Pulse Forming Lines

Fall, 2018

Kyoung-Jae Chung

Department of Nuclear Engineering

Seoul National University

Pulse forming line (PFL)

- There are numerous applications in both physics and electrical engineering for short ($\sim 10 ns < t_p < 100 \mu s$) electrical pulses. These applications often require that the pulses have a "good" square shape.
- Although there are many ways for generating such pulses, the pulse-forming line (PFL) is one of the simplest techniques and can be used even at extremely high pulsed power levels.
- A transmission line of any geometry of length *l* and characteristic impedance *Z*₀ makes a pulse forming line (PFL), which when combined with a closing switch *S* makes the simple transmission line pulser.

Simple PFL

- When the switch closes, the incident wave V_I , with a peak voltage of $(1/2)V_0$, travels toward the load, while the reverse-going wave V_R , also with a peak voltage of $(1/2)V_0$, travels in the opposite direction.
- The incident wave V_I , then, supplies a voltage of $(1/2)V_0$ for a time determined by the electrical length of the transmission line T_T to the load. The reverse-going wave V_R travels along the transmission line for a duration T_T and then reflects from the high impedance of the voltage source, and becomes a forward-going wave traveling toward the load with peak voltage $(1/2)V_0$ and duration T_T .
- The two waves add at the load to produce a pulse of amplitude $(1/2)V_0$ and pulse duration $T_p = 2T_T$.
- Matching condition: $R_L = Z_0$
- Pulse characteristics

Coaxial PFL

• Basic parameters

$$L' = \frac{\mu}{2\pi} \ln\left(\frac{R_2}{R_1}\right) \qquad \qquad C' = \frac{2\pi\epsilon}{\ln(R_2/R_1)}$$

$$Z_0 = \sqrt{\frac{L'}{C'}} = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln\left(\frac{R_2}{R_1}\right) = 60 \sqrt{\frac{\mu_r}{\epsilon_r}} \ln\left(\frac{R_2}{R_1}\right)$$
$$v_p = \frac{1}{T_T} = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{\sqrt{\mu_r\epsilon_r}} \approx \frac{30}{\sqrt{\epsilon_r}} \left[\frac{cm}{ns}\right]$$

- Matching condition: $Z_L = Z_0$
- Pulse characteristics

$$V = \frac{V_0}{2}$$
$$T_p = 2T_T = \frac{2l}{v_p} \approx \frac{2l}{c} \sqrt{\epsilon_r} = \frac{l \,[\text{cm}]}{15} \sqrt{\epsilon_r} \,[\text{ns}$$

$$\sqrt[V_0]{R_C} = \sum_{\underline{z}_L} Z_L$$

$$\sqrt{\epsilon_r} [ns]$$

1/

Coaxial PFL

• Electric field

$$E(r) = \frac{V_0}{r \ln(R_2/R_1)} \qquad \qquad E_{max}(r = R_1) = \frac{V_0}{R_1 \ln(R_2/R_1)}$$

• Voltage at the maximum electric field

$$V_0 = E_{max} R_1 \ln\left(\frac{R_2}{R_1}\right)$$

• The value of R_2/R_1 that optimizes the inner conductor voltage occurs when $dV_0/dR_1 = 0$, yielding

$$\ln\left(\frac{R_2}{R_1}\right) = 1$$

• Optimum impedance for maximum voltage

$$\begin{aligned} Z_{opt} &= \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} = 60 \sqrt{\frac{\mu_r}{\epsilon_r}} \approx \frac{60}{\sqrt{\epsilon_r}} \\ Z_{opt}^{water} &= \frac{60}{\sqrt{81}} = 6.7 \ \Omega \\ Z_{opt}^{oil} &= \frac{60}{\sqrt{2.4}} = 38.7 \ \Omega \end{aligned}$$

Analysis of simple PFL

 On closure of the switch, the voltage on the load rises from zero to a value determined by

$$V_L = V \frac{Z_L}{Z_L + Z_0}$$
 (matched)

• Simultaneously, a voltage step V_s is propagated away from the load towards the charging end of the line. It takes $\delta = l/v_p$ for the wave to reach the charging end.

$$V_{s} = V_{L} - V = V \left(\frac{Z_{L}}{Z_{L} + Z_{0}} - 1 \right) = V \left(\frac{-Z_{0}}{Z_{L} + Z_{0}} \right)$$
 $V_{s} = -\frac{V}{2}$ (matched)

Analysis of simple PFL

• Potential distribution (matched load)

Lattice diagram representation of pulse-forming action

 On closure of the switch, the voltage on the load rises from zero to a value determined by

$$V_L = V \frac{Z_L}{Z_L + Z_0} = \alpha V$$

• The potential on the load is given by

$$\begin{split} V_L &= \alpha V & (0 < t < 2\delta) \\ V_L &= \alpha V + (\alpha - 1)\gamma V & (2\delta < t < 4\delta) \\ V_L &= \alpha V + (\alpha - 1)\gamma V + \beta(\alpha - 1)\gamma V \\ & (4\delta < t < 6\delta) \end{split}$$

$$\gamma = \beta + 1$$

• Finally

$$V_L = V[\alpha + (\alpha - 1)\gamma(1 + \beta + \beta^2 + \cdots)]$$

Typical waveforms from PFL under matched and unmatched conditions

Blumlein PFL

- An important disadvantage of the simple PFL is that the pulse generated into a matched load is only equal to $V_0/2$.
- This problem can be avoided using the Blumlein PFL invented by A. D. Blumlein.
- Two transmission lines and one switch is used to construct the generator.

Blumlein PFL

- After switch closure, the end of line 1 is effectively shorted; thus the reflection coefficient is +1.
- At the junction of line 1 and the load, the reflection coefficient is given by

$$\rho = \frac{(Z_L + Z_2) - Z_1}{(Z_L + Z_2) + Z_1} = \frac{Z_L}{Z_L + 2Z_0} = \frac{1}{2}$$

• Matching condition: $Z_L = 2Z_0$

NATIONAL

Analysis of Blumlein PFL

Analysis of Blumlein PFL

• The fraction of the step to the load and the line 2 $V_{L} = -2V \frac{Z_{L} + Z_{0}}{Z_{L} + 2Z_{0}} \times \frac{Z_{L}}{Z_{L} + Z_{0}} = -\alpha V$ $V_{2T} = -2V \frac{Z_{L} + Z_{0}}{Z_{L} + 2Z_{0}} \times \frac{Z_{0}}{Z_{L} + Z_{0}} = -\beta V$ $\alpha = \frac{2Z_{L}}{Z_{L} + 2Z_{0}} \qquad \beta = \frac{2Z_{0}}{Z_{L} + 2Z_{0}}$

• Finally

 $V_L = -\alpha V [1-1+(\rho-\beta)-(\rho-\beta)+(\rho-\beta)^2-(\rho-\beta)^2+\cdots]$

Simple PFL vs. Blumlein PFL

Matching condition: $Z_L = Z_0$

Matching condition: $Z_L = 2Z_0$

Coaxial Blumleins

• Matching condition: $Z_L = Z_1 + Z_2$

Two-stage stacked Blumlein

• Matching condition: $Z_L = 4Z_0$

Two-stage stacked Blumlein

• A more practical realization of two-stage Blumlein PFL using a single switch

- If points A and B and C and D are connected, then the load can be placed either across points E to H with points F and G connected or across points F to G with points E and H connected. → This change simply reverse the polarity of the pulse generated in the load.
- If points E and F and G and H are connected, then the load can be placed either across points A to D with points B and C connected or across points B to C with points A and D connected.

Stacked Blumlein

[Optional] Helical lines

- For rectangular pulses with pulse durations on the order of a few microseconds, the physical lengths of the transmission lines become prohibitive – on the order of 1 km for a 10 µs pulse.
- The helical line storage element can be realized by helical winding of a conductor of circular or rectangular cross section over a metallic cylinder.

Self-matching PFL

• In this circuit, at one end of the line the inner conductor is connected to a terminating resistor *R* and at the other it is connected to a load Z_l , where $Z_l \neq Z_0$.

Self-matching PFL

• From the lattice diagram, the voltage on the load can be found to be

$$v_{l}(t) = -2V \begin{bmatrix} \alpha + (\beta - 1)(1 + \rho_{l})u(t - \delta) \\ +\rho_{R}(\alpha - 1)(1 + \rho_{l})u(t - 2\delta) \\ +\rho_{R}\rho_{l}(\beta - 1)(1 + \rho_{l})u(t - 3\delta) \\ +\rho_{R}^{2}\rho_{l}(\alpha - 1)(1 + \rho_{l})u(t - 4\delta) \\ +\cdots \end{bmatrix}$$

where $u(\Delta t) = 1$ for $\Delta t > 0$, $u(\Delta t) = 0$ for $\Delta t < 0$
and $\Delta t = (t - n\delta)$, $n = 1, 2, 3, ...$

• If the value of the terminating resistor is made equal to the impedance of the line, i.e. $R = Z_0$, then $\rho_R = 0$ and $\beta = 1/2$. Then, the load voltage becomes

$$V_l(\boldsymbol{s}) = -\frac{2V\alpha}{\boldsymbol{s}}(1 - e^{-\boldsymbol{s}\delta})$$

A single rectangular pulse with duration δ independently of the value of Z_l, thus the PFL is self-matching.

Bi-directional or zero-integral PFL

• Some applications require the generation of a bi-directional pulse in which the polarity of the pulse changes sign in the middle of the pulse, causing the net integral of the pulse to be zero.

Pulse forming network (PFN)

- A main disadvantage of the PFL is the speed of propagation of EM waves along transmission lines.
- The material used in transmission lines is some type of polymer plastic such as polypropylene, and the dielectric constant tens to be quite low ($\epsilon_r = 2 \sim 3$). Thus, it is impractical for making a long pulse over 1 μs .
- An alternative approach is to build a simulated line using a ladder network of inductors and capacitors.

Basic LC PFN

• Approximately, for n > 10

$$Z_N = \sqrt{\frac{L_N}{C_N}} = \sqrt{\frac{L}{C}} \qquad \qquad t_p = 2\delta = 2\sqrt{L_N C_N} = 2n\sqrt{LC}$$

Waveform of 5-element LC PFN

Example of stacked Blumlein PFL

Cable spec (30 kV): C' = 108 pF/m L' = 328 nH/m

•
$$Z_0 = 55$$
 Ohm

- Matched load = 330 Ohm
- Transit time = 6 ns/m
- Pulse duration = 36 ns (3 m)

Example of stacked Blumlein PFL

<u>Summary</u>

V_peak = 37 kV @ V₀ = -20 kV I_peak = 230 A

Peak power = $\sim 5 \text{ MW}$ Energy = $\sim 0.15 \text{ J/pulse}$ For 100 Hz operation, P_{avg} $\sim 15 \text{ W}$

Huge instantaneous power

- \rightarrow generation of high energy electrons
- \rightarrow radical generation (O, N)
- → efficient removal of NOx
- Low average power
 - \rightarrow low power consumption
 - → high efficiency

Example of stacked Blumlein PFL

Implementation of transmission line theory

JOURNAL OF APPLIED PHYSICS 121, 243302 (2017)

Underwater spark discharge with long transmission line for cleaning horizontal wells

Kern Lee,¹ Kyoung-Jae Chung,^{1,a)} Y. S. Hwang,¹ and C. Y. Kim²

¹Department of Nuclear Engineering, Seoul National University, Seoul 08826, South Korea ²Sun & Sea Co. Ltd., Seoul 06569, South Korea

Coaxial cable	
Length (l_c)	$15 - 125 \mathrm{m}$
Characteristic capacitance (C'_c)	0.17 nF/m
Characteristic inductance (L'_c)	$0.20\mu\mathrm{H/m}$
Characteristic resistance (R'_c)	$2.45\mathrm{m}\Omega/\mathrm{m}$

kth section

29/30

Implementation of PFN

Design and development of the helicity injection system in Versatile Experiment Spherical Torus

JongYoon Park, Younghwa An, Bongki Jung, Jeongwon Lee, HyunYoung Lee, Kyoung-Jae Chung, Yong-Su Na, Y.S. Hwang*

Department of Nuclear Engineering, Seoul National University, Seoul 151-744, South Korea

30/30

High-voltage Pulsed Power Engineering, Fall 2018

CrossMark

16 18 20