (1) FB EoE; UBE, UEE UEE UEE,U
1

4) CB 8) DB
@ g%}s L (6)PT, (8) DB, 0 1078 EnEp, U E,E;E; U E,E;E, U|E1E3 E, U
3 Q E g%;% E,E;E, UE,E;E; UE,E,E, UE,EE;, U
< [} >—
j EsE0E1, UEGE By UESE B UEEGE, U

2)DS, (5)CB 9) DB 12)FB
? ’ o ’ (NPT o ’ o i E9 ElO Ell U El E3 ElO E12 U E2 E3 ElO Ell

Esystem = (E1 N EZ)U(E3 N E4)U(E3 N Es)

- : ' : : ‘ Lsystem = f(D,@)
ST ElLyen] =  (EID], E[])

|EAY DA%

C— E[ Lsystem ]
Var[ Lsystem ]

_ E

system

P(Lyen =€) 1—@[

//nees.uiuc.edu




Qutline

. System reliability: definitions, existing methods and
challenges

II. Bounds of system reliability by linear programming
(‘LP bounds’)

[1l. Matrix-based system reliability (MSR) method



. System Reliability:

- definitions, existing methods and challenges



Definition of system: (1) series system

» System fails if any of its component events occur

Esystem = U Ei
i=1

» Systems with no redundancy
» Examples: 1) statically determinate structure

2) electrical substation with single-transmission-line

3 Een I 0
©, O, © ©,
DS CB PT DB FB
RuS)  (ReS)  (ReSy)  (R,S) (Rs:S5)
@ l ) @ —

Song, J., and A. Der Kiureghian (2003, JEM ASCE) Song, J., and A. Der Kiureghian (2003, ICASP9)



Definition of system: (2) parallel system

» System fails only if every component event occurs

Esystem = Q Ei
» Systems with maximum redundancy

» Examples: 1) a bunch of wires or cables.

2) electrical substation with equipment items in parallel.

CB1

Song, J., and
A. Der Kiureghian CB2

(2003, JEM
ASCE) CB3

cB4

CB5

El = infinity

l




Definition of system: (3) general system

» System that is neither series or parallel system

1) Cut-set system:

K K
Esystem = UCk = U Ei

- a series system of sub-parallel systems k=1 k=1icC,
2) Link-set system:
L L
- a parallel system of sub-series systems Eyeen =[ 1L = JUE
1=1 I=1 ieL,

» Example: a structure with multiple failure paths (scenarios) ~ a cut-set system

lx T
M

Esystem = (El M Ez)U (E3 M E4)U(E3 M Es)

Scenario 1 Scenario 2 Scenario 3

Song, J., and
A. Der Kiureghian
(2003, JEM ASCE)

* Component failure events and failure paths



(3) General system (contd.)

» Example: electrical substations (cut-set systems)

[ F>—

DS
(Rl!S]_)

CB,..CB, PT DB
(R, ~R
S, ~S,,

k+1, (R

SEE § S

k+2? Sk+2) (Rk+3 ’Sk+3)

FB
(Ryces Sira)

[ F>—

(1) DS,

(4) CB, &P, (8) DB
(3) DS,

S S

1

(11) FB,

L]
(10) TB

[ F>—

(2) DS,

(5) CB, (?é (9) DB,

(12) FB,

Song, J., and A. Der Kiureghian (2003, ICASP9)

P(Esystem) =
P[E1 U (Ez E;-- Ek+1) U E.2 U Ey.s U Ek+4]

* 5 cut sets, k+4 components

P(Esystem) =

P(EE,U E,E; UE,E, U E.E U EsEs U EsE; U
E,E, U EsE, U E.E U EoE, UE,E, U
E.E.E; UEEE, UEEE,UE,EE, U
E,E,E; UE,E;E; UE,EE,, UEE,E,, U
EoEE, UEE By UEEGE UEEE, U
E.E:EEp U E,EEEL)

* 25 cut sets, 12 components



“component” reliability vs “system” reliability

» Component reliability analysis: P(E,) = P(g,(X)<0)= J'f

9(X)<0
A

1) FORM/SORM

2) Response surface method
3) Monte Carlo simulations
4) Importance samplings

v

> System reliability analysis: P(E,...) = P(LJ[g;(x) <0)= jf (x)dx
1) Complexity

2) Dependence between component events
3) Lack of information

~ synthesize components reliabilities
or perform simulations /,

Series System Parallel System General System

v




Existing methods: (1) inclusion-exclusion formula

* Series system
P(OE j ZP(E )— Z ZP(E )+ +(D"'P(EE, -E,)
i=1 i=1 j=i+l
* Parallel system
P(ﬁ Eijzl— P(OE) =1—zn: P(E)+---
i=1 i=1 i=1
* Cut-set system

P(ch ZP(C) ZZP(C )4+ (-)"P(CC, -C,)

i=l j=i+l

» the number of terms increase exponentially; 2" -1
» requires all the joint probabilities: P(E;), P(EE;), P(EEE)), ...

» useful only if component events are statistically independent: P(E;E;) = P(E;)P(E;)
~ need marginal probabilities only



** Dependence and system reliability

» A parallel system with 1~10 components with P(E;) = 0.01

~ e.g. n=5: 1019 (independent) ~10 (perfectly dependent)

10°

=
o

System Failure
Probability

Prob. of failure of the system

)

[N
O I
A

[EEY
o '
(=2}

[y
o|
©

10

-10 |/

Parallel system: Prob. of failure of each component = 0.01

T T T T T T T T

No. of components = 1

| L

| | L

| | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation coeff. between failure events

Details: Supplement # 11 Level of Dependence



Existing methods: (2) simulations

P(Esystem) = JD fx(X)dX
N I _#(xeD)
TG T #(X)

\ 4

~ Count the number of samples in the system
. failure domain and estimate the ratio.

» Monte Carlo simulations, importance sampling, directional sampling, etc.
» Independent random variables: easily generated.

» Dependent random variables: need joint probability density function
~ not available in many cases.

» Independence assumption will lead to errors in estimating system reliability



Existing methods: (3) bounding formulas

It is desirable to derive bounds on system probability which involve
low-order component probabilities:

v Uni-component probabilities: P(E;) =P,
v’ Bi-component probabilities:  P(E;E;) =P,

v Tri-component probabilities: P(EE;E,) = Py

» Series System

")
1) Uni-component bounds (Boole 1854; Fréchet 1953) max P = P(U Ek)§;< min 1,2 P+
k=1

2) Bi-component bounds (Kounias 1968; Hunter 1976; Ditlevsen 1979)

P+Zmax(P ZP,J,O _P(UEK P+Z(P maxP,)—

IN

3) Tri-component bounds (Hohenbichler & Rackwitz 1983; Zhang 1993)

| \
n i—1
P1+P2—F>12+Zmax[o,e—2 + (maxl)Z PP(UEJ—NP PmZ[P— max (. +P,~P,)
i=3 j=1 i

ke{z 3 .....
Ptk )



Existing method: (3) bounding formulas (contd.)

» Parallel System

- Uni-component bounds (Boole 1854; Fréchet 1953)

max(o, Zn: P - (n —1)}13 P(ﬁ Ek)_f—s mkin P

- No higher-order bounds available.

Note: De Morgan’s rule can be used to convert a parallel system to a series
system, allowing use of bi- and tri-component bounding formulas for series
systems.

» General System

- No bounding formulas exist.



Existing methods: (4) FORM approximation

u, 4 v, 4
P(Eqysen) = | fx(X)dX
system X ~ _
D " P(E,s) = ®(-B,R)
1
l; 2 U: ‘,/'/ ',"', o B Vi
' P12 R 2
I \ ) Integration in
Orl_gln_a_LI system FORM analysis for standard normal
reliability problem each component

space

» For parallel and series system

» Find the corresponding volume in standard normal space based on FORM
analyses of component events

» Errors depend on the level of nonlinearity and complexity of domain.



System reliability: challenges

» Complexity of system problems
- large number of components, component states, cut sets, link sets, etc.
- difficulty in identifying cut sets or link sets
- computational challenges (speed and memory)

» Dependence between component states
- “*environmental dependence” or “common source effect”
- members and materials by the same manufacturer or supplier
- analysis as “independent components” is simple, but may be misleading.

» Diversity/Lack of available information on components
- missing information
- various types of information
- should be flexible in obtaining information



I[l. Bounds on System Reliability by
Linear Programming (‘LP Bounds’)



Bounds by linear programming (LP)

Probabilities of basic MECE events: p, =P(e), 1=12,..., 2"

1. The system failure probability P(Esysiem) = ZE: p,=c'p
rer S Esystem

2. Axioms of probability: i p.=1 and p, =0, Vi

i=1
3. Available information on P(E)= 2.p,=P. 2P, <P)
re e re cE;
component probabilities P(EE,) = r_eZE:Epf =P, (2P, <P,) -

e, CEE;

P . - T
minimize (Maximize)cC . i
( ) P Linear Programming

subjectto  a,p=Db, Problem
ap=b,

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. Journal of Engineering
Mechanics, ASCE, 129(6): 627-636.



Merits of LP approach

v" Bounds for general systems.

v' Any type of information on component probabilities can be used.
- Equality: P;; = 0.02
- Inequality: P;; <0.01, 0.05<P;<0.07, P; <P,
- Partial: P, = 0.01, , P;=0.03

v" Finds the narrowest possible bounds for the given information.
(This is not guaranteed for existing formulas for series systems
involving bi- or higher-order component probabilities.)

v' Can be used to compute importance and sensitivity measures, and
updated system reliability.



Application to structural system reliability

Statically determinate truss (series system) Daniels’ parallel system Cantilever beam — bar (general system)

X % | X X
El = infinity 2.0m M 2.0m N
l L
n n
Esystem = U Ei Esystem = ﬂ Ei
i=1 . i=1
10 ‘ : .
1. Narrowest bounds ol
2. Incomplete set of probabilities :
3. Inequality-type information §
1073’ E{)ﬂ — Daniels (Exact)
’ — = Uni-component bounds (Boole, LP)
-~ Bi-component bounds (LP)
KHD bounds
10" ; ; ;
5 6 7 8

Load, L

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. Journal of Engineering
Mechanics, ASCE, 129(6): 627-636.



Application to electrical substation systems

« Component failure event, E;

¢ E,={InR,-InA-InS5;<0},i=1,...,n
(1) DS, (4) CB, ©) PT (8) DB, (11) FB, A = LN(mean=0.15, c.0.v.=0.5) PGA
(3) DS, ' L (10) TB Si = LN(mean=1, c.0.v.=0.2) local site effect
_ Q ; _ R; = LN(mean,c.o.v.,corr.) equipment capacity
DS: Disconnect Switch (0.4, 0.3, 0.3)
(2)Dbs, (5 CB., (7 PT (9) DB, (12) FB, CB: Circuit Breaker (0.3, 0.3, 0.3)
2 PT. Power Transformer (0.5, 0.5, 0.5)

DB: Drawout Breaker (0.4, 0.3, 0.3)
TB: Tie Breaker (1.0, 0.3, 0.3)
FB: Feeder Breaker (1.0, 0.3, 0.3)

Two-transmission-line substations

Case Uni-comp. Bi-comp. Tri-comp. M.C. 6=0.01
As shown in figure 1.13x1012~0.202 0.0436~0.146 0.0616~0.0942 0.0752
No information available on TB (E,) 1.82x101'~0.202 0.0436~0.146 0.0615~0.0943 N/A
No information available on CB; (E,) 1.26x10°9~0.202 0.0267~0.147 0.0395~0.1360 N/A
Upper bound available on CB,, P,£0.01 5.19x10°~0.120 0.0267~0.0995 0.0395~0.0701 N/A

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming and applications to
electrical substations. Proc. of ICASP9, San Francisco, USA, July 6-9.



Multi-scale system reliability analysis

Input 11

18 27 33
34
[5] 19 28 .-
20
29 o)
21
[6] 22

23 32

Input 1

Substation 1 Substation 2

24 9]
m 25

26 36
35

Substation 3 52 Substation 4

43 53 62 & ., Output
44 63177 “— - L
[10] a5 [13] S [18]
37 46 56 65
38 47 [12] [15] 57 66
39 48 @ 58 67

40 49 (4 59
[11] a1 50 [16]

55
42 51 54

System of four electrical substations

60
61

Input 111

(n =59:] 5.76x10" design variables

»  System decomposition

- consider a subset of the components of
a system as “super-components”

- bounds on marginal and joint probabilities
of the super-components are computed
by LP approach

- the computed bounds are used as
constraints in solving the LP problem for
the entire system

- reduced to 35 LP problems, the largest of
which has| 215 = 32,768 variables

» multi-scale system modeling

- helps the analyst see the “big picture,”
while not disregarding system details

- particularly effective when many similar
subsystems exist

- allows different teams of analysts to work
on different subsystems (parallel computing)



System reliability updating

In the analysis of system reliability, it is often of interest to compute the
conditional probability of a system or subsystem event, given that another

system or subsystem event is known or presumed to have occurred.

>

@ Examples: P(E| |Esystem)’ P(E| |Esystem)1etc'

:—P(AB) :—ZVEAB P Nonlinear function of p’s

BN TS

» The bounds on the conditional probabilities can be obtained after a few iterations
of a parameterized LP problem (Dinkelbach 1967).

optimal solution, p

minimize/maximize (Chz —AC,)P T B
subject to ap=b A= CArBﬁ
a,p =b, "
parameter, A

* Der Kiureghian, A. and J. Song (2008). Multi-scale reliability analysis and updating of complex systems by use of linear
programming. Journal of Reliability Engineering & System Safety, 93(2): 288-297.



System reliability updating (contd.)

Substation 4 68
62 e Output
63 [17] -—- L
64
o

[18]

56 65

s Os7 Oss

58 67

59

[16] 60
61

Updated failure probabilities of equipment items in Substation 4

Type - Equipment No. P(E) | P(E | Ey) P(E |_ESyS )
DS 56, 58, 62, 64 0.00371 0.243 ~0.375 0.000431 ~ 0.00125
59, 61, 65, 67 0.00371 0.175~0.372 0.000431 ~0.00182
68 0.00371 0.331 ~0.468 0
CB . 57,63 0.00953 0.506 ~ 0.660 0.00345 ~ 0.00458
60, 66 0.00953 0.338 ~0.623 0.00357 ~ 0.00613

PT 69 -1 0.00232 0.206~0.292 | . 0




Identification of critical components and cut sets

» LP approach can identify components and cut sets which make significant
contributions to the system failure probability by iteratively solving

parameterized LP’s.

» Importance Measures (IM)

guantifies participation in system failure probability

- Fussell-Vesely:

- Risk Achievement Worth;

- Risk Reduction Worth:

- Boundary Probability:

- Fussell-Vesely Cutset IM:

Fv, =P( U )/ P(E,yem)

k:Ei ng

RAW, = P(Es(;/ltem)/ P(Esystem)
RRW, =P (Egem) / P(Es(‘)i/gtem)

BE = P(Es()i/ltem) _P(Es()i/ltem)

FVCk = P(Ck)/ P(Esystem)



Identification of critical components and cut sets
(contd.)

1 2.5
0.9} p
o 08 i
a 2t |
o 0.7F 4 <
! 2 g 1 = 8
T oos Jaee 3C o Tt ;
g °f 1 &
(1) DS, (4) CB, (8) DB, (11) FB, g g
(6) PT, 0] g o5} 4 8 15} .
(3) Ds, (10) TB = £
. 3¢ 1§
X
{1 5 E {4 O0>— =z 0.3} 12 I
[7]
3 1 — E
(2) DS, (5) CB, (9) DB, (12) FB, T o2} I |
(1) PT,
0.1} p
1 1 1 1 1 1 1 05 1 1 1 1 1 1 1
DS1,2 DS3 CBL2 PTL2 DBL2 TB  FBL2 DS1,2 DS3 CBL2 PTL2 DBL,2 TB  FBL2
2.5 . . . . . . . 0.15 - - - . . 1 ; i i i i
0.9}
o
5
g osf
ok g =
£ z O01lf 1 gorr
S = b
2 2 £ ool
5 8 £
S 15} 4 o = |
g z & 05
¢ 2 5
~ 3 O 0.4f
& 2 005 1 =
I . 8 0.3
| - N
I % 02f I I I
g I |
<L
I 0.1}
05 L ) ) ) . . . 0 . . ) ) ) . o ) ) ) ) ) ) ) )
DS1,2 DS3 CBL2 PTL2 DBL,2 TB  FBL2 DS1,2 DS3 CB1,2 PTL2 DBL2 TB  FBL?2 @5 68 @9 66 @7 67) 12 69
. Cut Sets

* Song, J. and A. Der Kiureghian. Component importance measures by linear programming bounds on system reliability.
Proc. of ICOSSAR9, Rome, Italy, June 19-23.



Sensitivity and optimal upgrade

» General-purpose LP algorithms provide the sensitivity of an optimal solution with
respect to the values in the right-hand side vector, b.

oh
minimize (maximize) ¢’ p - 0o, =
. Sys sys
subjectto  ap =b, HD:> oh HD:> 70
a,p sz LP algorithm Chain rule .
LP problem for Sensitivity w.r.t. Sensitivity w.r.t.
system reliability failure probabilities design parameters

» Optimal upgrade of system reliability within the limit of upgrade cost (in progress)

min max c' p(x) ~ minimize the upper bound of Py,
x o p
subjectto a,p =b,(x), a,p >b,(x) ~ component failure probabilities: f(actions)
Qx < d, m' x <m, ~ constraints on the actions (workability, cost)

X :binary integers ~ indicators for upgrade actions (1: yes, 0: no)



LP Bounds approach and decision-making

consequence-based engrg.

System Reliability | | ito_cycle cost analysis

Identification of
Critical Components
and Cut sets

L o Priority in upgrade project
minimize (maximize)c'p (cost limit not considered)

subjectto  a,p=Db,

a,p=b,
LP Bounds Approach System Reliability Strategy for post-hazard
Updating inspection/ recovery
Sensitivity of Plan for optimal upgrade

System Reliability | (cost limit considered)



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability

In-Class Material: Class 17

General system by cut set formulation

2
7/ E,s :cannot
travel fromAto B
Ae 7 o
1 Y
3
(D Cut set: a subset of components whose joint constitutes the
of the system
C={ ¥
Esys =
@ “Minimum” cut sets ~ cut sets with no r components
C={ ¥
E =

sys
=cut sets which cease to be a cut set if any of the components is

@ “Disjoint” cut sets P(E,,)=P(UC,)=2P(C,)

sys

S S1_
Cag =1 }
_ 2 3
E, =E.VEEE,
Ncut 123
Esys = U Ck P —
k=1 000 E-E-E
* - _
Ncut 00X E-E-Es
:L’ﬂEi 0XO0 F.E-5
k=1 ieCy X 00 E-E-E




Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

General system by link set formulation

2
7
i %
A —17 oB
1 %
3
D Link set: a subset of components whose joint ( ) assures ( ) of the
system
L={ ¥
@ “Minimum” link sets ~ link sets with no r component
I‘min :{ }

@ “Disjoint” Link set

Ldisj :{ }

Nlink
&0 -
k=1

De morgan’s law

k=1 \i=L,




Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability

In-Class Material: Class 18

FORM approximation (Hohenbichler & Rackwitz 1983)

@ Series system

P(Esys): P(U E|) n—#rv's
= m — # comp's
=P(Jgi(x)<0)
= P(LmJ <0)
et Z= 0, 1=t G,(U) 1 G, (U) + VG, (U))(u—u)
E[Z,]= =VG,(u;)(u-u;)<0
var[z]=| |['= = <0

Therefore, Z, ~ ( , )

oy =— L V1 1]

=E[ - "1=E[ 1= Ew] =

P(Esys) FOEM P(LmJ < 0)
“1P() < )
:1—(I)m( e ’R)

Joint normal CDF of Z~ N(0O;R)

B B
Where ®@_(B;R) = I~--I@m(Z;R)dz

—00 —00



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

©@ Parallel system

-P()9,09<0) A

M I_m ) I g >
PN <0) /“—2
o

:(I)m( e ’R)

A ‘ :&\\\_\.\\\‘

FO

1R

\%
N—r

IN
N—r

—B: B

— may have huge errors due to curvatures

N é\:\\\\\\\‘ better linearization point?

“joint design point”
Hard to find or may not exist
Note: One could find such important domain using an adaptive sampling technique

Kurtz, N., and J. Song (2013). Cross-entropy-based adaptive importance sampling
using Gaussian mixture. Structural Safety. Vol. 42, 35-44.

Step 0 Step 2 Step 4

X' 0 X' 0 X' 0
2 2 2
4 -4 4
6 -6 6
6 4 2 0 2 4 6 -6 4 2 0 2 4 6 6 4 2 0 2 4 6
X X X

@ General system?

= No direct FORM approximation



Risk-quantification of Complex
Systems by Matrix-based System
Reliability Method

Junho Song

Department of Civil and Environmental Engineering
Seoul National University



Matrix-based Formulation

= Matrix-based formulation of system failure:

* Example:

C.

p:

P(Ey)=¢c'p

\\

P(E1E2UE3): P+ Py + P3+ Pyt Ps

=1 1 1 1 1 0 0
[P, P, Py Py Ps Ps Py

0]-
pe]'

" vector

~ describes the system event of interest

\\

" vector

~ likelihood of component joint failures



Identification of event vector, c

= Matrix-based event operations:

E,---E E E E
cl n_cl‘*c 2'*___.*(:?2

CEIUHUE& =1—(1—CE1 ).bk(l—CEl ).:k"'.:k(l—cﬁ”)

Efficient and easy to implement by matrix-based
computing languages, e.g. Matlab®, Octave

Can construct directly from event vectors of components
and other system events

Can develop/use problem-specific algorithms to identify
event vectors



Identification of event vector, c

= Event vectors for component events:

1 C. = iy 1 fori=2
C[l]: 0 = C[H] 0 orl=2,....Nn

0 and 1 denote the column vectors of 20-D zeros and
ones

After C, is constructed, the i-th column of the matrix is
the event vector of the i-th component event.




Computation of probability vector, p

= TJterative matrix-based procedure for
statistically independent (s.i.) components

Py = P1 1- Pl]T

_ Pri-i- Pi _
Pri) = (1-P) fori=2,...n
 Pri-) i
1500 ‘ ‘
* Element-wise
: Matrix-based 1,219 sec
2 1000
)
£
S 500
o
O
Q¢ o o o o o o o o o o o o ° 00629 sec
2 4 6 8 10 12 14 16 18 20

Number of Components



Statistical dependence b/w components

= By total probability theorem,

P(Esys) = _.;P(Esys | S) fS (S) dS
= Lch(s) fo(s)ds

= CTﬁ

Utilize of components given an outcome
of random variables S causing component dependence
e.g. Earthquake magnitude for a bridge system

Event vector ¢ is independent of this consideration ~ no
need to construct the probability vector for new system
events



“What if not explicitly identified?”

= Example: approximation by Dunnett-Sobel (DS)
correlation matrix (1955)

Zi = N(OaR)a pij = rl °rj
Z. =+/1-1>-U. +r8,

Z;, i=1,...,n are conditional s.i. given S=s

Fit the given correlation matrix with a DS correlation matrix
with the least square error

Generalized DS model (song and Kang, Structural Safety)

Z; ~N(0,R), Pij :kazl(rikrjk)

Zi :\/1_2rknzlrilf 'Ui +z?:1(riksk)




Conditional prob./importance measure

= Conditional probability Importance Measure (CIM)

P(EiEsys)
CIMI — P(E| | Esys) —
P(E,;)

= Fussell-Vesely IM

FV, = P(Uk:Ck;EiCk)
P(Esys)

P(Esys,)/ P(Esys) = (c''p) / (c'p)

Once the system reliability is done, only additional task is to
find the event vector for a new system event



Parameter sensitivity of system reliability

= Statistically independent components

P(Esys) C p
oP
) P = P
00 00

= Statistically dependent components

Zero unless 0 is a

P(E,;) = Lch(s) fs(s)ds parameter related to

common source.

| i __[ {8p(s) f (S)+P(S)%‘ ds

/
N7

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System
Reliability Method,” Structural Safety, Vol. 31(2), 148-156.




Appl. I: Connectivity of a transportation network

* Kang, W.-H., J. Song, and P. Gardoni (2008) “Matrix-based system reliability method and applications to bridge
networks,” Reliability Engineering & System Safety, Vol. 93, 1584-1593.

] I
O :city
[] : single-bent Bridge @ &) |2
@ : Two-bent Bridge
“L I
.................... two-bent
"""""""""""""""" L LA o
....................... ol I ol s
N
S W

Point of seismogenic
rupture on the fault

Post-earthquake disconnection from the critical facility
Fragilities for bridges (Gardoni et al. 2003)
Deterministic attenuation relationship used

For given magnitude, the bridge component failures are
conditional s.i.



Connectivity of a transportation network

1.5

05¢ I ‘ 1
0
2 3 4 5 6 7 8

At least one city

Probability of Disconnection
Probability of Disconnection

2 — At least one city

City

6.0 6.5 7.0 75 8.0 8.5
Earthquake Magnitude, M

M=my=cpm  PE=] ¢pm f\(mdm=cp

P(E

sys

Conditional probability of disconnection of cities Probability of disconnection of cities



Connectivity of a transportation network

Probability of Disconnection

- N - N -
o, o, o, o, o,

) o IS [ N
T ™ L R R e e AL

—_—
O 1
4

—_—
OI

\
\
= k)

Prob(No. of Failed Bridges >

6.5 7 7.5 8 8.5
Earthquake Magnitude, M

P(Egs)

=c''p(m)

Conditional probability of disconnection of counties

-
o

N
o

-
o

N
o

'
N
T

'
N
T

]
w
T

1
N
T

6.5 7 7.5 8 8.5
Earthquake Magnitude, M

P(E..)

Sys

=c¢"'p(m)

Prob (No. of failed bridges = &)



Connectivity of a transportation network

Probability of Disconnection

-3 Exact
10 IEEEEE Bounds

6 6‘.5 % 715 é
Earthquake Magnitude, M
min(max) c¢' p(m)

Bounds on P(City 5 disconnected)
(No information on Bridge 12)

8.5

0.7

06

CIM

1 2 3 4 5 6 7 8 9 10 11 12
Bridge

P(EI Esys ) _ C’Tﬁ
P(E,,) ¢'Pp

P(E| | Esys) —

Importance measure of components
w.r.t. the likelihood of at least a disconnection



Appl. I1I: Damage of a bridge structural system

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System
Reliability Method,” Structural Safety, Vol. 31(2), 148-156.

Parapet

Column

Fxd - Long
- Fxd- Tran
Exp - Tran

- Exp-Long
Ab - Pass
- Ab-Act
Ab - Tran
Bridge

_

-, ._————".__ i 3 =
R C ] ',."ll H
N = Girder !
) _______ o
LRy = —
u \‘ W, a3 \| T Bent Beam
A Bearing | | |

P[ Slight | PGA ]

Ml < | |
Abutment T\ < Column | F[r/\l:'lles

| .G. Niel 2005 .
| Footing ©® relson ( ) PGA (g) © B.G. Nielson (2005)

Nielson (2005) developed analytical fragilities of bridge
components such as bearings, abutments and columns

Identified the statistical dependence between demands
Probability that at least one component fails (series system)
Performed MCS to account for component dependence



Damage of a bridge structural system

* Safety Factor |:i = In Ci —1n Di

“Frglty  P(LS; [IM)=P(F <0[|IM)

_ F{zi <A ||v|}
Gr

- pe (M)
GFi(IM)_

=

(C.aDi 'QDJ-) "
(S R (S

* Correlation

Pzz, =PrF =

* Fitting by DS-class corr. matrix: average of percentage error ~ 3%



Damage of a bridge structural system

P ( Slight | PGA )

o
o

o
o)

o
~

0.2¢

(b)

k | PGA)
o
(0¢]

o
o)
T

o
N
T

o
[N

P(No. of failed comp.>

P(E,, | PGA = pga) =c'p(pga)
= [ <"p(pga. x)e(x)dx

System fragility (at least one) P(No. of failed components > k)

P(E,, | PGA= pga) = ¢’ 'p(pga)



Appl. III: Progressive failure of a truss structure

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System
Reliability Method,” Structural Safety, Vol. 31(2), 148-156.

themal load , L (KN)

A=450 mm> \
E =2.0x10% kN/m?

Sm
Member force capacities:
Ri~N(1000,200) , pj; = 0.2 '
e A
Sm

l:)(E ) — P[E1E2E3E4E5E6 U(E1E2E3E4E5E6)(E7E8E9E10E1)

sys

U (El E2 E3 E4 ES E6 )( E32 E33 E34 E35 E36 )]



Progressive failure of a truss structure

P(E

sys

U ( El EZ E3 E4 ES E6 )( E32 E33 E34 E35 E36 )]

I Disjoint link sets (36—11)

P(E

sys

E7

o4 P(E1 Ez E3 E4 Es E6 E32 E33 E34 E35 E36)

I Perfect correlation

7 systems with 6 components

E8 E9 E10

)= HEEEEEEUEEEEEEXEEE&OQ

E

1)



Progressive failure of a truss structure

MSR
+ MCS

P(Collapse | L)

0.2

O+——+ | ‘ \ |
500 1000 1500 2000 2500
L, External Load (KN)

System collapse fragility curve given abnormal load
Verified through MCS

Importance of members (components)
Sensitivity of fragility w.r.t. design parameters



Appl. IV: Multi-scale SRA of lifeline networks

* Song, J., and S.-Y. Ok (2010). Multi-scale system reliability analysis of lifeline networks under earthquake hazards. Earthquake

Engineering and Structural Dynamics, Vol. 39(3), 259-279.

—

N

7

= “"Divide and Conquer” approach

Lower-scale system reliability analyses
are performed for “supercomponents”
and followed by higher-scale system
reliability analyses

Proposed to facilitate the use of LP
bounds method (Song and Der
Kiureghian, 2003) for large-size systems

MSR method is a good tool for SRA at
multiple scales

= Advantages

Multi-scale modeling of a system —
seeing big picture without disregarding
the details

Helps identify important components
and parameters at multiple scales

Collaborative risk management
Facilitates parallel computing



Example: MLGW gas network

19

Simplified MLGW Gas Network (37-node)
18 3 7
B Gate Station 24/_ <4— :__S!
I.eqlln:ﬁi [ 34
: , v
L @ Regulator / 9
= , ’ Q\ 33
Other Station 13 37
% 113 ™A 15
Link Node ! 27 29
25 U = 23
21 W N 351 og
8 20 s
17 -4 31
e 12 10
R ([ .- 3
32 —>9 16
6 30 5 \'4

Gas pipeline network of Memphis Light, Gas, and Water (MLGW), Shelby County, TN

A simplified network in Chang et al. (1996) was modified based on comments from R.
Bowker (MLGW)

37-node and 40-arc network: nodes representing pipelines and stations
Earthquake hazard scenarios: Epicenter at N35.54°-W90.43° at Blytheville, AR
Fragilities of pipelines and stations — HAZUS-MH

PGV and PGA maps from MAEviz



Failure prob. of pipeline segments

Relative Error

= Failure probability of the i-th segment of a pipeline
P =1-exp(-v;-Al)
= Failure occurrence rate of a pipeline (HAZUS-MH: FEMA 2003)

v, =k-(PGV,)’
= Uncertainty in PGV (Adachi & Ellingwood, 2007)
PGV map PGV, = PGV, xg, 7
L Lognormal r.v. (median = 1, c.0.v. = 0.6)
» ‘ i e T Attenuated PGV (Fernandez and Rix 2006)
S el condton (hang & Tkacs, 2005

Pinpev,inPev; = Ping, ins, =exp(= | x; —x; ||/ Logrr)
= Generalized Dunnett-Sobel (Song and Kang, 2008)
Z.=Ing, /C, ~N(0,R) - Find gDS that fits best

= (&) Discretization error
choose number of segments considering corr. length




Multi-scale SRA using MSR Method

Higher-scale

P(Ey)=c'p

OP(Eys) _ v Op _ 1p0P
00 00 0

- MSR analysis using failure probability and

sensitivity of links p xR i=L... N
1 &

P = C1Tp1

B Py _rp B
00 00 00

- MSR analysis using failure probability and

sensitivity of segments P, % i=1..n,



Correlation between pipelines
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Simplified MLGW Gas Network (37-node)

18 3 7
Il Gate Station 24/_ wh a
B = @ Regulator ' / ,' 9 7\33
Risk at multiple scales [ P N
Link Node 99 II 27’ 2:93
21 W 1 351 08 19
. . \( _2(1 :u 31
Lower-scale: pipelines A e 0
. e 32 “—>-o e’
Failure probability of Link 25 oo s @SG
1 \ 1 \ \ o © O
~o- Segment#= 5 ; : L
(@\| | | @ T *
Segment # =10 9 | | A T
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< 0.6 806 de [CRi FabRRE Lo
o 8 ! t . |
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S e egment Correlated
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Higher-scale: service nodes

Prob. of Disconnection at Node 2



Probabilistic inference and sensitivity

Conditional Probabilities Parameter Sensitivity

I I it P R
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Simplified MLGW Gas Network (37-node)
3
18 -

= Conditional probability of link failure probability 5 o ey A
given observed system event (e.g. disconnection) @ /

Link Node

= Sensitivity of system failure probability with respect % N\ 21{2_;__3} 33,

to parameters in PGV-based model for failure S DS S
. T 12 10
occurrence rate: v, =k-(PGV,) XL 4
6 30 5



Appl. V: Post-hazard flow capacity of a network

O Traffic flow capacity between two points in a
network = determined by combinations of
bridge damage

q : a vector of network flow capacity for
bridge failure combinations (obtained by
maximum flow capacity analysis)

T
- “‘Q =qp : average post-hazard flow
capacity

2 % T T_.\2
< 6,=(@*q) p-(qp)
: variance of post-hazard flow capacity

~P(Q<a)= Z Pi

Viig;<a

4 08
§.7,)

. ) : probability that flow capacity is lower
Example: Modified Sioux-Falls network than a
Red: bridges; Circles: Starting & Ending points



Multi-state Fragility

Fragility

10°

Fragility

02 04 06 08 1
S.(7,)

Fragility curves (Gardoni et a/. 2002, 2003)

02 04 06 08 1
S.(7,)

= Only two states, “connected” or “disconnected”

P(Complete failure) = 0.3 <P
P(Heavy damage) = 0.45%<P,
P(Moderate damage) = 0.25%P,
P(No damage) = 1-P,

F(Complete failure) =0
F(Heavy damage) = 0.3<Full capacity
F(Moderate damage) = 0.7<Full capacity
F(No damage) = 1.0<Full capacity



Uncertainty quantification of flow capacity

= Capacity distribution for a given 0O Statistical parameters of flow
seismic intensity (M=7.0) capacity (M=6.0~8.5)

0.7841
01 A
T
0.09} /u — p f
0.08} Q
0.07} . T * ) 2 )1/ 2
| oo =(p (£.%F)— 1,
PMF o=
0.04} 5Q == UQ /#Q
0.03}
0.02}
10000 -
0.01}
ol | s | il ) L. {INE] | | L | | ese0fp
0 1000 2000 3000 4000 5000 6000 7000 8000
Capacity 9000 +
8500
0.9}
0.8} 8000
2
0.7} § 7500 ~
0.6] 8 T
CDF
0.5} ~_
6500 - ~_
0.4} —
0.3r 6000 + T~ _

Mean T
0.2¢ 5500 | —— - Mean+Std —
046 — - Mean-Std

5000 I | L | |
ol ‘ : : ‘ ‘ ‘ ‘ ‘ 6 6.5 7 7.5 8 8.5
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Probability

Analysis Results

027
0.18 -
0.16 -
0.14 |-

0.12

©
-

0.08 -

0.06 -

0.04 -

0.02 -

Probability with number of failed bridges

0.8497

L .

4 6
Number of failed bridges

M=7.0

1
10

Probability

J - —

I v1=6.0
I v=7.0
[ m=8.0

2 4 6
Number of failed bridges

M=6.0~8.0

1
10



Analysis Results

Conditional flow capacity (For 10t bridge, M=7.0)

1)
Parameter Value 3.
3

a
@ }
a9 M~ o A

Mean Hajiotn 6591.9 (8076.3)
Standard deviation Gy, oy, 1268.9 (1056.6) G2 —
ep1center T.
C.O.V. 5@\ Loth 0.1925 (0.1308) [
Importance measure for all bridges (M=7.0) ™. _f
. RE — 1 Hojbridge failure G
Ho
= 0s 1st, 2nd, 5th, 7th, and 10th
o bridges are most important




Capacity

Analysis Results

= Flow capacity with deterioration O Assumptions

P(T, Complete failure)
= P(Complete failure) X (1.0+0.0005 X T?)
P(T, Heavy damage)
SRR = P(Heavy damage) X (1.0+0.015 X T)
P(T, Moderate damage)
= P(Moderate damage) X (1.0-0.015 X T)
P(T, No damage) = 1 - P(T, Complete failure)
- P(T, Heavy damage)
- P(T, Moderate damage)

10000 -

9000:”’”””7””””77

8000 -

7000 —
. , where T:[Years]
6000 - e
~ B e
5000 | Meoan T~ MQ (t) =q p(t)

ffffff Mean+Std

4000 ——" MGZ’;'S“’ 30 40 50 60 70 8 9 100 GQ (t) — \/(q *Q)Tp(t) o Mé (t)

Time(Year)




Extension to multi-hazard environment

* Lee, Y.-J., J. Song, P. Gardoni, and H.-W. Lim. (2010). Post-hazard flow capacity of bridge transportation network considering
structural deterioration of bridges, Structure and Infrastructure Engineering, Accepted for Publication.

Epicenter

Coastline

More realistic assumptions

- Multi-state fragility estimates w.r.t.

drift capacity levels

- Attenuation relationship (PSA & PGV)

- Deterioration fragility estimates (Choe

et al. 2007)

- Multi-state flow capacity level
proportional to number of open lanes

- Deterioration scenarios

Area-to-area flow capacity

Further analysis for uncertain
earthquake magnitude

Progress of Structural
Deterioration (Corrosion)
by Sea Air



Analysis Results
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Application VI: FE system reliability analysis

* Lee, Y.-J., J. Song, and E.J. Tuegel (2008). Finite element system reliability analysis of a wing torque box. Proc. 10" AIAA NDA,
April 7-10, Schaumburg, IL.

= FE reliability analysis: component vs. system

System-level risk is a logical function of multiple component events
characterized by failure modes, locations and load cases

Using MSR methods, the system-level risk and parameter sensitivities
are estimated based on the results of FE “component” reliability analysis.

1. Mechanical structures 2. Aerospace structures 3. Civil
(single-nut piston) (wing torque box) structures
(Bridge

pylon)




Example: FE-SRA of bridge pylon system

= Bridge pylon system

= Consists of 2 arms — each has 13 stiffeners and 23 diaphragms
= Yielding failure considered in this example
= Uncertainties in Young’s modulus, yield strength and scale factors of load

cases (dead, live, in-service wind and out-of-service wind loads) considered
= Two load combinations considered: LC1 = D+L+Wi, LC2 = D+Wo

3,500KN 2,500EN

$ T0EN \.IT>180KN

l 200ENm 8,000EMN m
Pylon
self-weight l
FTE N m?
- -

(1) Dead load(D) (1) Live load(L)

300KENm

500K
2K M $ J— 10K
[~

SO0KINm
>

[~ 2R Wi

~—

b -

(1) In-service wind load
(W1, In-plane & Out-of-plane)

SO0EMN m

1,000KN
3R Niin? $ - WEN
~

F00EN m
>

> IKMim?

—

o =

(1v) Out-of-zervice wind load
(Wo, In-plane & Out-of-plane)



FE component reliability analysis

= Identification of significant components

Deterministic FE analysis using the mean values
of random variables - identify “hot spots” for
each load combination

FE reliability analysis for identified “hot spots” by
FORM - neglect if (1) Pf is too low or (2) highly
correlated with other (more likely) component

events
Body
Component event Failure probability (X 10~4)
E, (LC1; 1" spot on right body) 1205 = Correlation between components
E, (LC1; 1% spot on left body) 1.295 Correlation b/w components are computed by
E, (LC1; 1%t spot on right stiffener) 0.606 _ATA
3 pij =q; a i
Components < E, (LCI; 1%t spot on left stiffener) 0.606
identified .
reentt E, (LC2; 1% spot on right body) 6.996 Correlation E, E, E, E, Es = E, Eq
E, (LC2; 1%t spot on left body) 6.996 E; | 0.814 0.708 0.744 0.646 0.502 0.448 0.476
E, 1 0.744 0.708 0.502 0.646 0.476 0.448
E; (LC2; 1* spot on right stiffener) 2445 E; 1 068 0423 0451 0.680 0.429
E, (LC2; 1% spot on left stiffener) 2.445 & 1 0451 0423 0.429  0.680
> E; 1 0.887 0.820 0.842
E, (LC1; 2 spot on right body) 0.430 Eq 1 0.842 0.820
Truncated due fol £ (LC1; 2" spot on left body) 0.430 E; Symmetric I 0801
high correlatioy Eg 1
E,, (LC2; 2 spot on right body) 4.044
L E,, (LC2; 2 spot on left body) 4.044




FE system reliability analysis by MSR

» FE-S

-3
10

247 ]

22 e
£ —= - Uni-bounds |/
_g --6--Bi-bounds
= 18- ]
I o R
= 16 ]
2 \
= oo R R r > S b
= 14} o
& \\\\\é
£ 12¢ 1
)
N
»w  1r ]
>
/%)

0.8F )

s s = %
0.6 ‘ ‘

RA by MSR

Probability of most dominant component:

6.996x10* vs. system failure probability 1.550x10-3

- component reliability analysis may
underestimate the risk significantly

Using component failure probability and sensitivity,
the MSR method computes the system level

parameter sensitivity

Can analyze other system events just by replacing

event vector ¢

Correlation

P(E,.)=P OEi

N

= J.(pN (z;R)dz

= Ich(s) f(s)ds

=P OBi ~Z,<0
i=1

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

. oP P,
Random variables o =— n,=—-oc
o, 0o,
Diaphragm (Left) -0.0004 0
Diaphragm (Right) -0.0003 0
Young’s Body (Left) -0.6480 1.8018
modulus Body (Right) -0.6624 1.8159
Stiffener (Left) 0.3463 1.3114
Stiffener (Right) 0.3558 1.3198
Dead load 0.5130 0.0171
Live load 2.1175 1.8348
In-service wind load 29923 14.873
(In-plane)
Load I . nd Toad
scale fizservice wind [od 0.4900 1.9121
& (Out-of-plane)
A0t B t-of-service wind load
Hiot-serviee W 1o 13.989 66.648
(In-plane)
Out-of-service wind load
(Out-of-planc) 2.3301 8.599
Body (Left) -8.0319 8.8381
Yield Stiffener (Left) -2.5299 2.925
strength Body (Right) -8.0583 8.8729
Stiffener (Right) -2.5132 2.9001




>> Deterministic Optimization

min f(d,py)

My

2.(d.X)>0
d"<d<d”, py

S.I

L'I'
S Px =My

Low probability

of failure

>> Reliability-Based Design
Optimization (RBDO)

min /()

st. P =P(E,)~P [U Ne@.X)< 0] <P,

k eC,

II; Reliability-Base

-

-

-

ptimization

Objective function
increase f(d,py)

~
S~ Unsafe

\ 4

High probability
of failure



RBDO of Truss system: Minimize the cross section areas under target failure probability of
system collapse

Using MSR method, we can consider
Effects of load re-distributions (sequential failures)

Nguyen, T.H., J. Song, and G.H. Paulino (2010). “Single-loop system reliability-based design optimization using matrix-based system reliability method: theory
and applications,” J. of Mechanical Design, ASME, Vol. 132, 011005-1~11.

stem RBDO by MSR metho

Objectivetunction. f{d)

Effects of correlation between components
11 21
7 12 17 18
8 10 13 15 20
9 14 19
A A A A
26 31
DD 27 28 IMAAAN3Z
24 25 29 34 36
30 35
A A A A

104
120
115 -
o —
110 -
105 -
100 - == TRe-distribution Considersd
—l—No Re-distribution
95 T T T
0.00 0.25 0.50 0.75

Correlation coefficient, p



stem RBTO by MSR metho

RBTO of 2D or 3D continuum: Minimize the volume or compliance under target failure
probability of system failure

fixed
y—rd L

Nguyen, T.H., Paulino, G.H., and Song, J., and Le, C.H., “A Computational Paradigm for Multiresolution Topology Optimization (MTOP),” Structural and
Multidisciplinary Optimization, vol. 41(4), 525-539.
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In-Class Material: Class 19

Multivariate normal integrals

Z~N(0;R)
b by
F(a,b;R) :jj dz
If @ =—o, i=1---,m, it becomes Joint
Z~N(0;R)
b by
®_(b, b ;R) = J'J' dz

I) Ditlevsen & Madsen (1996)

m=2: ®,(b,b,; p,) =

assumption

Instructor: Junho Song
junhosong@snu.ac.kr

of

P12

+[ g,(bby; )dp

error by

assumption

Note: double-fold integral involving (-o,b) = single-fold integral in (0, p,,)

Note:  p,, >0: s.i assumption under/overestimate

p,, <0: s.i assumption under/overestimate

m=3 Song & ADK (2005) double-fold integral

Il) Sequentially Conditioned Importance Sampling (SCIS)

(Ambartzumian et al. 1998)

~sequentially sampling based on conditional PDF

given sampled value

~"scis.m” (developed by Prof. Young Joo Lee at UNIST
available at http://systemreliability.wordpress.com/software/



http://systemreliability.wordpress.com/software/

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

1)

V)

)

Product of Conditional Marginals (Pandey & Sarkar 2002)

cpm(b;R):ﬁq{M]

k=1 Gk\k—l

— reasonable accuracy & very efficient
— parallel or series
— error? asm?

— Improved PCM (Yuan & Pandey 2006)

Sequential Compounding Method (Kang & Song 2010)

(@ <-B)U@, <-B)N(2Zs <=B,)

\ }
|

Zy <=L Pas Ly <—fy

— applicable to general system

— efficient and accurate

— handle large m

— when the same component event appears multiple times — difficult

— parameter sensitivity of system reliability using SCM (Chun, Song, and Paulino,
2015, Structural Safety)

Matrix-based System Reliability (MSR) Method (Kang & Song 2008) (Kang et al.
2012)

Method by Genz (1992)  hitp://www.math.wsu.edu/faculty/genz/homepage

Transformations to uniform hypercube


http://www.math.wsu.edu/faculty/genz/homepage

Seoul National University Instructor: Junho Song

Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr
V2 . integ:rate
1 /nonllPear
function
0 1 v,
Z""N(O, B) uniform
r.v.

— Parallel system

— Very accurate & efficient even for large-size system
— Integration by qusai-MCS

— mvncdf.m in Matlab

Genz, A., and Bretz, F. (2009) Computation of Multivariate Normal and t Probabilities,
Lecture Notes in Statistics, Springer-Verlag, NY.
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* " (cf. )
—

V. Structural Reliability under Model & Stastical Uncertainties

(Ref.: “Analysis of Structural Reliability under Model and Statistical Uncertainties: A
Bayesian Approach” ~ eTL)

Formulation of Reliability Problems under Epistemic Uncertainties

D Reliability Problem with Aleatoric uncertainties (only)
P, :I f, (X)dx X: r.V's representing
aleatoric uncertainties

in the problem

— Use component and/or system reliability method

@ Reliability Problem under Aleatoric & Epistemic certainties

PO= [ fx )ix=pB0)=0"] ] /\
ung(x; )<0

=
0=[0, 017 Py
uncertain
parameters
=P, & B become due to uncertainty in 6, and/or 0,
P B
cf. 3(0), P, (0) = reliability index given value of uncertain parameters

Three approaches for estimating reliability under epistemic uncertainties

Suppose f‘e‘(ﬂ) is available, /\

—_—
]

@D Point estimate of Reliability: P, (0) at 0=0

0: point estimate (representative) of 0



Seoul National University Instructor: Junho Song
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R f(0)
=M, = J.Gf@ (9)d9 Bayesian 0
€.g. 6 0 Likelihood function

- _ _ "M
0=0,.=arg gnax L(x;0) Non-Bayesian L(x;0) oc P(X,--+, X |9)

n |
A

= P, (6) ﬂ(e): Perform reliability analysis with 0 = fixed nf(;"f'f’) r
Al
i L(x|e)
; _ NAFO
Note i) P (M,)=Mg, /A\mei @ s
cased MLE
i) Variability in ® not considered ] 0

@ “Predictive” Reliability

P =E,[ P (0)]

= I P, (9) fo (G)dﬂ
p=07 ]
— incorporates variability in 0

— but still point estimate, i.e. does not measure variability in P, (9) caused by

thatin 0 /L>\
—>

@ Bounds on Reliability (Confidence Intervals) Ps(6)

100xp(%) confidentthat £ is b/w x and o
0.95 7

P

g
First, find mean and variance of /3(0)

. > B

reliability analysis f,(0)

e nt” |

FO
O-ﬂz = (O_ﬂz) Veﬂ Me)zeevoﬁ(Me)T

Parameter sensitivity (e.g. FORM)



Seoul National University Instructor: Junho Song
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Second, assume B~ N(u,,0,)

Std.normal

P Cp
2 ug = b=ty 0.70 1.04
N . | |
I S 0.80 1.28
0.90 1.64
1 . 0.95 1.96
Hg—Cp0p  HptGpop 0.99 2.58
<'B>100xp(%) =Hg + Co0p
(if B available, B+c,o,)
<Pf >100><p(%) :q)[_(ﬂicpaﬁ” P =®(-p)

Then, f, (6,), f, (8,) ??

(Review) Rel. Analysis under Epistemic Uncertainties (Model or Statistical)
@ Point Estimate P, (é) ,H(é)
@ Predictive Reliabilty P, =E,[ P, ()]
©® Bounds <ﬁ>100><p(%) = Hy icpo-ﬁ

fo (6:) 2 1, (6,) ?

Bayesian Parameter Estimation cf. Bayes rule
f(0)=c-L(6) p(0) P(AlB :L.p BIA)-P(A
o f c L p
@ P(0):( ) distribution
- represents state of our knowledge ( ) making

observations (objective information)

- may incorporate ( ) info. such as “engineering judgment”



Seoul National University Instructor: Junho Song

Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr
@ L(0):( ) function
- represents ( ) information gained from the observation
- function ( ) to conditional prob. of the observation given 0

L(0) o P(E,y|0)

®@ ci( ) factor

- makes c-L(0)-p(8) avalid PDF

@ f(0):( ) distribution
- represents updated knowledge about 0

- subjective + objective

; O O rare observation available

O O as more observations are made

Computation of ¢ and posterior statistics

c=[[L(0)-p(0)-do]"
M(0)=[0-f(0)do=[0-c-L(6)-p(6)-do; muli-fold integrals

T

T, =[007f(0)d0—M(6)M(0)

How?

Convenient forms for special distribution (directly update statistics “conjugate”)

Special numerical algorithms (Geyskens et al. 1993)

Sampling methods (MCS, importance sampling, ---)
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Probabilistic shear strength models

1.5

V, = (1/6) f,05p, d

\ Empirical Formula\

Shear
Strength V.?

In(C) - In(c)

Reinforced Concrete
Beam w/0 Shear
Reinforcement

/-— - _15 ) , , | R L L L
Eatab_ase of 0.001 0.01 0.1
xXperimental
Observations P

@® Empirical formulas are widely used for code provisions and designs
~ based on simplified mechanics rules and limited amount of experimental observations.

@® Inaccurate description of physics & missing variables — biases and scatters

@® Need probabilistic shear strength models that correct the biases and quantify the
uncertainties based on comprehensive database of experimental observations 2



Probabilistic models by Bayesian updating*

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced
concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)
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Bridge Column

C(x,0®) =c(X)+v(x,0)+oc¢

Capacity Prediction by Bias- Remaining
deterministic correction errors
Model

Assumptions:

@® o:isindependent of input variables ~ “Homoskedasticity”

@® ¢ has the normal distribution ~ “Normality”



Probabilistic models by Bayesian updating*

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced
concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)

Explanatory
functions

IN[C (%, ®)] = In[c()]+ > B, (x) + o6
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Nonlinear transformation
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Step-wise removal process e
--=--- 1(0) =xL(0)p(0)

/s Bayesian parameter

7’4 6 estimation
Ho10g1 041 Poo.

@® Remove an explanatory terms with the highest c.o.v. (most uncertain)

@ Continue until the mean of ¢ starts increasing significantly

Table 2. Explanatory removing process for joint shear strength, equations (1) and (8)

Step 1 2 3 4 5 6 7 8 9 10
f. 0 0 ] ] 0 0 0 ] 0 0
1P 0 0 ] ] 0 0 0 ] 0 X
Bl 0 0 ] ] ] 0 0 ] X X
1 0 0 0 0 0 0 0 X X X
1—e/b. 0 0 ] ] 0 ) X X X
B 0 0 ] ] ] X X X X
Ay pro [ Ashreq 0 0 ] ] X X X X X
hy/ he 0 0 ] X X X X X X
by be 0 0 X X X X X X X
Spro/ Sreq 0 X X X X X X X X
Mean of o 0-150 0-150 0-150 0-150 0-151 56 0-165 023 0-359

0 Included explanatory term
X: Not-included explanatory tenm

Kim, J., LaFave, J., and Song, J. (2009)
“Joint Shear Behavior of Reinforced Concrete Beam-Column Connections”
Magazine of Concrete Research, Vol. 61(2), 119-132.



Shear transfer mechanism

Joint ASCE-ACI Committee 426 (1973) & 445 (1998)
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Variables affecting shear strengths

InN[C(X,®)] =In[c(X)] + Zpleihi (X) + o¢
x=(f'dap.)

(1) Concrete compressive strength: fC’

~ tensile strength increases the shear strength (approximated in terms of compressive
strength)

(2) Member depth: d
~ shear strength decreases as the member depth increases (“size effect”)

(3) Shear span-to-depth ratio: a/d
~ shear strength increases as the ratio decreases (“arch action” of “deep” beam)

(4) Amount of longitudinal reinforcement: p
~ shear strength increases as the reinforcement increases (“dowel action”)



Empirical shear strength models

IN[C(X,0)] = In[c(X)]+ Zpleihi (X) + o€
x=(f'dap.)

7
Model Formula characteristics
1 .
ACI 11-3 V.==fbd accounts for compressive strength only
ACI 11-5 v, :(0_158\/{' +17p\l<;l_d]bwd compressive strength + p
Zsutty V2 Z(f,pgjusb 5 more accurate than ACI models
c * c a w

Eurocode Draft V. =0.12k(100p f.)"*b,d tends to underestimate (conservative)

. 100p)"° . 1e 1.40\" - -
Okamura & Higai vV, :O.ZW(fc) (o.75+mj b,d good without severe biases
Tureyen & Frosch v, :%\/f_;bwc tends to overestimate for deep beams
Bazant & Yu V, :1.1044-p3/8bw(1+2j 1}:% mechanics-based, semi-empirical, accurate8

0

-1.2-0.45(a/d)
Russo et al. V, =0.72 a{pO»‘*(fg)m +0.5p°'83fy°89(:j wbwd semi-empirical, large database




Shear strength database

* Reineck, K.H., Kuchma, D.A.,

Kim, K.S., and Marx, S. (2003)

“Shear database for reinforced concrete members without shear reinforcement”

ACI Structural Journal, Vol. 100(2)
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In(C) - In(c)

Overall errors of the existing models

® Ly :overall bias of the existing model

® W, :overall scatter of the existing model

In[C(X,®)]=In[c(X)]+0+0c¢

Posterior means
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Model

0 (bias) o (scatter)
ACI 11-3 0.257 0.382
ACI 11-5 0.165 0.335
Eurocode Draft 0.456 0.223
Tureyen & Frosch 0.287 0.245
Zsutty 0.0261 0.244
Okamura & Higai 0.116 0.176
Bazant & Yu 0.0142 0.166
Russo et al. 0.00120 0.156
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In(C) - In(c) -y

Bayesian updating with bias-correction (H1)

IN[C(X,0)] = In[c(X)] + Zp: 0.h.(X) +o¢

® |l . approximately represents the uncertainties after the bias correction (scatter)

a E. d db . _
®h x):2,p,—, =%, 2, —, X~ dimensionless explanatory terms
i S | ' ' H ' '
d'E,"d’ h’h
15 Posterior means of &
Model
1t Constant bias H, H,
ACI 11-3 0.382 0.222 0.165
0.5}
ACI 11-5 0.335 0.218 0.177
0 Eurocode Draft 0.223 0.172 0.165
-0.5 Tureyen & Frosch 0.245 0.178 0.167
At i Zsutty 0.244 0.185 0.168
15 o o Okamura & Higai 0.176 0.159 0.157
0,001 0.01 0.1
Bazant and Yu 0.166 0.156 0.154

11
ACI 11-3 Russo et al. 0.156 0.146 0.146




In(C) - In(c) -y

Bayesian updating with bias-correction (H2)

IN[C(X,®)] = In[c(X)]+ Zp: 0. In[h.(X)]+ o¢

@ Logarithms are applied to the explanatory functions.

@ Consistent with the product forms of the deterministic C(x,®) = ¢(x)h, (x)" ---hp(x)ep exp(ce)
formulas

15 : Posterior means of &
Model
1t Constant bias H, H,
ACI 11-3 0.382 0.222 0.165
0.5f
: ACI 11-5 0.335 0.218 0.177
O . Eurocode Draft 0.223 0.172 0.165
-0.5 Tureyen & Frosch 0.245 0.178 0.167
At ] Zsutty 0.244 0.185 0.168
15 o o Okamura & Higai 0.176 0.159 0.157
0,001 0.01 0.1
Bazant and Yu 0.166 0.156 0.154

ACI 11-3 Russo et al. 0.156 0.146 0.146




Calibration of existing models

In[C(x,®)] :Wiei In

@ Use the fractions of the empirical formulas as the explanatory functions

| 1/3
e.g. Zsutty's model V.= 2.2( fc’pgj b,d
a

h(x): 2,@, o, %

@ Do not drop explanatory terms with large c.0.v.’s

@ Explanatory functions do not have to be dimensionless
~ may be more effective in representing the physics than the dimensionless terms

. =0.166 = 0.168 (posterior mean by In[c(x)]+zp"€)i In[h; ()] +o¢ ),



Construction of new models

@ Select some dimensional terms to make the same dimension as quantity and add more
non-dimensional terms. Perform the Bayesian parameter estimation by models such as

In[C(X,0)] = Zp:Gi In[h.(x)]+oce  Product

InN[C(X,0)] = Zeln[h(x)]+ln{Hh +Hh } Product of

i=1+1 i=m+1 Sums
@ Do not drop “dimensional” explanatory terms
@ Useful when

(1) there exist no empirical models that can be used as a base model.
(2) the effects of explanatory terms are not well known.

@ Shear strength example: tried 17 explanatory terms
— Similar forms & parameter values with the two best formulas (with smaller L)

d 1/3
{ Zsutty’s VC=2-2(fc'pgj b,d

Okamura & Higai \, _q5 (100p)** (f)1’3(075 140j b g
; (d /1000)" rq)
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“Probabilistic” Models

@® General form
IN[C(X,®)] =IN[C(X,0)]+ 6 —=> C(x,0)=C(x,0)-exp(cc)

@ Capacity ~ follows the lognormal distribution

@® Mean and c.o.v. are derived as

e (X) = C(X, o) -€Xp(u,€) = C(x,8) for p, <<1
8. (X) =8¢ =[exp(us) -11"* =, forp, <<1

@ Conditional pdf of capacity for given x

S e

@ Predictive pdf of capacity for unknown x

fo(©) = [ fo(e1%)- () dx

15



Performance of probabilistic models
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Performance of probabilistic models

Shear Strength, N
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Performance of probabilistic models

@® e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study

@® Box plots of errors ~ show that the developed models are unbiased and have consistently
good performance for the whole ranges of the parameters.

In(C) - In(cy) -y
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Other Applications

Shear strengths of RC beams with shear reinforcements | ‘ B
(W.-H. Kang, J. Song, and K.S. Kim) N ‘

Seismic strengths of buckling-restrained bracings % DT ‘ | P
(B.M. Andrews, J. Song, and L.A. Fahnestock) ‘ N
(Andrews et al. 2009a, 2009b)

Strengths/ of RC beam-column connections
(J. Kim, J.M. LaFave, and J. Song)

Statistical validation/verification of concrete FEM
(H.H. Lee and D.A. Kuchma)

Shear strengths of RC “deep” beams (strut-and-tie models)
(Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song, ==
2014)

Course term projects
- Strengths of concrete-filled tubes (Mark Denavit) i by
- Fracture toughness (Tam H. Nguyen)
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Likelihood function L(@) for distribution (statistical) parameters 0,

(e.g. u, o, A &)

D Measured value are available, x;, i=1---,N

Assuming the observations are s.i.

L(ef)ocp((N]X=xi|@f =0,)

; xi,i:IL...’N
TTpix=xlo. - e ﬁ\(ﬂ)
_I;IP(X—Xi |®f =0,) (rsi) ,

BM LE 0

Ocl_ﬁ[ f (X, |9f)

e.g. x={x} uni-variate normal N(u,c")

Two samples observed: 12.3(< X, ), 13.5(< X,) f(0)=cL(0)-P(0)

L1 1(123-p)) 1 1(135-uY
-0 \/Eaexp[ 2( o j] \/Zaexp[ 2( c j}

L o
00

MLE 0,, - =argmax L(0) <
# 1(0) prefer
Bayesian Parameter Extimation

aInL=0

f(8)=c-L(8)- p(6)

(2 No direct measurement X of available, but a set of events that involve X are
available

e.g. no measurement for compressive strength of concrete fc' (—u, o, 1...)
available but spalling observed under a certain condition
Inequality events : h(x) <0, i=1---,N

Equality events  : h(x)=0



Seoul National University Instructor: Junho Song
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a) Inequality
e.g. h(x)=-C(x)+D(x)<0 no failure observed

h (x) =C(x)-D(x) <0 failure observed

L)< [Pt <0p,)

N
:H J. f, (X;0,)dx = structural reliability analysis

i=1 h (x)<0
b) Equality
eg. h(x)=a(x)—a, =0
a(x) : fatigue crack growth model, e.g. Paris law

a,: measured crack size

Proof
N _ P[hy(x) -6 —46 <0] - P[hy(x) -6 < 0]
L(8,) o [ Jlim P[0 <h, (x) <] A, 26 -
i  P[hy(x) — 48 < 0] - P[h(x) < 0]
N O :Alzlﬁlzlo A8
=115 P[h (x) -3 < 0], o lim P[0 < hy(x) < 46]

VP |§:0 : can be considered as parameter sensitivity of P, w.r.t 6 (model

parameter)
{ FORM-based (Madsen, 1987)
Good review & new development (Straub, 2011)

N a trick to transform equality constraint to constraint

Likelihood function for limit-state model parameters, L(0,)

eg. 9(x;0,)=V.(x0,)-V,(x0,)<0

%\/TC' b,d (ACI11-3)

(D Statistical model (using original deterministic model)

y=g(x;0,) +oe ~ submodel or limit state function

eg. 6,f"*b,d (ACI11-3) 0, ={6,,---.0,,0}
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X : observable input parameters ( f_, b, d,---)
Yy : observable output parameters (V)
0, : uncertain model parameters (6, 6,--)

ce : uncertainty due to missing variables and/or inexact mathematical form
* g:std. normalrv * " assumption
* o: magnitude of model error (uncertain parameter)
— constant over X “ " assumption

+ u, =0: unbiased model

Vob e ~ Vob N -
" ‘/, " o . *
AR . St .
v & 0 )X
2 i ~1 -
g Vpred 7 * Vpred
May achieve H by a proper nonlinear transformation

eg. Iny=Ing(x,0,)+oe

@’ Statistical model (based on deterministic model, Gardoni et al. 2002)

y=0(xX)+7(x;0,)+0ce

§(x) : original deterministic model (e.g. %\/Ebwd ) e OF
. :9)

7(x;0,): corrects the bias g

o€ : remaining scatter @

e.g. RC beam w/o stirrups shear capacity
(Song et al. 2010, Structural Eng & Mechanics)

: a,
Find M, Yo _ 8
Mo
Po;6;

InV =Inv(x) +20, Inh (X) + e
Zoo

V(X) : 8 models from codes & papers using
Bayesian

Parameter

h. (x) : explanatory terms from the shear transfer mechanism o
Estimation
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@  Likelihood function L(0,)?

Observed event  Equality: y=Y,, i=1---,m know v, when failed

_ {y>ai i=m+1---,m+n
Inequality:

No failure up to Vc
>b i=m+1---,m+n+N

Failed but do not know when
Model Y =g+ +o¢

a) P(Y=y;)=P(oe=y,-G(X)-7(x.6,))

P(Y =)o £, (y) FrO00 = fol@) dq
(i) = d

Yi
dq _  de
= Q(qi)-dy fo(q) = f:(&) aq
- 1) =0
dq

b) P(Y>a)=P(g+y+oe>a)
=P(oe>8,-G-7)
e

o}
c) P(Y<b)=P(G+y+oec<b)

=P(oe<b-g-7)

o2

0] ol 2) T o255

i=m+1 i=m+n+1

% Matlab codes for “Model Development by Bayesian method”

— MDB (by Prof. S.Y. Ok at Hankyoung univ. for educational purpose)
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457.646 Topics in Structural Reliability

In-Class Material: Class 22

VI. Simulation Methods
(Ref. CRC Chapter 20 Stochastic Simulation Methods for Engineering Predictions)

Simulating uniform random variable U (0,1) 1

— Basic in generation of random numbers

— ( ) sequence from a seed number

N\
1 :\\ :
0 1
— Desirable to have a ( ) period and ( ) sampling "standard

¥ Matlab : rand( ) uniform*
— could choose a random number generation algorithm
— default: Mersenne Twister (Matsumoto & Nishimura 1997)
— Period; 2%%¢_1

— “Very fast”

Demo

X,,=[100 1000 10000]
fori=1:3

X=rand(X, (i),1);
subplot(3,1,i)
hist(X,sqrt(Xv(i)));
end

Generate random numbers according to CDF

Consider Y ~U(0,1)

y U(0,1) x  Fx(®) £ ()
W é Fy(y) =y
Fy) = KK
= Fy (X)
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(1) Generate Yy, i=1---,N
per ~ U(0,1)

(2) Find corresponding X;, X, = ,i=1--- N

Generate general dependent variables
joint PDF f, (x)

X={X,,---, X defined b
X . Y {Jomt CDF F(x)

cf. Rosenblatt / f \'\
X1

X2 -+ XN-1 XN

= Fxl(x1)
I:xz\x1 (Xz |X1)

Yo = x alXpX (X |X1 _1)

X, = Fx_ll(yl) (1) Simulate {y,,---,y.}

X, = Fl, (yzlxl) @ Find {x, x ¥

Xo = Fx, (yn|x1 X,-1) Using (<)

Simulation of normally distributed RV’s *(Box & Muller 1958)

— homework

¥ Matlab mvrnd(M, X, N) cf. normrnd
Generate N samples of X~ N(M,X) u~N(,1)
X=DLuUu+M

Generate random numbers from Nataf distribution

Fy,(x), i =1,2,+,n & R

Y~U(0,1) U~N(0,1) 4 Z~N(0,Rp) X~Fy, (x:), R
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i. Find R, (Liu& ADK, 1986)
ii. Generate u from N(0,1) (or y from U(0,1) & transform)
iii. Compute Z~L,u (or Z~N(O,R,))

iv.  Compute Xx = Fx’il( ), i=1,---,n

Monte Carlo Simulation

N City in Monaco (“MC project” in 1994)

P= [ fxdx

(Un)g(x)<0

=] 09 -{ W=
Index otherwise
Function

= average of index function value (w.r.t X~ F, (X))

Simulate X, i=1,---,N accordingto f, (x) 7

Let g, =1(x;), i=1,---,N

Fr
P, =lim - -
N—o 100 N
I5f = Estimation of P, using N sample
Compare

mean (rand(3,1))
mean (rand(100000,1))

“MCS is an extremely bad method. It should be used only when all alternative methods are
worse” —Alan Sokal (1996)

/

r

\ Lo

1
N 4_ =37




Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

A

Note: P, is random

l

How much variability? &,
f

g; : Bernoulli random variable

{ 1 with p=
0 1-p=

¢ E[Pf 1=
“unbiased” estimator of true P,

. Var[lsf] =

Quantifies variation of P,

Used as a measure of convergence

1
0,6 decrease (oc —)

[f?} + O'p}] ~69%
>N |P; £ 205 | ~98%

e

See MCS.m
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% Minimum No. of Simulation to achieve &

Targetc.ov § =——

N 1-P,
o é_‘Z A Pf
eg P, =0.01 5 N3
0.01 ~10°
0.05 ~40x10*
0.10 ~1.0x 10*

% How to improve accuracy of simulation

1
JVar[P,] INY Var(g] 1
S, = = =—:5,
" E[R] Elq;] JN ®

@D Increase N

@ Decrease 5qi
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457.646 Topics in Structural Reliability

In-Class Material: Class 23

Importance sampling

Need to compute integral (in general)

I, = I g(x)dx
g(x) : general function

J{ﬁé ))} h(x)dx h(x) : sampling PDF having non-
values where g(x) is non-

Procedure:
i. Sample Xx;, i=1---,N according to
ii.  Compute g,

A

: 13
ii.  Estimate |, =—>"q
N =

To have accuracy (& efficiency), the variance in g must be small. If g(x)>0,
h(x) g(x) is the best choice.

% Application to reliability problem:

X Sampling density
:J-{ 1 (X) £ (X)}' i (non-zero) whereg =1 - f =0
=E|[ | relative to
Find h(X) such that
G =
I
A Var[— Var[|
c.o.vof P, 5@ for importance sampling? [ h b ]

||
Z||—\
&MZ
x|

==+
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19 =~ 1=
Heg, :WZ;E[%] 2> P :WZ;Q

~

N\ Estimate on the of P, (=sample mean of )

i=1

2 _ 1 N 9 Sz _ 1 N 2 1 82
% eVl > S =SS,

: . 5 1 .
. Estimate on the variance of P; = NX sample variance of ¢, 's

1
S. -
Pr \/W(j ’ (E,E’...’i ) Xi<_h(x)

Importance sampling P, :j[%}-h(x dx = E{%}

Var{i} <<Var[|]f
h 1,

Selection of sampling density

@ Shinozuka (1983)

A
M~

e . .
uniform dist®

% 1o
=/ within the box
\ (0 elsewhere)

>

, . , |- f
— not good because zero density assigned to failure cases (; =

@ Harbitz (1986)

Normal dist*
outside the sphere
with radius 8

wlgew M

0 otherwise
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¢ [ g, (udu=c-P(u|=p)=
oz

P(lul= £)=1-P(lu|< A)

=1-P(|u < %) =1-PUZ+--+u? < 57
=1-X,(8°)
Chi-square distribution n degree of freedom

.oCc=

G = l-f _
' h
How to simulate according to h(u)?

i.  Simulate u; ~N(0,1I)

i. Compute g, =

Jud

i.  Simulate R? uniformly dist®
over surface

R = el (XE()

2 -
But truncate R’ < 3 x*dist?
PDF of R2
X2(r?
FRz (rz) :% > R?
l_ Xn (ﬂ ) Bg '

iv.  Compute R-a

Note: Not effective as n1 .
Volume inside sphere

is almost 0
as n increases

1- X2(f%) =1

@ Melchers (1989)

h(uy=N( )

eg. =0’ (FERUM's Importance Sampling Option) | X
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@ Series system

AL Y

h(u) = Zwihi (u) where h (u) < N(u;,X)

W, : weight (oc ", m>0)

Challenges
O h(x)=0 where I(x)#0= does not converge
Multiple design points?

h(u) = wh(u) + w,e(0, 1)

ADK & Dakessaian (1998)

@ System problems

I. Where? //

ii. Cost of finding the importance points /

joint
design point
.
Eal

% Adaptive Importance Sampling

(1) Directional Simulation

(2) Sequentially Conditioned Importance Sampling (SCIS) (—multinomal prob. calc.)

(3) Adaptive Importance Sampling based on Cross-Entropy using Gaussian Mixture
(Kurtz and Song, 2013); using von Mises Fisher mixture (Wang and Song, 2016)
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VIII-1. Probability-Based Structural Design Code

— Cornell. C.A (1969) A probability-based structural code (J. ACI)

— Ravindara & Galambos (1978) Load & resistance factor design for steel structures
(J. Str. Eng, Div. ASCE)

Load & Resistance Factor Design (LRFD)

Replaced allowable stress design (ASD) (—safety factor)

= Probability-based code

¢R > z 7Qu = 70Qom 7 Quy s (1)

Dead load Live load

i R .« " resistance

— code formula (e.g. V, :%\/fibwd )

— nominal values used (material & dimension)
: givenin*“ " force, e.g. bending moment, axial force, shear force
i. /i " Factor ~ ¢ 1
(Dimensionless) conservatism due to the uncertainties in R

i.  Q,:mean load effect

— in generalized force (structural analysis)
iv. y: “Load” factor~ y 1
Conservatism due to
D Potential overload
@ Uncertainty in load effect calculation
V. Limit-State
‘U " limit-states
e.g. frame instability, plastic mechanism formed incremental collapse
“S " limit-states

e.g. excessive deflection, excessive vibration, premature yielding or slip
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LRFD codes suggest formulas for ( ), methods to compute ( ) from loads

provide ( ) & ( )
for each structural element (Q,,) from loads

to satisfy the ( ) reliability level

Measure of (target) reliability

(or conservatism)

= use
E{In g} o
B= O e 2)
TR
>
Hg 2

Want to split so that factors for R & Q can be determined independently

¥ Lind (1971) /6z +65 U a(6; +6,) where @ =0.75

Y

—
®

N

(#rs tgs Oy 5g)?

Uncertainties in the Resistance, R

R=R,-M-F-P
R, : nominal resistance by codes

M : “M"aterial ~
F : “F"abrication ~

P : “P"rofessional ~
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FO

@ u U
@ 637 INR=
var[InR]=¢&2 =

Note &2 0165 when 850 1

1

3 5R
Uncertainties in Loads, Q

Q=E(C,AD+C,BL)

D py U

8g =6+,

Cpap +C. BL

@ C2 2 12 (52 + 52) + CLul 2 (6% + 67)

2
=0f +

(Cotipttn +CLptgft )’

Instructor: Junho Song
junhosong@snu.ac.kr
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Finding target reliability index
Initially, Eq. (3) & Kg,Hq,05,0, — existing, e.g. allowable stress code

— can back-calculate target reliability index B embedded in the existing code

For example, 1969 AISC simply supported beams:

B=3.0 (member), p=4.5 (connections)

— Provided starting points (and calibrated later)

Load & Resistance Factors for given target 8

Eq. (1) ¢R, > z7kam =7e(¥oColtp + 7. Crit)
K

Eq. (3) exp(—a-B-0z)-pg 2exp(a-B-8y) -, < expressions derived for pig, g, 0,3,

From the LHS of Eq. (1) and Eq. (3): ¢= exp(—aﬂé‘R)% where o =0.55

n

From the RHS:

Ye :exp(aﬂéE)
Yo =1+afB\5: + 5%
Yo :1+aﬂ\/§§+5f

iy If 57T {¢
4

N Hg
£R 51 If 2R,
i) : : )

n n
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Review in Nguyen, Song & Paulino (2010)
VIII-2. Reliability-Based Design Optimization (RBDO)

® RBDO formulation

min f (d, )
d.py

s.t. P[g(d1 llx) < O] < F)ft k Objective function
increase f(d,ux)
d"-<d<d"
TR TRES T ‘
Low probability
Where of failure
f(d,p,)
d >
X High probability
of failure
By
Py
d-,d"
LB

@ Reliability Index Approach (RIA; Enevaldsen & Sorensen 1994)

min f (d,p,)

d.py

st. Vs

B' — target reliability index —®[P/]
f < generalized reliability index

p=-7 ]

N\ By FORM analysis (or others)
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= compute P, for each interation of d to

check if the constraint is satisfied

= double loop approach min f

g(dx) =0

= can be inefficient if the constraint S = f isinactive .
D\ B

= may not be able to provide an optimal solution if the failure does not occur in the
feasible domain

Performance Measure Approach (PMA; Tu et al., 1999) % double-loop

min f (d,p,)
d.py

st g, =F"[@(-)]20 (@ [-p1=P)

“Performance function” = quantile of g at P'
9,20 &P <P

S B p
Equivalent RBDO

How to find g,?

They proposed (instead of solving FORM target [)

gp:muinG(d,u) -------------- (1)

st |u|=8°" = Minimizes g instead of |ul|

0
~ facilitates gradient-based optimization (using % )

= Overcomes the problems in RIA
(1)
Isthis g, really F;*[Pf]?
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ong\_\A

\\ g=g-g=0
/g X
[]

\ SN g-100 2,
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Set a new limit-state function

g(x)=9(x)-g,

P(g' <0) = ®(—B =|P;
Il

P(g<gp)

Il
Fg(gp)

Single-Loop PMA (Liang et al., 2004)

Replace the optimization in (1) with an approximation (but non-iterative)

system equation, i.e, Karush-Kuhn-Tucker (KKT)

condition

V,G(d,u)+ AV, (Ju|-B')=0 (A —Lagrange Multiplier)

Jull-£* =0
i. Solve KKTtoget u=10
i. Evaluate ¢ at u=_0
iii. Approximate design point by
u'=p-a'
iv.  Check g(u')0 g, >0
Single loop RBDO
min  f(dm,)

st g,0g(d,x(u"))=0

\\ true solution
of (1)
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VIII-3. Random fields

~ Random quantity distributed over field (space or time)

Ex1) Spatial Distribution of Random Ground Motion Intensity)

{:}

(Song & Ok, 2010)

Ex2) Spatial distribution of material property (Young’s Modulus)

1B E(X,y)

.

e

Ex3) Ground acceleration time history X, (t)

e.g.

random process, stochastic process

= ( ) # of random variables

= ( ) representation is required
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Discretization of Random field — Random vector

— V:{Vl"”vvn}T
Random n-vector

M, =E[vlI={x}
Zvv = E[(V_Mv)(V_Mv)T]

) =D,R,,D, covariance matrix
" | where D, = diag[o, ]
Ry =[]

f,(v) — joint PDF of v
Theoretical Representation of R.F
v(x), xe Q random field in domain Q
Partial descriptors: ey
4(X): mean function E[v(X)]
o’ (X) : variance function E[v*(x)]— z*(X)

p(x,X) : correlation coefficient function 0,y V()

[y

For Gaussian R.F. the above gives a complete specification

For Nataf R.F., also specify F,(V;X)

For general RF’s, specify joint PDF of ( ) and ( )
for, x,x'eQ, f,(v(x),v(x")

e.g. Random field

~ does not change over the domain Q

v(X), xeQ
[u(X)=

o’(x) =

p(x,x) =

I

LF(vix)=
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Note; This doesn't mean Vv(X) =V (not constant over the domain)

O X

Scenario 1 2 1 2 2

X1 X2 X1 X2
Scenario 2 11 5 11 ll

;;l X2 ;;l ;;2

=15 =15
Hy, Hy, V(%) =V
u(X)=pu=15
V(x')

Q: Correlation Function p(X,X') <meaning? V(E);f """""""""""

How to capture this from p(X,X) ?

Correlation length

correlation exist
in longer distance

L
r g

Ax = ||lx—x||

|4

0= T L (AX)dx

[ 4

can be considered

~ measure of the distance over which significant loss of correlation occurs



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

Examples

o0 =exp| -2
a
ezjexp(—&jdAx
0 a
( ij .
=—aexp| —— |0 =a
a

AX?
0 =exp -2 |
a
0= Texp —A—X2 d Ax
0 a2

17 AX?
ZEJ exp[—?jdAx

:%\/;a 6 oca



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability

In-Class Material: Class 26

Discrete Representation of RFs (Summary: Sudret & ADK 2000; 2002 PEM)
@O Mid-point method

v(X) = V(X)
=V(X,), XeQ,

(constant in each Q)

* Represented by a constant r.v.

over each RF element

* Positive definiteness problem of R ... if RF element size is small relative to 6

Recommended size of RF element size

i~ﬁ§ RF size SQ,,Q
10 15 3 5
Numerical stability Accurate
(Positive definiteness) representation

@ Spatial averaging method
j v(x)dQ

V69 = ede

e

, XeQ

e

* Represented by a single r.v per Q,

f=]
m
f=]
m
(%]
f=]
m
w
f=]
m
'
o 4

* Variances are ( ) — -estimate P,

* Positive definiteness problem
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@ Shape function method (<-motivated by FE people)

\/()() - ‘7()() - ae%int hdi()()\/()(i)

nodes

» Represented by continuous function

V() .

‘\_ V(E) . (x)

> ¢
L
Ni(xj):é}j

to guarantee V(X;) =V(X;)
@ Karhunen-Loéve (KL) expansion (Gaussian RFs)
— Describe RF in terms of finite # of shape functions
defined over domain
(no geometric discretization)
— Discretization based on

structure p(X,X") p(x X!)
)
Goal: Want to descrive p(x,X") by

PXX) =D ¢, ()¢, ()

i=1 Fi\\

/ Orthogonal shape (base) functions
Canfind A, ¢ by solving an integral eigenvalue problem, i.e.
IP(X, X)p. (X)dXx'= L. (X) (Fredholem integral eqn — 2" kind)
Q
Note p(x,x") is bounded, symmetric, (+) definite.

If so, one can find
@.(X) : orthogonal j(pi (X)p; (X)dx = &

A, : real & positive
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Candrop A 's if 4. =0
Then using ¢.(X), and 4, i=1,...,r, one can describe Gaussian RF v(x) by

v
V() =9(x) = () + o (Y A () . X€Q| = Ve = {u,o-u}

KL expansion of Gaussian RF

u, — N(0,1), u. s.i
Let’'s check!

I.  Gaussian? Yes, function of u,'s
i EN()]=u(0? EN(X)]=

ii.  Var[i(x)]=E[( )’]

— 0?0 V29,099,

(because p(X,X) = = )

V. P X)=p(x,X)
— EL00) ~ #O0)T0X) - 10N () (x)
€1 Y %0 (9,0, ()]

SYYEL WAVEAM )
= > 40, (X))
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[« #o0fRV's:
* Represented by function
4 * No necessary
* Most efficient (in terms of # of )
L * Requires solution of an integral eigenvalue problem.

(® Orthogonal expansion (eigen-expansion, but correlated rv's)

©

Optimal linear estimation (OLE)~ linear regression
(@ Expansion OLE

: See Sudret & ADK (2000)

Nataf RF

V(X) = F(v,X), Pz (XX
v(X) = FEHOZ (X))}, Z(X)~ N(0, p,, (X,X)) (Z(X) — Gaussian RF)
= Construct Z(x) and discrete to 2(X)

> v(x) = F{®(Z ()}
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VIII-4. Response Surface Method (CRC Ch.19 & Mike Tipping's chapter)
Reliability Analysis, Uncertainty Quantification & Response Surface

Reliability Analysis

P, = j f (x)dx — e.g. FORM/SORM,
g(x)<0

— e.g. Sampling ¢, =1(x;) or %
where I(xi):{; ;(())

Uncertainty Quantification

“Process of determining the effect of input uncertainties”

on response metrics of interest (Eldred et al. 2008)

eg. E[g(x)"]= fo(x>dx

@ g(x) Sometimes
[ Computationally costly for MCS
No analytical gradients but many RVs

= FORM/SORM difficult

L Experiments expensive (statistical analysis of experiment data infeasible)

@ Idea: g(x)=n(x) (n(x) < “response surface” or “surrogate” model)

«— n(x) fitted to {x¥, g(xV)}

= n(x) usually constructed in terms of
X . .
X1 ”sﬁpportx 2 basic functions that can be computed more

points” easily (polynomials, exp, -+ )

= Should fit g(x®) sufficiently well especially in the region that contributes most
to P, or E[g(X)"]
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@ History
* Box and Wilson (1954): influential
* Applied mostly in chemical, industrial eng. etc.
(Mostly for “experimental design”)
* Rackwitz (1982) = Use RS for Structural Reliability Analysis

* Has been applied to random field, nonlinear structural dynamics, etc.
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Basic formulation of RS models

Two approaches: = use assumed mathematical model & fit it to data

p
eg. n(x)=>.6x"
i=1

X 4 e.g. K-nearest points
Regression

True response of g(x): Z(X)

Z(x) = n( 6,0, ;X) + ¢
N

R\
Model Input  Zero mean
parameters (random) error term

= E[z-7]=E[¢]=0
“unbiased” model
How to find 0 ? What do data tell us?
Ref: Tipping, M.E. (2004)

“Bayesian inference: an introduction to principles and practice in machine learning”
Advanced lectures on machine learning, pp.41-62

(Free codes and papers at miketipping.com)

n=6,exp(x)+6,Inx+0,---
Linear models (Linear in )

Find Z =n(x;0)+¢

= 0 q,(x) +e

i=1 Tx

Model Basis
Parameter Function
(Shape function)

e.g. g (x)oc PDF of N(x©,r’l)
from {x,Z"}, i=1---,m
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Z=Q0+¢

z® q,(x?)

Zm ql(x(m))

mx1 mx p px1 mx1
Five approaches (Tipping 2004)
D “Least-Square” Approximation (classic)

= Minimize sum of squared errors

Ep =5 2 (2 -n(x", 0)
-(z-qoy (z-Q)

=N

==77" + % (Q0)" (Q0)-Z"Q0

N

OE, (0) _

ps -Z'Q+(Q0) Q=0

Solve for 0,

8,=(Q'Q"Q'Z

% over-fitting?

e.g. Z=sinx+e¢

sin X —true model, ¢ —noise Figure 1 in Tipping (2004)

~ ~

N [vﬂ\%\ overfitting

“ideal” fit
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(2 Regularization (by giving penalty on large 0)

E@)=E,(0)+2 E,(0)
Standard choice
OBV

regularization DI I | ‘o
parameter iscourage large value o

= Smooth function

6ED(G)_ . —_(O7 -1 AT
T =0 =0, = (QQ) Q'Z

% Appropriate value of A4?

A common approach: Use “validation” data

available Find 9PLS for a given A, 0P|_s (/1)
data train data )
. PLS
Construct surrogate 77(X;4) = > 67 (2)q, (X)
Qﬁ% i=1
data

Compute error against validation data
e=7Z-n ateach x® e validation data set

and choose A that makes %Z(Z—n)2 minimum

Normalised error
o
o
T

04r 1
1 Validation
~
03r e .
-
02f Se=ma- g
01r 1
Training
-14 -12 -10 4

Fig. 3. Plots of error computed on the separate 15-example training and validation
sets, along with ‘test’ error measured on a third noise-free set. The minimum test
and validation errors are marked with a triangle, and the intersection of the best A
computed via validation is shown.
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% Probabilistic Regression

Z =n+g)!
e.g. €¢~N(0,6°) . Z~N(n,0c%)

Using this information one can construct likelihood function

L(Z|x.0,0°) = ]‘[ f(Z0x?,0,0°)
i=1

R RN U L)) §
gl ex‘{ }

207

@ Maximum Likelihood Estimation

Find 0 that maximizesL() < Find 0 that minimizes —InL()

P E»(0)
n ) 1 <& . , ; = error measure
—In L( ):E|n(272'0' ) 5 Z{Z(l) _U(X(I)’B)} for 0,
i=1

Therefore, MLE based on s.i. error assumption (i.e. e ~N( ))

Gives 0y =0

(cf. Assuming errors are dependent? &~ N(0,X)

||x(" X(J)”
Py =EXp R = "Kriging” Method (Satner et al. 2003)

#* Bayesian Methods f =c-L-p

Introduce a prior distribution

p010) =TT 5= exp{—%ef}

9i2
H degree of belief about smooth model
2 % \/7 T ) (deg )

/!
al Variability reduces /\ = certain that @ is around O

0

=Become smooth

T oo
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@ Maximum a posteriori (MAP) estimation (a Bayesian “shortcut”)

f=c-L-p
P(®|Z,a.0%) = ¢ - L(Z|0,5%) - p(6]a)
Posterior Likelihood function prior

Find ® where P(B|Z,a,o*2) is maximum

e.g. Normal s.ierrors &, Z ~N(n,0%)

—In(f)_—Z{Z(') n(xV;0) ¥ + < 292

=uao
—a?In(f) = Z{Z(') n(x":0)¥ '
_1v/ED(e) \/EW(B)
the same as
¥ @, o° ?no need to bother w/ Bayesian?
(® Full Bayesian (“Marginalization”) integrate P(Z|0,,0?)
over all 0

P(2)=[P(z|6)-P(0)do

Focus on
Total probability theorem

P(Z]a.o?) = [P(Z]0]a.%)-P(8 [a.7)d6 ) simplified to

:jp(zm,az)-P(ma)do

~ Closed-form available:

f,(Z,a,6%) (Eq. 23 in Tipping, 2004)

* P(Z|a,02): Probability that you will observe Z for given o, c”

P(Z|a,0?)

= Find &0’ that maximizes P(Z|a,0?)

(i.e. Let data Ztell us the optimal point ¢« ,c%")
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Normalised error
(=]
(4]
T

. Validation

o e
N W
T T

]
[
|
1
|
r

'y
[o1]

(%]
~

e
T

Training

Marginal likelihood: —In P(Z|a, o%)

06 Too compl‘e\
overfit

Too simple
1 (smooth):

underfit

14 -12 -10 -8

o>

Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure
3 (with the horizontal scale adjusted appropriately to convert from A to a) along with

the negative log marginal likelihood evaluated on the training data alone for that same

model. The values of « and test error achieved by the model with highest marginal
likelihood (smallest negative log) are indicated.

v Okham’s Razar (or the law of parsimony):

“model should be no more complex than is sufficient to explain the data”

CRC CH.19 RS
—DOE

— (X)

Other RS or UQ methods

D Kriging (Santner et al. 2003)
(Dubourg et al. 2010 IFIP)
e~N(0,X)

”X(i) —x(””

e.g. p; =exp|— -

* coincides at each point
* Interpolate b/w each point
* Can quantify confidence

* Regularization

M(z)

12

10+

M(z) ==z sin(x)

— M)

*  Observations

95% confidence interval

x
(Dubourg et al. 2011)
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@ Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004)

900 > 9R) = D00ttt 1 X 24~ (-1 s, 1)

U

EQU)"=ELGODN"] 7 Tig(x)
= [(GOO)™ £, (x)dx

Transform to s.i. space; Multivariate Integral = Multiple univariate Integral

@ Polynomials chaos (a good review by Eldred et al. 2008)
R=2a,B, + zailBl(é/il)
i =1

+iiai1,i282(§i1§iz)+'“

=1 i,=1

p
- Z;‘ajl//j © - Orthogonal bases for given types of r.v's distribution
J:

_<Ry;>_ _[R'//j f(©)d€ — Important sampling, etc.

a; =

2 2
<y > <y > '
— closed form available
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457.646 Topics in Structural Reliability

In-Class Material: Class 28

VII-4. Finite Element Reliability Analysis (Haukaas, 2006)
— summary and good findings

Equations of Motion and Randomness ,""' t)

“Weak” form of equilibrium:

[suyidQ+[su, jo,dQ— [y, fidQ - [uzrdr =0 0
Q Q Q r

y : density, U : acc, U strain, Gy stress, fi: body force, t;: traction

(D Basic random fields

Ci(X), 7(X): material properties (constants)

Tensor of material elastic constants, cij = Cijklgkl
f.(x,t), t,(x;t) :loads

Q, T : geometry

= Discretized to a random vector Vv

@ Derived response is a function of v

u; (x,t,v) : displacement
& (x,t,v) : strain
& (X,t,v) : plastic strain
g(S(v),v)<0
ot (x,t,v) : stress

S(x,t,v) : generic response vector
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@ FE models and r.v's
i. Nonlinear & Dynamic problem
M(v)i(t, v) +C(v)u(t,v) + R(u(t,v),v) = P(t,v)
ii. Static problem
R(u(t,v),v)=P(t,v)
iil. Linear Static problem
K(v)-u(v)=P(v)
@ FE reliability analysis
i. MCS v,, i=1---N
ii. Importance Sampling
ii.  Response Surface g ~7(X)

iv. Form (HLRF)

Initialize u, =u(v,)

0

Vi =Vv(u;) skipifi=1 — FE code
G(u;) = g(S(v).v)) (Vi) Js

V.Gu)=V,g(Vv)d,,
= (ng : ‘Js,v +va) ’ ‘]v,u

e.g. FERUM-ABAQUS
The same procedure

(Young Joo, Lee, 2012)
Gradient J_ 7

g M o
" OE'oP’

Methods to get sensitivity J,
e.g. Linear Static Problem (suppose there is only oner.v. v=Vv )

KV) - u(v) = P(v) — u=K™(V)-P(v)

Stiffness displacement  loads
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@ Finite Difference Method (“FFD” option of FERUM)
u(v) = K*(v)-P(v) original FE
u(v+Av) =K*(v+Av)-P(v+Av) (i.e. additional FE for each v, in V)

ou _ u(v+Av)—u(v)
o AV

= Need to solve FE again (for each r.v)
= Can cause numerical errors

@ Perturbation Method
Ku=P

AK = K(v+Av) - K(v)
AP =P(v+Av)—-P(v)

(K+AK)(u+Au) =P+ AP
Ku + KAu + AKuU + AKAuU =P + AP
s Au= K™ (AP - AKu)
= Do not have to re-solve FE
= Error (AKAu =~ 0)
@ Direct Differentiation Method (‘DDM’ option for FERUM)
Ku=P

KiyrkM_P

N oV
@:K—l(ﬁ_%uJ
v N v

— Do not need to solve FEM again

— No error

K _ oK K
YRV

< direct stiffness method)

— Nonlinear static, nonlinear dynamic
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@ Adjoint method

= Tutorial by Prof. Andrew M. Bradley at Stanford University:
http://cs.stanford.edu/~ambrad/adjoint _tutorial.pdf)

x € R, p € R, f(x(p)): R™ -> R
Subjectto h(x(p), p)=0 for h: R x R™ - R

e.g. h=0 = PDE equilibrium (mass € p, displacement € x, member force = f)

d,f? (total derivative of f w.rt p )

Consider the Lagrangian

L(x, p,2) = T (x(p)) +A"h(x(p), p)

d,f=d.L (- onlyonh = )
=0, fdpx+dprh+XT(axhdpx+aph)
=fx +}J(hxxp +h,) (- )
:(fx+}JhX)xp+kThp

Choose A suchthat h/A=—f (“adjoint equation”) > A*

Then we can avoid calculating ( )

Then compute d,f as

= Used for RBTO of structures under stochastic excitations
(Chun, Song and Paulino, 2016)


http://cs.stanford.edu/%7Eambrad/adjoint_tutorial.pdf
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VI. Simulation methods (contd.)
Latin Hypercube Sampling (Mckay et al. 1979)

Extension of “Latin Square” — appearing exactly once in each row and
exactly once in each column)

(«) 7x7 Latin Square stained glass honoring R.A. Fisher’s work on DOE

Evenly distribute sampling points to promote early convergence

1
e.g. X={X,,X,} uniform (0,1), s.i
= 4 samples X2
* Brute force MCS:
: 0 1
Samples are generated independently X1
No memor
Y 1
* Latin Hypercube Sampling: Xy
There is only one sample in each row and column
w/ memor 0 1
( y) X1
Possible LHS combination?
_ 1 L M=4N=2
«  Orthogonal Sampling: 1 H(M -n)"" - 24 cases
n=0
LHS + subspace sampled
w/ same frequency X2
choose LHS combinations
that satisfy orthogonal
0 1

X1
Example) Y.S. Kim et al. (2009)

— Seismic Performance Assessment of Interdependent Lifeline Systems

= Generated random samples of post-disaster conditions of network components
using LHS
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Markov Chain Monte Carlo Simulation (MCMC)

P(z(m+l)

Z™) transition prob.

— Use MCS to generate samples as a Markov chain (good for high-dimensional problem)

@

@

Metropolis-Hastings algorithm (Hastings, 1970)
~Accept/reject w/ probability (see next page)

Gibbs sampling (Geman & Geman 1984)

See next page: Sample “one” element each time based on ¢

Conditional distribution given the outcomes of the other elements

eg. P(Z2,Z,,Z,) V4

sample  Z/™ by P(Z,

2173

7" by P(Z,

1173

Z:" by P(Z,

1152
Subset Simulation (Au & Beck, 2001)

FFoF o---oF,=F eventofinterest
P(F)=P(F,) toolow

eg. F={D>C}

C <C,<--<C, =C

P(F)=P(F,)=P((|F)

-P(E[NF)-P(F) %K
=P(F,| 1..)-P(F) >

= P(F,)x P(F, |F)>< X P(F,|F--- P(Fy) ”(F2|F1)

Each larger than P(F)

Use MCMC algorithm to compute P(F,,|F,)



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

* Generating samples of a bi-variate Gaussian distribution using Metropolis
algorithm

A simple illustration using Metropo-
lis algorithm to sample from a
Gaussian distribution whose one
standard-deviation contour is shown 5 s |
by the ellipse. The proposal distribu- =~
tion is an isotropic Gaussian distri-
bution whose standard deviation is
0.2. Steps that are accepted are
shown as green lines, and rejected
steps are shown in red. A total of 15t}
150 candidate samples are gener-
ated, of which 43 are rejected.

[}

* Generating samples of a bi-variate Gaussian distribution using Gibbs sampling

lllustration of Gibbs sampling by alter- =24
nate updates of two variables whose L
distribution is a correlated Gaussian.
The step size is governed by the stan-
dard deviation of the conditional distri-
bution (green curve), and is O(l), lead-
ing to slow progress in the direction of
elongation of the joint distribution (red
ellipse). The number of steps needed
to obtain an independent sample from

the distribution is O((L/1)?). I—

[ J

Reference: “Pattern Recognition and Machine Learning” by Christopher M. Bishop (2006)
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Extrapolation-based MCS (Naess et al. 2009)

gA)=9-p,1-2) A=0:

0<a<l A=1:

Generate samples {g,,---,d,} and use to estimate

L (M) = N while varying A

Instructor: Junho Song
junhosong@snu.ac.kr

gA)=9g-p, P;J50%

g(M) =g POl

Fitted to Zzlq(k)-exp{—a(k—bf} (can assume constant q), i.e.

P () = d"-exp{-a’ (A -b")"}

Find a, b, c, q by fitting and extrapolate as F~’f (A) as A—>1

= Has been applied to component/system (Naess et al. 2009)

and large-size system problems (Naess et al. 2010)

P
10708

10718

10728

10729

10—4.5

Fig. 9. Plot of log ps(/4;) for Example 4: Monte Carlo (-); fitted optimal curve (--);

reanchored empirical confidence band (---);
logg =-0.303, a=16.231, b=0.252, c= 1.591.

(o —~—

5

fitted confidence band (--).

L9
I - 9 Many thanks for your hard work in this semester to learn theories of
I - . structural reliabMd their applications. | wish you the very best on
I B your course , research and future career.
Yal
I = Cheers L
i . Junho
-
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