몬테카륵로 방사선해석 (Monte Carlo Radiation Analysis)

Variance Reduction: Techniques

Estimation Mean and Variance

• To estimate the integral

$$I = \int_{0}^{5} \frac{1}{1 + x^{2}} dx , \qquad (1)$$

• Define the function

$$f(x) = \begin{cases} 1/5, & 0 \le x \le 5\\ 0, & \text{otherwise} \end{cases}$$
(2) so that $\int_{-\infty}^{\infty} f(x) dx = 1.$

• Now define the random variable V(x) as

$$V(x) = \frac{5}{1+x^2} \text{ so that } \int_0^5 V(x) \cdot f(x) \, dx = \int_0^5 \frac{1}{1+x^2} \, dx \, dx$$

Estimation Mean and Variance (cont.)

• The expected value of V is then

$$E(V) = \int_{-\infty}^{\infty} V(x) f(x) dx = \int_{0}^{5} \frac{1}{1+x^{2}} dx, \qquad (3)$$

which gives $E(V) = tan^{-1}(5) - tan^{-1}(0) \Rightarrow 1.373400$.

• The mean value of V^2 is, on the other hand,

$$E(V^{2}) = \int_{-\infty}^{\infty} V^{2}(x) f(x) dx = \int_{0}^{5} \left(\frac{5}{1+x^{2}}\right)^{2} \frac{dx}{5} \approx 3.9/4270.$$

Estimation Mean and Variance (cont.)

• The variance of the random variable V is then $var(V) = E(V^2) - [E(V)]^2 \Rightarrow 2.028042$, and

the standard deviation is, therefore,

 $\sigma(V) \approx \sqrt{2.028042} \approx 1.424093.$

Note
$$var(\overline{V}) = \frac{1}{n}var(V) = \frac{1}{n}\sigma^2(V)$$

ex. $var(\overline{V}) = 2.028042 \times 10^{-4}$ with $n = 10000$

Improvement of Certainty in Estimate

- The purpose of MC calculation is usually to obtain an estimate of the expected value of a random variable.
- The usual measure of the certainty of the result is the standard deviation of the estimate obtained.
- The improvement in the certainty of an estimate of the mean can be made by increasing the number of samples:

$$var(\overline{5}) = \frac{1}{n}var(X) = \frac{\sigma^2(X)}{n}.$$
 (18)

which might cost too much time.

• Other methods for improvement in certainty?

Stratified Sampling

- The range over which the independent variable is sampled is divided into strata and each stratum is sampled separately.
- Exercise
 - Estimate the integral of

$$I = \int_{x=0}^{5} \frac{1}{1+x^{2}} dx \quad (1)$$

Stratified Sampling: exercise

• Step 1. Define the pdf $f_i(x)$ for the first stratum

$$f_{I}(x) = \begin{cases} I, & 0 \le x \le I \\ 0, & elsewhere \end{cases}$$
(4)

and the pdf $f_2(x)$ for the second stratum

$$f_2(x) = \begin{cases} 0.25, & l \le x \le 5\\ 0, & elsewhere \end{cases}$$
(5)

• Step 2. Define the corresponding random variables as

$$V_1(x) = \frac{1}{1+x^2}$$
 (6) and $V_2(x) = \frac{4}{1+x^2}$ (7)

so that

$$\int_{0}^{t} V_{1}(x) f_{1}(x) dx = \int_{0}^{t} \frac{1}{1+x^{2}} dx; \text{ and } \int_{1}^{5} V_{2}(x) f_{2}(x) dx = \int_{1}^{5} \frac{1}{1+x^{2}} dx, \quad (8)$$

which leads to

$$\int_{0}^{\prime} V_{1}(x) f_{1}(x) dx + \int_{1}^{5} V_{2}(x) f_{2}(x) dx = \int_{0}^{\prime} \frac{1}{1+x^{2}} dx + \int_{1}^{5} \frac{1}{1+x^{2}} dx = \int_{0}^{5} \frac{1}{1+x^{2}} dx$$
or $I = E(V_{1}) + E(V_{2}).$
(9)

• Step 3. Calculate the expected value $E(V_1)$ in the first stratum and $E(V_2)$ in the second stratum:

$$E(V_{1}) = \int_{x=0}^{7} V_{1}(x) f_{1}(x) dx = \int_{x=0}^{7} \frac{1}{1+x^{2}} dx \approx 0.7853982 \quad (10)^{2}$$
$$E(V_{2}) = \int_{x=1}^{5} V_{2}(x) f_{2}(x) dx = \int_{x=1}^{5} \frac{4}{1+x^{2}} \frac{dx}{4} \approx 0.5880026 \quad (10)^{2}$$

• Step 4. Calculate the variances V_1 for the first stratum and V_2 for the second stratum:

$$E(V_{l}^{2}) = \int_{x=0}^{l} \left(\frac{l}{1+x^{2}}\right)^{2} dx \approx 0.6426991 \quad (1/l)^{2}$$
$$E(V_{l}^{2}) = \int_{x=l}^{5} \left(\frac{4}{1+x^{2}}\right)^{2} \frac{dx}{4} \approx 0.5606200 \quad (1/l)^{2}$$

Hence,

$$var(V_{1}) = E(V_{1}^{2}) - [E(V_{1})]^{2} \approx 0.0258488 \quad (12)'$$
$$var(V_{2}) = E(V_{2}^{2}) - [E(V_{2})]^{2} \approx 0.2/48729 \quad (12)''$$

• Step 5. The value of the original integral is

$$I = \int_{0}^{5} \frac{1}{1+x^{2}} dx = E(V_{1}) + E(V_{2}) \approx 1.373400.$$

• Step 6. Compare the mean and the variance $E(V_{1}) + E(V_{2}) \rightleftharpoons 1.373400 \quad as (3)$ $var[E(V_{1})+E(V_{2})]$ $= var[E(V_{1})] + var[E(V_{2})]$ $= var(V_{1})/n_{1} + var(V_{2})/n_{2} \text{ and}$

the standard deviation is $\sigma(\overline{V_1} + \overline{V_2}) = \sqrt{var(\overline{V_1} + \overline{V_2})}$.

• ex. var[E(V₁)+E(V₂)] \Rightarrow 4.8/44 x 10⁻⁵ with n₁=5000 and n₂=5000

Demonstration of the Stratification Property nomenclature

- Conditional probability $P\{X=x \mid B\}$ \equiv the probability of X=x given condition B.
- $E(V \mid A) \equiv$ the expected value of random variable V(x)over the set A of x's.
- "~" indicates the subtraction of one set from another.

Demonstration of the Stratification Property

• <u>Theorem</u>

Given a variable function V(x) for x in a set R of real numbers such that E(V | A) in a subset A and E(V | R)and var(V | R) in the set R exist and are finite, if E(V | A) does not equal E(V | R) then the variance of the estimate of E(V | R) using the strata defined by A and $R \sim A$ is less than the variance of the estimate without stratification.

- Let f(x) be the pdf of x for V(x) and let $a = \int_{A} f(x) dx$. Then $I - a = \int_{R \sim A} f(x) dx$.
- Define

$$f_{i}(x) = \begin{cases} \frac{f(x)}{a}, & \text{for } x \text{ in } A \\ 0, & \text{otherwise} \end{cases} \text{ and } f_{2}(x) = \begin{cases} \frac{f(x)}{i-a}, & \text{for } x \text{ not in } A \\ 0, & \text{otherwise} \end{cases}$$

• Then

•

$$\begin{split} & \mathsf{E}(\mathsf{V} \mid \mathsf{A}) = \bar{\mathsf{V}}_1 = \int_{\mathsf{A}} \mathsf{V}(x) f_1(x) dx = \frac{1}{a} \int_{\mathsf{A}} \mathsf{V}(x) f(x) dx \quad \text{and} \\ & \mathsf{E}(\mathsf{V} \mid \mathsf{R} \sim \mathsf{A}) = \bar{\mathsf{V}}_2 = \int_{\mathsf{R} \sim \mathsf{A}} \mathsf{V}(x) f_2(x) dx = \frac{1}{1-a} \int_{\mathsf{R} \sim \mathsf{A}} \mathsf{V}(x) f(x) dx \\ & \text{whereas } \mathsf{E}(\mathsf{V} \mid \mathsf{R}) = \bar{\mathsf{V}} = \int_{\mathsf{R}} \mathsf{V}(x) f(x) dx. \\ & \text{And thus,} \\ & \mathsf{E}(\mathsf{V} \mid \mathsf{R}) = a \cdot \mathsf{E}(\mathsf{V} \mid \mathsf{A}) + (1-a) \cdot \mathsf{E}(\mathsf{V} \mid \mathsf{R} \sim \mathsf{A}) \text{ or } \bar{\mathsf{V}} = a \bar{\mathsf{V}}_1 + (1-a) \bar{\mathsf{V}}_2. \\ & \text{Since } \mathsf{E}(\mathsf{V} \mid \mathsf{A}) \neq \mathsf{E}(\mathsf{V} \mid \mathsf{R}), \text{ defining } \delta = \mathsf{E}(\mathsf{V} \mid \mathsf{A}) - \mathsf{E}(\mathsf{V} \mid \mathsf{R}) \text{ gives} \\ & \mathsf{E}(\mathsf{V} \mid \mathsf{R} \sim \mathsf{A}) = \mathsf{E}(\mathsf{V} \mid \mathsf{R}) - \frac{a}{1-a} \delta. \end{split}$$

Therefore, if $\delta > 0$, $E(V \mid A) > E(V \mid R)$ then $E(V \mid R \sim A) < E(V \mid R)$ and vice versa.

• The variance of V is given by

$$var(V) = \int_{R} [V(x) - E(V)]^{2} f(x) dx$$

= $\int_{A} [V(x) - E(V)]^{2} f(x) dx + \int_{R-A} [V(x) - E(V)]^{2} f(x) dx$.

• The variance of the estimate of the mean of V or \overline{V} , based on n samples is then [var(V)]/n, or

$$var(\overline{V}) = \frac{1}{n} \int_{A} [V(x) - E(V)]^{2} f(x) dx + \frac{1}{n} \int_{R-A} [V(x) - E(V)]^{2} f(x) dx \quad (13)$$

• In an unbiased sampling scheme with total n samples for these two strata, nP(A) or na samples are used for stratum A and nP(R~A) or n(I-a) are used for stratum R~A. Therefore, the variance of $[a\overline{V}_1 + (I-a)\overline{V}_2]$ is

$$\begin{aligned} \operatorname{var}[a\overline{V}_{1} + (/-a)\overline{V}_{2}] \\ &= a^{2} \cdot \operatorname{var}(\overline{V}_{1}) + (/-a)^{2} \cdot \operatorname{var}(\overline{V}_{2}) \\ &= \frac{a^{2}}{na} \cdot \operatorname{var}(V_{1}) + \frac{(/-a)2}{n(/-a)} \cdot \operatorname{var}(V_{2}) \\ &= \frac{a}{n} \int_{A} \left[V(x) - \overline{V}_{1} \right]^{2} f_{1}(x) dx + \frac{(/-a)}{n} \int_{R \sim A} [V(x) - \overline{V}_{2}]^{2} f_{2}(x) dx \\ &= \frac{1}{n} \int_{A} \left[V(x) - \overline{V}_{1} \right]^{2} f(x) dx + \frac{1}{n} \int_{R \sim A} [V(x) - \overline{V}_{2}]^{2} f(x) dx \quad (/4) \end{aligned}$$

• By comparing (13) and (14), $var[\overline{V}] = var[a\overline{V}_1 + (1-a)\overline{V}_2]$ if $\overline{V} = \overline{V}_1 = \overline{V}_2$.

$$var[\overline{V}] = \frac{1}{n} \int_{A} [V(x) - \overline{V}]^{2} f(x) dx + \frac{1}{n} \int_{R \sim A} [V(x) - \overline{V}]^{2} f(x) dx \quad (13)$$

$$var[a\overline{V}_{1} + (1 - a)\overline{V}_{2}]$$

$$= \frac{1}{n} \int_{A} [V(x) - \overline{V}_{1}]^{2} f(x) dx + \frac{1}{n} \int_{R \sim A} [V(x) - \overline{V}_{2}]^{2} f(x) dx \quad (14)$$

• When $E(V \mid A) \neq E(V \mid R)$, which is the assumption of the theorem, consider a function h(v) defined by

$$h(v) = \int_{A} [V(x) - v]^2 f(x) dx .$$

• Taking the derivative of h(v) with respect to v gives

$$\frac{dh(v)}{dv} = -2\int_{A} [V(x) - v]f(x)dx$$
$$= -2\int_{A} V(x)f(x)dx + 2\int_{A} v \cdot f(x)dx$$
$$= -2a\overline{V_{i}} + 2av = 2a(v - \overline{V_{i}})$$

and dh(v)/dv = 0 implies $v = \overline{V}_1$.

• Note that the second derivative of h(v) with respect to vis 2a > 0. Then, $v = \overline{V}_1$ as the minimum value for h(v), which means that if $E(V \mid A) \neq E(V \mid R)$ then

 $\int_A [V(x) - \overline{V}_1]^2 f(x) dx < \int_A [V(x) - \overline{V}]^2 f(x) dx.$

Similarly, if $E(V | R \sim A) \neq E(V | R)$ then

 $\int_{R\sim A} [V(x)-\overline{V}_2]^2 f(x) dx < \int_{R\sim A} [V(x)-\overline{V}]^2 f(x) dx.$

• Therefore, $var[a\overline{V}_1 + (/-a)\overline{V}_2] < var[\overline{V}]$.

Optimal Choice of the Number of Samples

• Let w denote the variance of the mean of the stratified sample, i.e.,

$$w = var[aV_1 + (1-a)V_2].$$

made with total n samples, with m samples for the first stratum and n-m samples for the second stratum. This gives

$$w(m) = \frac{a^2}{m} var(V_1) + \frac{(1-a)^2}{n-m} var(V_2).$$

• By setting dw(m)/dm = 0, the optimum value m is

$$m = \frac{n}{1 + \sqrt{k}} \quad \text{where} \quad k = \frac{(1 - a)^2 \operatorname{var}(V_2)}{a^2 \cdot \operatorname{var}(V_1)} \, .$$

Biased Sampling Scheme

- In the general case of biased sampling, the samples are picked from a modified pdf.
- Consider the random variable V(x) with pdf f(x). The expected value of V is then given by

$$E(V) = \int_{R} V(x) f(x) dx. \qquad (1)$$

• Given a different pdf g(x), such that g(x) > 0 everywhere that V(x)f(x) > 0, one has

$$E(V) = \int_{\mathcal{R}} \frac{V(x)f(x)}{g(x)} \cdot g(x) dx. \qquad (2)$$

Biased Sampling Scheme (cont.)

- The random variable V' associated with the pdf g(x) is $V'(x) = V(x) \cdot f(x)/g(x)$ and E(V') = E(V).
- The proper selection of g(x) can result in the variance being significantly reduced.
 - Select g(x) such that

$$\frac{V'(x)}{V'(x)} = \frac{V(x) \cdot f(x)}{g(x)} = c \equiv Constant.$$
(3)
Then,

$$E(V) = \underline{E(V')} = \int_{R} \frac{V(x)f(x)}{g(x)} \cdot g(x) dx = \int_{R} c \cdot g(x) dx = c.$$
and

$$var(V') = \int_{R} \left[(V'(x) - E(V')) \right]^2 g(x) dx = 0.$$

Biased Sampling Scheme (cont.)

• Therefore, in theory, it is possible to choose a modified pdf such that the sampling process gives an answer with zero variance if one can find g(x) that has the same shape as V(x)f(x) to satisfy (3).

Biased Sampling Scheme: example

- Consider the variable $V(x) = e^x$ and the pdf $f(x) =\begin{cases} 1, & \text{for } 0 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$ • Then $E(V) = \int_0^t V(x)f(x)dx = \int_0^t e^x dx \approx 1.7/828 .$
- The MC estimates with 10⁶ samples without biasing are
 - the integral estimate, $\overline{V}(x)$ = 1.71825757
 - standard deviation of random variable values $V(x_i)$'s
 - standard deviation of the integral estimate $\overline{V}(x) = \underline{0.00049169}$ (5)

SNU/NUKE/EHK

2

-1

= 0.49/68896

o

Biased Sampling Scheme: example (cont.)

- Select a pdf for biasing
 - Considering a straight line from (0,1) to (1,2.718) is somewhat the same shape as V(x)f(x), define a modified pdf as

$$g(x) = \frac{1 + 1.7/8x}{1.859} \,. \tag{6}$$

- The MC results by the biased sampling are
 - the integral value = 1.71823566
 - standard deviation of random variable
 = 0.06507303
 - standard deviation of the integral estimate = 0.00006507 (7)

-- The result obtained by biased sampling is more reliable.

Biased Sampling/ weighting factor

• A new random variable V' is defined for a modified pdf g(x) as

 $V'(x) = V(x) \cdot f(x)/g(x)$ to give E(V') = E(V).

• The original random variable V(x) is weighted by $V'(x)/V(x) = f(x)/g(x) \equiv$ weighting factor to compensate the modification of pdf from f(x) to g(x).

Homework #3