Chapther 2 Lagrangian Dynamics

Introduction

Generalized Coordinates

Constraints

Holonomic Systems

Kinetic Energy and Generalized Momenta

Generalized Force

Lagrange's Equations of Motion

Consevative Systems

Lagrangian Systems

Dissipative Systems

Forces of Constraint

Integrals of Motion

Ignorable Coordinates

Steady Motion and Systems

Lagrange's Equations for Impulsive Forces

Electromechanical Analogy

Introduction

Formulation of eqns of motion ~ Calculus of Variation

(Variational method)

: T and V expression in terms of d^2x/dt^2 , dx/dt, x

Start ~ Energy expressions (T and V) : Scalar quantity ! : Vector Mechanics

<u>Focus</u> : Particle – single or milky way Rigid body : 6 d.o.f. Flexible body : Helicopter, Spacecraft..

T,V : invariant under coordinate transformation :

 Newton's Law : g : Experimental Result : (Rotation of Earth ignored w.r.t inertial coordinate system)
 ; <u>Intuitive idea</u> for free body diagram ! Vector quantity

- Lagrangian Expression for T and V ~ Limitation and Priority !
 - : Systematic approach can be set up for n d.o.f. systems
 - : Scalar quantity
- * Important Things to Remember
- ~ Mutual Limitation and Priority ! have to be remembered.

Vector mechanics – linear and angular momentum for isolated body : (Inertial force)

~ Pendulum.: g and internal force

~ Elevator : lope : cut at first and derive differential equation of motion

Leibniz : Change of energy due to the force (Work & potential)~ Variational method

Lagrangian
 Hamiltonian..

Analysis of Energy: Scalar quantity : Easier than *v*, *a*

• Differential calculus – Variatinal calculus ~ Optimization : Comfortable but careful !

Vector mechanics: Applied and reacting force should be considered.

How about to deal with constraint if we choose a coordinate system ?

Ex: Pendulum : curvilinear coordinate system ?

: Easy to extend to n-d.o.f system & Continuous system? ~Mission impossible ??

Objective of this Chapter

-Formulation of Eqn of motion which is independent of a system of eqn.

-Energy or variational methods provide a very elegant way to develop the eqns of motion

in a systematic way ~ Formulation is independent of any particular coordinate system.

<u>Advantage of Lagrangian Dynamics</u> : Relative to Vector Dynamics(Free- body ~)

- 1. <u>System as a whole</u> rather than being separated into it's individual component : advantages and drawbacks ?
- 2. Based on scalar quantities such as K.E. and Potential Energy, if we can find the quantities.
- 3. Forces of constraints without doing a work may not be included.
- 4. Use of generalized coordinates Ex: Angles, Fourier's coefficient etc.
- 5. In some cases for stress analysis and design, <u>constrained forces</u> can be determined by Lagrange's Multiplier method.

Generalized coordinates

Coordinate systems : Descartes : 17th century-one to one correspondence between physical locations ~ coordinates (In space)

-One reference frame is chosen –<u>well defined</u> coordinates

The locations of particle in space can be uniquely defined by a set of three

numbers in <u>some specified</u> Frame of Reference

Ex: (x,y,z) to transform any other 3D system

Usually, the choice is based on kinematics

Degrees of freedom

: Particle - 3 numbers are <u>necessary and sufficient condition to uniquely</u> specify

the physical locations of particles

Fig.1 A Point in space (3) : (q_1, q_2, q_3) **translations**

Fig.2 Generalized coordinate (6) : (q_1, q_2, q_3) translations + rotations

Fig.3 Two dimensional body (3) : (q_1, q_2) translations + rotation (q_3)

 $m\ddot{x} + \varepsilon \dot{x} + kx = 0$ $\varepsilon \ddot{x} + c\dot{x} + kx = 0$

• Boundary layer theory:

 $\begin{aligned} \varepsilon &= 0 \\ \varepsilon &\neq 0 \end{aligned} \qquad \qquad \text{Wing model} \end{aligned}$

Re

• Actual motion of a particle is independent of the variables used to observe the motion – Since no one coordinate system is preferred, we can 'label' the variables as

3 independent quantities as shown in Fig.1. - Rigid body in space; 6 coordinates.

x < -> q : Invertible

 $q_i = q_i(x_1(t), \dots, x_{3N}(t), t) \dots x_i = x_i(q_1(t), \dots, q_{3N}(t), t)$ (2.1),(2.2)

(for i=1..,3N)

Generalized coordinate(*q*) – **Physical coordinate**(*x*)

Ex:Fig.2.4 Rolling cart with a pendulum

- Free-body diagram ? Constraint force ?
- Degree of freedom considering the constraint. $q_1 = x, q_2 = \theta$ (2.3),(2.4) Configuration space as Fig.2.5

Ex:4-bar linkage as in Fig.2.6 : g ? dof ?

 $(x_1, x_2) < -> (\theta, x_1) < -> (\theta, x_2)$

Choice of coordinate : Ex) Pendulum model for 2 dof.

Refer to Page 132

Constraint

: Kinematic reactions on the motion-limit the motion of the systems

: plane motion ?, tube ?...

• If 'R' constraint : 3 N-R degrees of freedom for number of <u>independent</u> generalized coordinates

Possibility of the elimination of R constraints ?

*Elimination is possible ? , Retaining of R constraint ?

Ex: ~<u>Massless</u> spring + rigid body with mass :

~Infinite d.o.f – continuous system

~Rigid bar with a tip mass : d.o.f = 1

• Constraint in general form- Pfaffian form : $a_{jt} dt + a_{jk} dx_k = 0$ (j=1...R)

o Catastatic system : all a_{jt} = 0 for j=1,...R < > Acatastatic system : at least one a_{jt} not equal to 0

o Holonomic system : all Pfaffian forms are integrable $df_j = a_{jt} dt + a_{jk} dx_k => f_j$

< > Non-Holonomic system : At least one Pfaffian form is not integrable ->

Impossible to eliminate any variable -> Must use excessive

Coordinates

o Sclenonomic system : Holonomic and t does <u>not appear explicitly</u> in $f_j(x_1,x_2,...x_M)$: Eqn(2.5)

- < > Rheonomic system : Holonomic and t appear explicitly in f_j(x₁,x₂,...x_M): Eqn(2.6) (Diagram ?)
- o Unilateral system : (Contact problem)
 - : Constraint is expressed as an inequality ~ r > a

Ex) A bead is free to slide along a rod rotating in the *x*-*y* plane with a constant angular

velocity about z axis.

a) Draw a modelb) Classify this system

Ex) 2-dimensional motion of a boat

- Constraint is that any translation of the center of mass of the boat must be in the

direction of its heading -> Check the integrability

Ex) Fig.2.7, Rolling wheel without slipping: $\dot{x} = r\dot{\theta}$ $dx = rd\theta$: $x - x_0 = r(\theta - \theta_0)$: Holonimic constraint !

Ex) Free to change direction: Non-holonomic constraint — (2.9)

Kinetic Energy and Generalized Momenta

 $q_i = q_i(x_1,...,x_{3N},t)$, dq_i/dt Ex) Car pendulum: (q_1) distance+ (q_2) angular rotation angle.

One particle <-> N particles

→ Generalization: Generalized velocity are <u>not necessarily</u> absolute velocity.

```
Single particle : x_i = x_i(\underline{q_1, q_2, q_3}, t)
| : generalized
|
physical
```

Among the *N* particles, choose *i*-th particle, and then dq_i/dt can be expressed in terms of generalized coordinates ! -> Just through a coordinate transformation by using a Chain

rule !!

wrt $x \rightarrow q$

: Rate of change of physical coordinate x_i dependens on the rate of change of the

generalized coordinates. It may also depend on time *t* if the change of coordinates contain *t*

explicitly. (* Moving frame)

<u>Kinetic energy of *N*-particles</u> : Sum of $(1/2m_i dx_i/dt^* dx_i/dt) \rightarrow$ Using a Chain rule and Applying Einstein summation convention):

→ In terms of generalized coordinate : T=T(q, dq/dt, t)

Actually depend on generalized coordinates ~ determined by the nature of

transformation :

 $T(q,q_1,q_2) = T_2 + T_1 + T_0$ ~ Homogeneous Quadratic + Linear + Constant

: Coordinate transformation does not dependent on t \rightarrow $T_1=T_0=0$

Generalized momentum = Partial differentiation of T wrt dq_i/dt : Def !

Kinetic energy/ Generalized velocity

Physical interpretation of a particular component of a generalized momentum p_i depends

on the nature of the corresponding generalized coordinates.

In 3-dimensional space : $1/2m(v_x^2+v_y^2+v_z^2) \sim$ quardratic function !

 \rightarrow linear momentum

Ex) Earth surface!

Generalized coordinates may be actual x-,y- and z-components of position

Using the definition, $p_x = mdx/dt$, $p_y = ..., p_z = ...$

In spherical coordinates, the kinetic energy is $T = \frac{1}{2}m\left(\dot{r^2} + r^2\dot{\phi^2} + r^2\cos^2\phi\dot{\theta^2}\right)$

Generalized coordinates : distance, two angles

Generalized momenta conjugate to these coordinates :

 $p_r = m\dot{r}$ (linear..momentum) $p_{\theta} = mr^2 \cos^2 \dot{\phi} \dot{\theta}$ (angular..momentum) $p_{\phi} = mr^2 \dot{\phi}$ (angular..momentum)

*Based on geometric configuration ~ Vector mechanics ?
→ independent of the type of generalized coordinates !

~ Vector mechanics ?

Generalized Force

Vector mechanics : Time rate of change of the momenta of a system ~ force, moment Analytical mechanics : Geometric relationships between generalized coordinates obscure

the distinction between the two momentum !

Energy concept !

Virtual Work due to the actual forces is defined as

$$\delta W = \Sigma F_i \bullet \delta r_i (i = 1...N)$$

Applying the chain rule,

-

$$\delta x_i = \Sigma \frac{\partial x_i}{\partial q_j} \delta q_j (j = 1...n)$$

Virtual displacement is defined for *time is fixed*

 $\delta t = 0$