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Pulse forming line (PFL)

 There are numerous applications in both physics and electrical engineering for 
short (~10 𝑛𝑛𝑛𝑛 < 𝑡𝑡𝑝𝑝 < 100 𝜇𝜇𝜇𝜇) electrical pulses. These applications often require 
that the pulses have a “good” square shape.

 Although there are many ways for generating such pulses, the pulse-forming line 
(PFL) is one of the simplest techniques and can be used even at extremely high 
pulsed power levels.

 A transmission line of any geometry of length 𝑙𝑙 and characteristic impedance 𝑍𝑍0
makes a pulse forming line (PFL), which when combined with a closing switch 𝑆𝑆
makes the simple transmission line pulser.
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Simple PFL

 When the switch closes, the incident wave 𝑉𝑉𝐼𝐼, with a peak voltage of ( ⁄1 2)𝑉𝑉0, 
travels toward the load, while the reverse-going wave 𝑉𝑉𝑅𝑅, also with a peak 
voltage of ( ⁄1 2)𝑉𝑉0, travels in the opposite direction.

 The incident wave 𝑉𝑉𝐼𝐼, then, supplies a voltage of ( ⁄1 2)𝑉𝑉0 for a time determined 
by the electrical length of the transmission line 𝑇𝑇𝑇𝑇 to the load. The reverse-going 
wave 𝑉𝑉𝑅𝑅 travels along the transmission line for a duration 𝑇𝑇𝑇𝑇 and then reflects 
from the high impedance of the voltage source, and becomes a forward-going 
wave traveling toward the load with peak voltage ( ⁄1 2)𝑉𝑉0 and duration 𝑇𝑇𝑇𝑇.

 The two waves add at the load to produce a pulse of amplitude ( ⁄1 2)𝑉𝑉0 and 
pulse duration 𝑇𝑇𝑝𝑝 = 2𝑇𝑇𝑇𝑇.

 Pulse characteristics

𝑉𝑉 =
𝑉𝑉0
2

𝑇𝑇𝑝𝑝 = 2𝑇𝑇𝑇𝑇 =
2𝑙𝑙
𝑣𝑣𝑝𝑝

≈
2𝑙𝑙
𝑐𝑐 𝜖𝜖𝑟𝑟

 Matching condition: 𝑅𝑅𝐿𝐿 = 𝑍𝑍0
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Coaxial PFL

 Basic parameters

𝐿𝐿′ =
𝜇𝜇

2𝜋𝜋
ln

𝑅𝑅2
𝑅𝑅1

𝑣𝑣𝑝𝑝 =
1
𝑇𝑇𝑇𝑇

=
1
𝐿𝐿′𝐶𝐶𝐶

=
1
𝜇𝜇𝜇𝜇 =

𝑐𝑐
𝜇𝜇𝑟𝑟𝜖𝜖𝑟𝑟

≈
30
𝜖𝜖𝑟𝑟

cm
ns

𝐶𝐶′ =
2𝜋𝜋𝜖𝜖

ln ⁄𝑅𝑅2 𝑅𝑅1

𝑍𝑍0 =
𝐿𝐿′

𝐶𝐶′ =
1

2𝜋𝜋
𝜇𝜇
𝜖𝜖

ln
𝑅𝑅2
𝑅𝑅1

= 60
𝜇𝜇𝑟𝑟
𝜖𝜖𝑟𝑟

ln
𝑅𝑅2
𝑅𝑅1

 Pulse characteristics

𝑉𝑉 =
𝑉𝑉0
2

𝑇𝑇𝑝𝑝 = 2𝑇𝑇𝑇𝑇 =
2𝑙𝑙
𝑣𝑣𝑝𝑝

≈
2𝑙𝑙
𝑐𝑐 𝜖𝜖𝑟𝑟 =

𝑙𝑙 cm
15 𝜖𝜖𝑟𝑟 [ns]

 Matching condition: 𝑍𝑍𝐿𝐿 = 𝑍𝑍0
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Coaxial PFL

 Electric field

𝐸𝐸(𝑟𝑟) =
𝑉𝑉0

𝑟𝑟 ln ⁄𝑅𝑅2 𝑅𝑅1

 Optimum impedance for maximum voltage

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟 = 𝑅𝑅1) =
𝑉𝑉0

𝑅𝑅1 ln ⁄𝑅𝑅2 𝑅𝑅1
 Voltage at the maximum electric field

𝑉𝑉0 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅1 ln
𝑅𝑅2
𝑅𝑅1

 The value of 𝑅𝑅2/𝑅𝑅1 that optimizes the inner conductor voltage occurs when 
𝑑𝑑𝑉𝑉0/𝑑𝑑𝑅𝑅1 = 0, yielding

ln
𝑅𝑅2
𝑅𝑅1

= 1

𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 =
1

2𝜋𝜋
𝜇𝜇
𝜖𝜖 = 60

𝜇𝜇𝑟𝑟
𝜖𝜖𝑟𝑟
≈

60
𝜖𝜖𝑟𝑟

𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
60
81

= 6.7 Ω 𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
60
2.4

= 38.7 Ω



6/30 High-voltage Pulsed Power Engineering, Fall 2018

Analysis of simple PFL

 On closure of the switch, the voltage on the load rises from zero to a value 
determined by

𝑉𝑉𝐿𝐿 = 𝑉𝑉
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 𝑍𝑍0
𝑉𝑉𝐿𝐿 =

𝑉𝑉
2 (matched)

 Simultaneously, a voltage step 𝑉𝑉𝑠𝑠 is propagated away from the load towards the 
charging end of the line. It takes 𝛿𝛿 = 𝑙𝑙/𝑣𝑣𝑝𝑝 for the wave to reach the charging end.

𝑉𝑉𝑠𝑠 = 𝑉𝑉𝐿𝐿 − 𝑉𝑉 = 𝑉𝑉
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 𝑍𝑍0
− 1 = 𝑉𝑉

−𝑍𝑍0
𝑍𝑍𝐿𝐿 + 𝑍𝑍0

𝑉𝑉𝑠𝑠 = −
𝑉𝑉
2 (matched)
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Analysis of simple PFL

 Potential distribution (matched load)
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Lattice diagram representation of pulse-forming action

 On closure of the switch, the voltage on the load rises from zero to a value 
determined by

𝑉𝑉𝐿𝐿 = 𝑉𝑉
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 𝑍𝑍0
= 𝛼𝛼𝑉𝑉

 The potential on the load is given by

𝑉𝑉𝐿𝐿 = 𝛼𝛼𝑉𝑉 (0 < 𝑡𝑡 < 2𝛿𝛿)

𝑉𝑉𝐿𝐿 = 𝛼𝛼𝑉𝑉 + (𝛼𝛼 − 1)𝛾𝛾𝑉𝑉 (2𝛿𝛿 < 𝑡𝑡 < 4𝛿𝛿)

𝛾𝛾 = 𝛽𝛽 + 1

𝑉𝑉𝐿𝐿 = 𝛼𝛼𝑉𝑉 + 𝛼𝛼 − 1 𝛾𝛾𝑉𝑉 + 𝛽𝛽(𝛼𝛼 − 1)𝛾𝛾𝑉𝑉
(4𝛿𝛿 < 𝑡𝑡 < 6𝛿𝛿)

 Finally

𝑉𝑉𝐿𝐿 = 𝑉𝑉 𝛼𝛼 + 𝛼𝛼 − 1 𝛾𝛾 1 + 𝛽𝛽 + 𝛽𝛽2 + ⋯
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Typical waveforms from PFL under matched and 
unmatched conditions
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Blumlein PFL

 An important disadvantage of the simple PFL is that the pulse generated into a 
matched load is only equal to 𝑉𝑉0/2.

 This problem can be avoided using the Blumlein PFL invented by A. D. Blumlein.

 Two transmission lines and one switch is used to construct the generator.

Open endShorted end
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Blumlein PFL

 After switch closure, the end of line 1 
is effectively shorted; thus the 
reflection coefficient is +1.

 At the junction of line 1 and the load, 
the reflection coefficient is given by

𝜌𝜌 =
(𝑍𝑍𝐿𝐿 + 𝑍𝑍2) − 𝑍𝑍1
(𝑍𝑍𝐿𝐿 + 𝑍𝑍2) + 𝑍𝑍1

=
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 2𝑍𝑍0
=

1
2

 Matching condition: 𝑍𝑍𝐿𝐿 = 2𝑍𝑍0
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Analysis of Blumlein PFL

 The reflection coefficient at the load

𝜌𝜌 =
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

 The reflected step at the load

𝑉𝑉− = 𝜌𝜌 −𝑉𝑉 = −𝑉𝑉
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

 The step 𝑉𝑉𝑇𝑇 transmitted to the load and the 
line 2

𝑉𝑉𝑇𝑇 = 𝑉𝑉+ + 𝑉𝑉− = −2𝑉𝑉
𝑍𝑍𝐿𝐿 + 𝑍𝑍0
𝑍𝑍𝐿𝐿 + 2𝑍𝑍0
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Analysis of Blumlein PFL

 The fraction of the step to the load and the line 2

𝑉𝑉𝐿𝐿 = −2𝑉𝑉
𝑍𝑍𝐿𝐿 + 𝑍𝑍0
𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

×
𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 𝑍𝑍0
= −𝛼𝛼𝑉𝑉

𝛼𝛼 =
2𝑍𝑍𝐿𝐿

𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

𝑉𝑉2𝑇𝑇 = −2𝑉𝑉
𝑍𝑍𝐿𝐿 + 𝑍𝑍0
𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

×
𝑍𝑍0

𝑍𝑍𝐿𝐿 + 𝑍𝑍0
= −𝛽𝛽𝑉𝑉

𝛽𝛽 =
2𝑍𝑍0

𝑍𝑍𝐿𝐿 + 2𝑍𝑍0

𝑉𝑉𝐿𝐿 = −𝛼𝛼𝑉𝑉 1 − 1 + 𝜌𝜌 − 𝛽𝛽 − 𝜌𝜌 − 𝛽𝛽 + 𝜌𝜌 − 𝛽𝛽 2 − 𝜌𝜌 − 𝛽𝛽 2 + ⋯

 Finally
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Simple PFL vs. Blumlein PFL

Matching condition: 𝑍𝑍𝐿𝐿 = 𝑍𝑍0 Matching condition: 𝑍𝑍𝐿𝐿 = 2𝑍𝑍0
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Coaxial Blumleins

 Matching condition: 𝑍𝑍𝐿𝐿 = 𝑍𝑍1 + 𝑍𝑍2

𝑍𝑍1
𝑍𝑍2
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Two-stage stacked Blumlein

 Matching condition: 𝑍𝑍𝐿𝐿 = 4𝑍𝑍0

− ⁄𝑉𝑉 2

+ ⁄𝑉𝑉 2

− ⁄𝑉𝑉 2

+ ⁄𝑉𝑉 2
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Two-stage stacked Blumlein

 A more practical realization of two-stage Blumlein PFL using a single switch

 If points A and B and C and D are connected, then the load can be placed either 
across points E to H with points F and G connected or across points F to G with 
points E and H connected.  This change simply reverse the polarity of the 
pulse generated in the load.

 If points E and F and G and H are connected, then the load can be placed either 
across points A to D with points B and C connected or across points B to C with 
points A and D connected.
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Stacked Blumlein
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[Optional] Helical lines

 For rectangular pulses with pulse durations on the order of a few microseconds, 
the physical lengths of the transmission lines become prohibitive – on the order 
of 1 km for a 10 μs pulse.

 The helical line storage element can be realized by helical winding of a 
conductor of circular or rectangular cross section over a metallic cylinder.

𝑍𝑍0 =
(𝑅𝑅2 − 𝑅𝑅1)

𝑑𝑑ℎ
𝜇𝜇
𝜖𝜖 𝑇𝑇𝑇𝑇 =

𝑙𝑙′

𝑣𝑣𝑝𝑝
=

2𝜋𝜋𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛ℎ
𝑣𝑣𝑝𝑝

Diameter of helical conductor

Average radius of helical winding

Total number of turns

Unfolded length of wire helix
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Self-matching PFL

 In this circuit, at one end of the line the inner conductor is connected to a 
terminating resistor 𝑅𝑅 and at the other it is connected to a load 𝑍𝑍𝑙𝑙, where 𝑍𝑍𝑙𝑙 ≠ 𝑍𝑍0.
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Self-matching PFL

 From the lattice diagram, the voltage on the load can be found to be

 If the value of the terminating resistor 
is made equal to  the impedance of 
the line, i.e. 𝑅𝑅 = 𝑍𝑍0, then 𝜌𝜌𝑅𝑅 = 0 and 
𝛽𝛽 = 1/2. Then, the load voltage 
becomes

𝑉𝑉𝑙𝑙(𝒔𝒔) = −
2𝑉𝑉𝛼𝛼
𝒔𝒔 (1 − 𝑒𝑒−𝒔𝒔𝛿𝛿)

 A single rectangular pulse with duration 𝛿𝛿
independently of the value of 𝑍𝑍𝑙𝑙, thus the PFL 
is self-matching.
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Bi-directional or zero-integral PFL

 Some applications require the generation of a bi-directional pulse in which the 
polarity of the pulse changes sign in the middle of the pulse, causing the net 
integral of the pulse to be zero.
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Pulse forming network (PFN)

 A main disadvantage of the PFL is the speed of propagation of EM waves along 
transmission lines.

 The material used in transmission lines is some type of polymer plastic such as 
polypropylene, and the dielectric constant tens to be quite low (𝜖𝜖𝑟𝑟 = 2~3). Thus, 
it is impractical for making a long pulse over 1 𝜇𝜇𝑠𝑠.

 An alternative approach is to build a simulated line using a ladder network of 
inductors and capacitors.



24/30 High-voltage Pulsed Power Engineering, Fall 2018

Basic LC PFN

 Approximately, for 𝑛𝑛 > 10

𝑍𝑍𝑁𝑁 =
𝐿𝐿𝑁𝑁
𝐶𝐶𝑁𝑁

=
𝐿𝐿
𝐶𝐶

𝑡𝑡𝑝𝑝 = 2𝛿𝛿 = 2 𝐿𝐿𝑁𝑁𝐶𝐶𝑁𝑁 = 2𝑛𝑛 𝐿𝐿𝐿𝐿
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Waveform of 5-element LC PFN



26/30 High-voltage Pulsed Power Engineering, Fall 2018

Example of stacked Blumlein PFL

• Z0 = 55 Ohm
• Matched load = 330 Ohm
• Transit time = 6 ns/m
• Pulse duration = 36 ns (3 m)

Cable spec (30 kV):
C’ = 108 pF/m
L’ = 328 nH/m
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Example of stacked Blumlein PFL
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Summary

V_peak = 37 kV @ V0 = -20 kV
I_peak = 230 A

Peak power = ~5 MW
Energy = ~0.15 J/pulse
For 100 Hz operation, Pavg ~ 15 W

Huge instantaneous power
 generation of high energy electrons
 radical generation (O, N)
 efficient removal of NOx

Low average power
 low power consumption
 high efficiency
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Example of stacked Blumlein PFL
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Implementation of transmission line theory
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Implementation of PFN
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