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Introduction 
 

Formulation of eqns of motion ~ Calculus of Variation  
                           

 ( Variational method) 
 

: T and V expression in terms of d2x/dt2,dx/dt, x  
  
Start ~ Energy expressions (T and V) : Scalar quantity ! : Vector Mechanics 

 
 
 Focus :  Particle – single or milky way 

  Rigid body : 6 d.o.f.   
Flexible body : Helicopter, Spacecraft.. 

  
 
T,V : invariant under coordinate transformation : 

 
 Newton’s Law : g : Experimental Result : ( Rotation of Earth ignored  

w.r.t inertial coordinate system) 
                        ; Intuitive idea for free body diagram ! Vector quantity 



   
 Lagrangian Expression for T and V ~ Limitation and Priority ! 

                             
 : Systematic approach can be set up for n - d.o.f. systems 

                     : Scalar quantity 
 
* Important Things to Remember  
  
~ Mutual Limitation and Priority ! have to be remembered. 
  
Vector mechanics – linear and angular momentum for isolated body : ( Inertial force )        

 
~ Pendulum.: g and internal force 
 
~ Elevator : lope : cut at first and derive differential equation  

of motion  
 
Leibniz : Change of energy due to the force (Work & potential)~ Variational method  

 
– Lagrangian  

Hamiltonian.. 



Analysis of Energy: Scalar quantity : Easier than v, a 
 
 Differential calculus – Variatinal calculus ~ Optimization : Comfortable but careful ! 

 
Vector mechanics: Applied and reacting force should be considered. 

          
 How about to deal with constraint if we choose a coordinate system ? 
    
 Ex: Pendulum : curvilinear coordinate system ? 
     

:  Easy to extend to n-d.o.f system & Continuous system? ~Mission impossible ?? 
 
Objective of this Chapter 
 
-Formulation of Eqn of motion which is independent of a system of eqn. 
 
-Energy or variational methods provide a very elegant way to develop the eqns of motion 
  
in a systematic way ~ Formulation is independent of any particular coordinate system. 

 
 



 
Advantage of Lagrangian Dynamics : Relative to Vector Dynamics( Free- body ~) 
 

1. System as a whole rather than being separated into it’s individual component :  
                          advantages and drawbacks ? 

2. Based on scalar quantities such as K.E. and Potential Energy, if we can find the 
quantities. 
 

3. Forces of constraints without doing a work may not be included. 
 
 

4. Use of generalized coordinates - Ex: Angles, Fourier’s coefficient etc. 
 

5. In some cases for stress analysis and design, constrained forces can be determined 
by Lagrange’s Multiplier method. 
 
 
 
 
 
 



 
Generalized coordinates 
  
Coordinate systems : Descartes : 17th century-one to one correspondence between 

physical locations ~ coordinates ( In space ) 
 
-One reference frame is chosen –well defined coordinates 
 
The locations of particle in space can be uniquely defined by a set of three  
 
numbers in some specified Frame of Reference  
  

Ex: (x,y,z) to transform any other 3D system 
 
Usually, the choice is based on kinematics 
 
Degrees of freedom 
 

: Particle - 3 numbers are necessary and sufficient condition to uniquely specify  
 
the physical locations of particles 



 
Fig.1 A Point in space (3) : ( 1 2 3, ,q q q ) translations 
 
Fig.2 Generalized coordinate (6) : ( 1 2 3, ,q q q ) translations + rotations 
 
Fig.3 Two dimensional body (3) : ( 1 2,q q ) translations + rotation( 3q )  
  

 Boundary layer theory:   
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 Actual motion of a particle is independent of the variables used to observe the motion  
– Since no one coordinate system is preferred, we can ‘label’ the variables as  
 

3 independent quantities as shown in Fig.1. - Rigid body in space; 6 coordinates.  
  
x < - > q  : Invertible 
 

1 3( (t),.... (t), )i i Nq q x x t= ….. 1 3(q (t),....q (t), )i i Nx x t=  (2.1),(2.2) 
 
             (for i=1..,3N) 
 
              Generalized coordinate(q) – Physical coordinate(x) 
 
 
Ex:Fig.2.4 Rolling cart with a pendulum 
 

 Free-body diagram ?  Constraint force ?  
 

 Degree of freedom considering the constraint. 1 2,q x q θ= =   (2.3),(2.4) 
 Configuration space as Fig.2.5 



 
 
 Ex:4-bar linkage as in Fig.2.6 : g ? dof ? 
 
          1 2 1 2( , ) ( , ) ( , )x x x xθ θ< − > < − >   
 
 Choice of coordinate : Ex) Pendulum model for 2 dof. 
 
 Refer to Page 132 
 
 
 
 
 
 
Constraint 
  

: Kinematic reactions on the motion-limit the motion of the systems 
 
:  plane motion ?, tube ?… 
 



  If ‘R’ constraint : 3 N-R degrees of freedom for number of independent generalized 
 
 coordinates 
 
 
  
 
Possibility of the elimination of R constraints ? 
 
 

*Elimination is possible ? , Retaining of R constraint ? 
 
 
Ex: ~Massless spring + rigid body with mass :  
 

~Infinite d.o.f – continuous system 
      
       ~Rigid bar with a tip mass  :  d.o.f  = 1 
 
 Constraint in general form- Pfaffian form : ajt dt + ajkdxk = 0 ( j=1…R) 

 



o Catastatic system : all ajt = 0 for j=1,…R <  > Acatastatic system : at least one ajt not 
equal to 0 

  
o Holonomic system : all Pfaffian forms are integrable dfj  =  ajt dt + ajkdxk => fj   
 
<  >  Non-Holonomic system : At least one Pfaffian form is not integrable ->  

 
Impossible to eliminate any variable -> Must use excessive  

 
Coordinates 

 
o Sclenonomic system : Holonomic and t does not appear explicitly in fj(x1,x2,…xM) : 

Eqn(2.5)  
 
<  > Rheonomic system  :  Holonomic and t appear explicitly in fj(x1,x2,…xM): Eqn(2.6)   
 ( Diagram ?) 
 
o Unilateral system : ( Contact problem ) 
 

: Constraint is expressed as an inequality ~ r > a 
 



Ex) A bead is free to slide along a rod rotating in the x-y plane with a constant angular  
 
velocity about z axis. 
 
a) Draw a model 
b) Classify this system 

   
Ex) 2-dimensional motion of a boat 
    

- Constraint is that any translation of the center of mass of the boat must be in the  
 
direction of its heading -> Check the integrability 

 
 
Ex) Fig.2.7, Rolling wheel without slipping: x rθ= 

   dx rdθ= : 0 0( )x x r θ θ− = −  
      : Holonimic constraint ! 
 
Ex) Free to change direction: Non-holonomic constraint — (2.9) 
 
 
 



 
 
 
 
Kinetic Energy and Generalized Momenta 
 
qi = qi ( x1,…..x3N,t) , dqi/dt 
Ex) Car pendulum: (q1)distance+(q2)angular rotation angle. 
 
    One particle <-> N particles 
 

 Generalization: Generalized velocity are not necessarily absolute velocity. 
 
   Single particle : xi=xi(q1,q2,q3,t) 

               |    : generalized 
               | 
              physical 
 

Among the N particles, choose i-th particle, and then dqi/dt can be expressed in terms of  
 
generalized coordinates ! -> Just through a coordinate transformation by using a Chain 



rule !! 
                       wrt  x - > q 
 

: Rate of change of physical coordinate xi dependens on the rate of change of the  
 
generalized coordinates. It may also depend on time t if the change of coordinates 

contain t 
 
explicitly. ( * Moving frame ) 

Kinetic energy of N-particles : Sum of (1/2midxi/dt*dxi/dt) -> Using a Chain rule and  
Applying Einstein summation convention): 
 

 In terms of generalized coordinate : T=T( q, dq/dt ,t) 
 
Actually depend on generalized coordinates ~ determined by the nature of  
 

transformation : 
 

            T(q,q1,q2) = T2 + T1 +T0    ~  Homogeneous Quadratic + Linear + Constant 
             

: Coordinate transformation does not dependent on t  T1=T0=0 



 
    Generalized momentum = Partial differantiation of T wrt dqi /dt :  
                       Def ! 

Kinetic energy/ Generalized velocity 
 
Physical interpretation of a particular component of a generalized momentum pi  

depends 
 
on the nature of the corresponding generalized coordinates. 
 
In 3–dimensional space : 1/2m(vx

2+vy
2+vz

2) ~ quardratic function ! 
 

 linear momentum  
               Ex) Earth surface! 
 
Generalized coordinates may be actual x-,y- and z-components of position 
 
Using the definition, px =mdx/dt , py=.. , pz=.. 
 
In spherical coordinates, the kinetic energy is 

 2 2 2 2 2 21 cos
2

T m r r rφ φθ 
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                                   Generalized coordinates : distance, two angles 
 
Generalized momenta conjugate to these coordinates :  

 
( .. )rp mr linear momentum=



 .   

2 2cos ( .. )p mr angular momentumθ φθ=


 . 

2 ( .. )p mr angular momentumφ φ=


 

*Based on geometric configuration ~ Vector mechanics ? 
    independent of the type of generalized coordinates ! 

 
~ Vector mechanics ? 

 
Generalized Force 
 
Vector mechanics : Time rate of change of the momenta of a system ~ force, moment 
Analytical mechanics : Geometric relationships between generalized coordinates 
obscure  
                   the distinction between the two momentum ! 
 
 Energy concept ! 
 
 Virtual Work due to the actual forces is defined as  
         



( 1... )i iW F r i Nδ δ= Σ =

   
 

 Applying the chain rule, 
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Virtual displacement is defined for time is fixed  
                            0tδ =  
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