
The Relative Power of
Synchronization Operations

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

Last Lecture:
Shared-Memory Computability

• Mathematical model of concurrent computation

• What is (and is not) concurrently computable

• Efficiency (mostly) irrelevant

10011

Shared Memory

Art of Multiprocessor
Programming

3

Wait-Free Implementation

• Every method call completes in finite
number of steps

• Implies no mutual exclusion

(2)

Art of Multiprocessor
Programming

4

From Weakest Register

1

0 1

Single reader Single writer

Safe Boolean register

Art of Multiprocessor
Programming

5

All the way to a Wait-free
Implementation of Atomic

Snapshots

MRMW

MRSW

SRSW

Safe
Regular

Atomic

M-valued

Boolean

Snapshot

Art of Multiprocessor
Programming

6

Rationale for wait-freedom

• We wanted atomic registers to
implement mutual exclusion

• So we couldn’t use mutual exclusion to
implement atomic registers

• But wait, there’s more!

Why is Mutual Exclusion
so wrong?

(2)

Art of Multiprocessor
Programming

8

Asynchronous Interrupts

(2)

Art of Multiprocessor
Programming

9

Asynchronous Interrupts

??? ???

(2)

Art of Multiprocessor
Programming

10

Heterogeneous Processors

??? ???
yawn

(1)

Core i7 Core i7
Pentium

Art of Multiprocessor
Programming

11

Fault-tolerance

??? ???

(2)

Art of Multiprocessor
Programming

12

Machine Level Instruction
Granularity

Eugene Amdahl

(2)

Art of Multiprocessor
Programming

13

Basic Questions

• Wait-Free synchronization might be a
good idea in principle

• But how do you do it
– Systematically?

– Correctly?

– Efficiently?

Art of Multiprocessor
Programming

14

FIFO Queue: Enqueue Method

q.enq()

Art of Multiprocessor
Programming

15

FIFO Queue: Dequeue Method

q.deq()/

Art of Multiprocessor
Programming

16

Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public void enq(Item x) {

 while (tail-head == QSIZE) {};
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {

 while (tail-head == 0) {}
 Item item = items[head % QSIZE];
 head++; return item;
}}

Art of Multiprocessor
Programming

17

What About Multiple
Dequeuers?

Art of Multiprocessor
Programming

18

Grand Challenge

• Implement a FIFO queue
– Wait-free

– Linearizable

– From atomic read-write registers

– Multiple dequeuers

Only new
aspect

(1)

Art of Multiprocessor
Programming

19

Consensus

• While you are ruminating on the grand
challenge…

• We will give you another puzzle
– Consensus

– Will be important …

Art of Multiprocessor
Programming

20

Consensus: Each Thread has a
Private Input

32 19

21

Art of Multiprocessor
Programming

21

They Communicate

Art of Multiprocessor
Programming

22

They Agree on One Thread’s
Input

19 19

19

Art of Multiprocessor
Programming

23

Formally: Consensus

Consistent: all threads decide the same
value

Valid: the common decision value is
some thread's input

Art of Multiprocessor
Programming

24

No Wait-Free Implementation
of Consensus using Registers
??? ???

Art of Multiprocessor
Programming

25

Formally

• Theorem [adapted from Fischer,
Lynch, Paterson]: There is no wait-
free implementation of n-thread
consensus, n>1, from read-write
registers

• Implication: asynchronous
computability fundamentally
different from Turing computability

Art of Multiprocessor
Programming

26

Proof Strategy

• Assume otherwise

• Reason about the properties of any
such protocol

• Derive a contradiction

• Quod Erat Demonstrandum

• Suffices to prove for binary
consensus and n=2

Art of Multiprocessor
Programming

27

Wait-Free Computation

• Either A or B “moves”

• Moving means
– Register read

– Register write

A moves B moves

Art of Multiprocessor
Programming

28

The Two-Move Tree

Initial
state

Final
states

(2)

Art of Multiprocessor
Programming

29

Decision Values

1 0 0 1 1 1

Art of Multiprocessor
Programming

30

Bivalent: Both Possible

1 1 1

bivalent

1 0 0

Art of Multiprocessor
Programming

31

Univalent: Single Value Possible

1 1 1

univalent

1 0 0

Art of Multiprocessor
Programming

32

x-valent: x Only Possible
Decision

0 1 1 1

1-valent

0 1

Art of Multiprocessor
Programming

33

Summary

• Wait-free computation is a tree

• Bivalent system states
– Outcome not fixed

• Univalent states
– Outcome is fixed

– May not be “known” yet

• 1-Valent and 0-Valent states

Art of Multiprocessor
Programming

34

Claim

• Some initial state is bivalent

• Outcome depends on
– Chance

– Whim of the scheduler

• Multiprocessor gods do play dice
…

• Lets prove this claim

Art of Multiprocessor
Programming

35

Both Inputs 0

Univalent: all executions must decide 0

0 0

(2) (1)

Art of Multiprocessor
Programming

36

Both Inputs 0

Including this solo execution by A

(1) (1)

0

Art of Multiprocessor
Programming

37

Both Inputs 1

All executions must decide 1

1 1

(2) (1)

Art of Multiprocessor
Programming

38

Both Inputs 1

Including this solo execution by B

(1) (1)

1

Art of Multiprocessor
Programming

39

What if inputs differ?

(2)

1 0

By Way of contradiction: If univalent
all executions must decide on same value

Art of Multiprocessor
Programming

40

The Possible Executions

0 1

(2)

Include the solo execution by A
that decides 0

Art of Multiprocessor
Programming

41

The Possible Executions

0 1

(2)

Also include the solo execution by B
which we know decides 1

Art of Multiprocessor
Programming

42

Possible Executions Include

• Solo execution by A
must decide 0

• Solo execution by B
must decide 1

0 1

How univalent
is that?
(QED)

Art of Multiprocessor
Programming

43

0-valent

Critical States

1-valent

critical

(3) (3)

Art of Multiprocessor
Programming

44

From a Critical State

c

If A goes first,
protocol decides 0

If B goes first,
protocol decides 1

0-valent 1-valent

Art of Multiprocessor
Programming

45

Reaching Critical State

CA

CA

CB

c

CB

univalent

univalent

univalent

univalent

0-valent 1-valent

initially bivalent

Art of Multiprocessor
Programming

46

Critical States

• Starting from a bivalent initial state

• The protocol can reach a critical
state
– Otherwise we could stay bivalent

forever

– And the protocol is not wait-free

Art of Multiprocessor
Programming

47

Model Dependency

• So far, memory-independent!

• True for
– Registers

– Message-passing

– Carrier pigeons

– Any kind of asynchronous computation

Art of Multiprocessor
Programming

48

Read-Write Memory

• Reads and/or writes

• To same/different registers

Art of Multiprocessor
Programming

49

Completing the Proof

• Lets look at executions that:
– Start from a critical state

– Threads cause state to become univalent
by reading or writing to same/different
registers

– End within a finite number of steps
deciding either 0 or 1

• Show this leads to a contradiction

Art of Multiprocessor
Programming

50

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

? ? ? ?

y.read()

? ? ? ?

x.write()

? ? ? ?

y.write()

? ? ? ?

A reads x
A reads y

Art of Multiprocessor
Programming

51

Some Thread Reads

A runs solo,
eventually
decides 0

B reads x

1

0

A runs solo,
eventually
decides 1

c

States look
the same to A

Art of Multiprocessor
Programming

52

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no ? ?

y.write()

no no ? ?

Art of Multiprocessor
Programming

53

Writing Distinct Registers

A writes y B writes x

1 0

c

The song is the same

A writes y B writes x

Art of Multiprocessor
Programming

54

Possible Interactions

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no ? no

y.write()

no no no ?

Art of Multiprocessor
Programming

55

Writing Same Registers

States look
the same to A

A writes x B writes x

1
A runs solo,
eventually
decides 1

c

0

A runs solo,
eventually
decides 0 A writes x

Art of Multiprocessor
Programming

56

That’s All, Folks!

x.read() y.read() x.write() y.write()

x.read()

no no no no

y.read()

no no no no

x.write()

no no no no

y.write()

no no no no

Art of Multiprocessor
Programming

57

Recap: Atomic Registers Can’t
Do Consensus

• If protocol exists
– It has a bivalent initial state

– Leading to a critical state

• What’s up with the critical state?
– Case analysis for each pair of methods

– As we showed, all lead to a contradiction

Art of Multiprocessor
Programming

58

What Does Consensus have to
do with Concurrent Objects?

Art of Multiprocessor
Programming

59

Consensus Object

public interface Consensus {
 Object decide(object value);
}

(4) (4)

Art of Multiprocessor
Programming

60

Concurrent Consensus
Object

• We consider only one time objects:
each thread can execute a method
only once

• Linearizable to sequential consensus
object in which
– the thread who’s input was decided on

completed its method first

Art of Multiprocessor
Programming

61

Java Jargon Watch

• Define Consensus protocol as an
abstract class

• We implement some methods

• Leave you to do the rest …

Art of Multiprocessor
Programming

62

Generic Consensus Protocol

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

(4) (4)

Art of Multiprocessor
Programming

63

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

(4) (4)

Each thread’s
proposed value

Art of Multiprocessor
Programming

64

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

(4) (4)

Propose a value

Art of Multiprocessor
Programming

65

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

(4) (4)

Decide a value: abstract method
means subclass does the heavy lifting

(real work)

Can a FIFO Queue
Implement Consensus?

Art of Multiprocessor
Programming

67

FIFO Consensus

proposed array

FIFO Queue
with red and
black balls

8

Coveted red ball Dreaded black ball

Art of Multiprocessor
Programming

68

Protocol: Write Value to Array

0 1
0

Art of Multiprocessor
Programming

69

0

Protocol: Take Next Item from
Queue

0 1
8

Art of Multiprocessor
Programming

70

0 1

Protocol: Take Next Item from
Queue

I got the coveted
red ball, so I will
decide my value

I got the dreaded
black ball, so I will
decide the other’s
value from the

array
8

Art of Multiprocessor
Programming

71

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
 queue = new Queue();
 queue.enq(Ball.RED);
 queue.enq(Ball.BLACK);
 }
 …
}

Consensus Using FIFO Queue

Art of Multiprocessor
Programming

72

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
 this.queue = new Queue();
 this.queue.enq(Ball.RED);
 this.queue.enq(Ball.BLACK);
 }
 …
}

Initialize Queue

8

Art of Multiprocessor
Programming

73

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

Art of Multiprocessor
Programming

74

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-ij];
 }
}

Who Won?

Race to dequeue
first queue item

Art of Multiprocessor
Programming

75

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

i = ThreadID.get();

I win if I was
first

Art of Multiprocessor
Programming

76

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

Other thread wins if
I was second

Art of Multiprocessor
Programming

77

Why does this Work?

• If one thread gets the red ball

• Then the other gets the black ball

• Winner decides her own value

• Loser can find winner’s value in array
– Because threads write array

– Before dequeueing from queue

Art of Multiprocessor
Programming

78

Theorem

• We can solve 2-thread consensus
using only
– A two-dequeuer queue, and

– Some atomic registers

Art of Multiprocessor
Programming

79

Implications

• Given
– A consensus protocol from queue and registers

• Assume there exists
– A queue implementation from atomic registers

• Substitution yields:
– A wait-free consensus protocol from atomic

registers

(1) (1)

Art of Multiprocessor
Programming

80

Corollary

• It is impossible to implement
– a two-dequeuer wait-free FIFO queue

– from read/write memory.

Art of Multiprocessor
Programming

81

Consensus Numbers

• An object X has consensus number n
– If it can be used to solve n-thread

consensus
• Take any number of instances of X

• together with atomic read/write registers

• and implement n-thread consensus

– But not (n+1)-thread consensus

Art of Multiprocessor
Programming

82

Consensus Numbers

• Theorem
– Atomic read/write registers have

consensus number 1

• Theorem
– Multi-dequeuer FIFO queues have

consensus number at least 2

Art of Multiprocessor
Programming

83

Consensus Numbers Measure
Synchronization Power

• Theorem
– If you can implement X from Y

– And X has consensus number c

– Then Y has consensus number at least c

Art of Multiprocessor
Programming

84

Synchronization Speed Limit

• Conversely
– If X has consensus number c

– And Y has consensus number d < c

– Then there is no way to construct a
wait-free implementation of X by Y

• This theorem will be very useful
– Unforeseen practical implications!

Art of Multiprocessor
Programming

85

Earlier Grand Challenge

• Snapshot means
– Write any array element

– Read multiple array elements atomically

• What about
– Write multiple array elements atomically

– Scan any array elements

• Call this problem multiple assignment

Art of Multiprocessor
Programming

86

Multiple Assignment Theorem

• Atomic registers cannot implement
multiple assignment

• Weird or what?
– Single location write/multi location read

OK

– Multi location write/multi location read
impossible

(1) (1)

Art of Multiprocessor
Programming

87

Proof Strategy

• If we can write to 2/3 array elements
– We can solve 2-consensus

– Impossible with atomic registers

• Therefore
– Cannot implement multiple assignment

with atomic registers

(1)

Art of Multiprocessor
Programming

88

Proof Strategy

• Take a 3-element array
– A writes atomically to slots 0 and 1

– B writes atomically to slots 1 and 2

– Any thread can scan any set of locations

(1)

Art of Multiprocessor
Programming

89

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

(4) (4)

Art of Multiprocessor
Programming

90

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

(4) (4)

Atomically assign

value[i1]= v1
value[i2]= v2

Art of Multiprocessor
Programming

91

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

(4) (4)

Return i-th value

Art of Multiprocessor
Programming

92

Initially

Writes to
0 and 1

Writes to
1 and 2

A

B

Art of Multiprocessor
Programming

93

Thread A wins if

A

B

(1)

Thread B
didn’t move

Art of Multiprocessor
Programming

94

Thread A wins if

A

B

(1)

Thread B
moved later

Art of Multiprocessor
Programming

95

Thread A loses if

A

B

(1)

Thread B
moved earlier

Art of Multiprocessor
Programming

96

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

Art of Multiprocessor
Programming

97

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

Extends ConsensusProtocol
Decide sets j=i-1 and proposes value

Art of Multiprocessor
Programming

98

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

Three slots
initialized to

EMPTY

Art of Multiprocessor
Programming

99

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

Assign id 0 to
entries 0,1 (or id 1

to entries 1,2)

Art of Multiprocessor
Programming

100

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

Read the register my
thread didn’t assign

Art of Multiprocessor
Programming

101

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

(4) (4)

Other thread didn’t
move, so I win

Art of Multiprocessor
Programming

102

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

(4) (4)

Other thread moved
later so I win

Art of Multiprocessor
Programming

103

Multi-Consensus Code

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4) (4)

OK, I win.

Art of Multiprocessor
Programming

104

class MultiConsensus extends …{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

(4) (4)

(1)

Other thread moved
first, so I lose

Art of Multiprocessor
Programming

105

Summary

• If a thread can assign atomically to 2
out of 3 array locations

• Then we can solve 2-consensus

• Therefore
– No wait-free multi-assignment

– From read/write registers

Art of Multiprocessor
Programming

106

Read-Modify-Write Objects

• Method call
– Returns object’s prior value x

– Replaces x with mumble(x)

Art of Multiprocessor
Programming

107

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

(1)

Art of Multiprocessor
Programming

108

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

(1)

Return prior value

Art of Multiprocessor
Programming

109

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

(1)

Apply function to current value

Art of Multiprocessor
Programming

110

RMW Everywhere!

• Most synchronization instructions
– are RMW methods

• The rest
– Can be trivially transformed into RMW

methods

Art of Multiprocessor
Programming

111

public abstract class RMWRegister {
 private int value;

 public int synchronized read() {
 int prior = this.value;
 this.value = this.value;
 return prior;
 }

}

Example: Read

(1)

Art of Multiprocessor
Programming

112

public abstract class RMW {
 private int value;

 public int synchronized read() {
 int prior = this.value;
 this.value = this.value;
 return prior;
 }

}

Example: Read

(1)

Apply f(v)=v, the
identity function

Art of Multiprocessor
Programming

113

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndSet(int v) {
 int prior = this.value;
 this.value = v;
 return prior;
 }
 …
}

Example: getAndSet

(1)

Art of Multiprocessor
Programming

114

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndSet(int v) {
 int prior = this.value;
 this.value = v;
 return prior;
 }
 …
}

Example: getAndSet (swap)

(1)

F(x)=v is constant function

Art of Multiprocessor
Programming

115

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndIncrement() {
 int prior = this.value;
 this.value = this.value + 1;
 return prior;
 }
 …
}

getAndIncrement

(1)

Art of Multiprocessor
Programming

116

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndIncrement() {
 int prior = this.value;
 this.value = this.value + 1;
 return prior;
 }
 …
}

getAndIncrement

(1)

F(x) = x+1

Art of Multiprocessor
Programming

117

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndAdd(int a) {
 int prior = this.value;
 this.value = this.value + a;
 return prior;
 }
 …
}

getAndAdd

(1)

Art of Multiprocessor
Programming

118

public abstract class RMWRegister {
 private int value;

 public int synchronized
 getAndIncrement(int a) {
 int prior = this.value;
 this.value = this.value + a;
 return prior;
 }
 …
}

Example: getAndAdd

(1)

F(x) = x+a

Art of Multiprocessor
Programming

119

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

Art of Multiprocessor
Programming

120

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

If value is what was
expected, …

Art of Multiprocessor
Programming

121

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

… replace it

Art of Multiprocessor
Programming

122

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

Report success

Art of Multiprocessor
Programming

123

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

Otherwise report
failure

Art of Multiprocessor
Programming

124

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

(1)

Lets characterize F(x)…

Art of Multiprocessor
Programming

125

Definition

• A RMW method
– With function mumble(x)

– is non-trivial if there exists a value v

– Such that v ≠ mumble(v)

Art of Multiprocessor
Programming

126

Par Example

• Identity(x) = x

– is trivial

• getAndIncrement(x) = x+1
– is non-trivial

Art of Multiprocessor
Programming

127

Theorem

• Any non-trivial RMW object has
consensus number at least 2

• No wait-free implementation of RMW
registers from atomic registers

• Hardware RMW instructions not just
a convenience

Art of Multiprocessor
Programming

128

Reminder

• Subclasses of consensus have
– propose(x) method

• which just stores x into proposed[i]

• built-in method

– decide(object value) method
• which determines winning value

• customized, class-specific method

Art of Multiprocessor
Programming

129

Proof

public class RMWConsensus
 extends ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

(4)

Art of Multiprocessor
Programming

130

public class RMWConsensus
 extends ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

Initialized to v

Art of Multiprocessor
Programming

131

Proof

public class RMWConsensus
 extends Consensus {
 private RMWRegister r = v;

 public Object decide(object value) {
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
 }}

(4)

Am I first?

Art of Multiprocessor
Programming

132

public class RMWConsensus
 extends ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

Yes, return
my input

Art of Multiprocessor
Programming

133

public class RMWConsensus
 extends ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

No, return
other’s input

Art of Multiprocessor
Programming

134

Proof

• We have displayed
– A two-thread consensus protocol

– Using any non-trivial RMW object

Art of Multiprocessor
Programming

135

Interfering RMW

• Let F be a set of functions such that
for all fi and fj, either
– Commute: fi(fj(v))=fj(fi(v))

– Overwrite: fi(fj(v))=fi(v)

• Claim: Any set of RMW objects that
commutes or overwrites has
consensus number exactly 2

Art of Multiprocessor
Programming

136

Examples

• “test-and-set” getAndSet(1) f(v)=1

• “swap” getAndSet(x) f(v,x)=x

• “fetch-and-inc” getAndIncrement() f(v)=v+1

Overwrite fi(fj(v))=fi(v)

Overwrite fi(fj(v))=fi(v)

Commute fi(fj(v))= fj(fi(v))

Art of Multiprocessor
Programming

137

Meanwhile Back at the Critical
State

c

0-valent 1-valent

A about to
apply fA

B about to
apply fB

Art of Multiprocessor
Programming

138

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fA B applies fB

0 1

C runs solo C runs solo

1-valent

Art of Multiprocessor
Programming

139

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fA B applies fB

0 1

C runs solo C runs solo

1-valent

These states look the same to C

Art of Multiprocessor
Programming

140

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

Art of Multiprocessor
Programming

141

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to C

Art of Multiprocessor
Programming

142

Impact

• Many early machines provided these
“weak” RMW instructions
– Test-and-set (IBM 360)

– Fetch-and-add (NYU Ultracomputer)

– Swap (Original SPARCs)

• We now understand their limitations
– But why do we want consensus anyway?

Art of Multiprocessor
Programming

143

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

Art of Multiprocessor
Programming

144

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

replace value if its what we
expected, …

Art of Multiprocessor
Programming

145

public class RMWConsensus
 extends ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Art of Multiprocessor
Programming

146

public class RMWConsensus
 extends ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value)
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Initialized to -1

Art of Multiprocessor
Programming

147

public class RMWConsensus
 extends ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Try to swap in
my id

Art of Multiprocessor
Programming

148

public class RMWConsensus
 extends ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Decide winner’s
preference

Art of Multiprocessor
Programming

149

The Consensus Hierarchy

1 Read/Write Registers, Snapshots…

2 getAndSet, getAndIncrement, …

∞ compareAndSet,…

.

.

.

Art of Multiprocessor
Programming

150

Multiple Assignment

• Atomic k-assignment

• Solves consensus for 2k-2 threads

• Every even consensus number has an
object (can be extended to odd numbers)

Art of Multiprocessor
Programming

151

Lock-Freedom

• Lock-free: in an infinite execution
infinitely often some method call
finishes (obviously, in a finite number
of steps)

• Pragmatic approach

• Implies no mutual exclusion

Art of Multiprocessor
Programming

152

Lock-Free vs. Wait-free

• Wait-Free: each method call takes a
finite number of steps to finish

• Lock-free: infinitely often some
method call finishes

Art of Multiprocessor
Programming

153

Lock-Freedom

• Any wait-free implementation
is lock-free.

• Lock-free is the same as wait-
free if the execution is finite.

• Old saying: “Lock-free is to
wait-free as deadlock-free is
to lockout-free.”

Art of Multiprocessor
Programming

154

Lock-Free Implementations

• Lock-free consensus is as impossible
as wait-free consensus

• All the results we presented hold
for lock-free algorithms also.

(2)

Art of Multiprocessor
Programming

155

There is More: Universality

• Consensus is universal

• From n-thread consensus
– Wait-free/Lock-free

– Linearizable

– n-threaded

– Implementation

– Of any sequentially specified object

156

Uninterruptible Instructions
to Fetch and Update Memory

• Atomic exchange: interchange value in
register with one in memory
– 0 Synchronization variable is free

– 1 Synchronization variable is locked and
unavailable

– Set register to 1 & swap

– New value in register determines success in
getting lock

• 0 if you succeeded in setting lock (you were first)

• 1 if another processor claimed access first

– Key: exchange operation is indivisible

157

Uninterruptible Instruction to
Fetch and Update Memory

• Hard to read & write in 1 instruction,
so use 2

• Load linked (or load locked) + store
conditional
– Load linked returns initial value

– Store conditional returns 1 if succeeds
(no other store to same memory location
since preceding load) and 0 otherwise

Example of atomic swap with LL & SC

 try: mov R3,R4 ; mov exchange value->R3

 ll R2,0(R1) ; get old value
 sc R3,0(R1) ; store new value
 beqz R3,try ; loop if store fails
 mov R4,R2 ; put old value in R4

Example of fetch & inc with LL & SC

 try: ll R2,0(R1) ; get old value

 addi R2,R2,#1 ; increment it

 sc R2,0(R1) ; store new value
 beqz R2,try ; loop if store fails

159

User-Level Synchronization
Using LL/SC

• Spin locks: processor continuously
tries to acquire lock, spinning around
loop trying to get it

 li R2,#1

lockit: exch R2,0(R1) ; atomic exchange
 bnez R2,lockit ; loop while locked

160

User-Level Synchronization
Using LL/SC

• What about MP with cache
coherency?
– Want to spin on cached copy to avoid full

memory latency

– Likely to get cache hits for such
variables

• Problem: exchange includes write
– Invalidates all other copies

– Generates considerable bus traffic

161

User-Level Synchronization
Using LL/SC (cont’d)

• Solution to bus traffic: don’t try
exchange when you know it will fail
– Keep reading cached copy

– Lock release will invalidate

 try: li R2,#1

lockit: lw R3,0(R1) ;load old
 bnez R3,lockit ;≠ 0 spin
 exch R2,0(R1) ;atomic exchange
 bnez R2,try ;spin on failure

Art of Multiprocessor
Programming

162

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that

the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you

may distribute the resulting work only under the same, similar or a

compatible license.

• For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission

from the copyright holder.

• Nothing in this license impairs or restricts the author's moral

rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Art of Multiprocessor
Programming

163

A

B

1
1

0

4 4 0

Atomic 3-assignment => 4-thread consensus

Phase 1 : 2 X 2-consensus

Art of Multiprocessor
Programming

164

A

B

1
2

2

4 3 3

Atomic 3-assignment => 4-thread consensus

Phase 1 : 2 X 2-consensus

1 won !

4 won !

Art of Multiprocessor
Programming

165

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

0 0

0

0

0

0

0

0 Writes 1

Writes 4 Writes 4

Writes 1

Art of Multiprocessor
Programming

166

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

1 1

0

0

0

0

1

0

Writes 1

Art of Multiprocessor
Programming

167

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

1 4

0

0

0

4

1

4

Writes 4

Art of Multiprocessor
Programming

168

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

1 4

0

4

4

4

4

4

Writes 4

Art of Multiprocessor
Programming

169

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

1 4

1

4

1

4

4

1 Writes 1

Art of Multiprocessor
Programming

170

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

1 4

1

4

1

4

4

1

Wins !

Art of Multiprocessor
Programming

171

Atomic 64 bit-assignment =>

 k-thread consensus ?

byte addressing ?

Art of Multiprocessor
Programming

172

1 0 0 0 1 1 1 0

2 0 0 2 0 0 2 2

3 0 0 3 0 3 0 3

4 0 0 4 0 4 4 0

1 2 3 4 12 13 14 23 24 34

Atomic 64 bit-assignment
(masking)

 =>
 4-thread consensus

Art of Multiprocessor
Programming

173

A

B

Atomic 3-assignment => 4-thread consensus

Phase 2 :
2 group consensus

0 0

0

0

0

0

0

0 Writes 1

Writes 4 Writes 4

Writes 1

© 2007 Herlihy & Shavit 174

4 thread consensus
 using 2-assignment ?

• Arrange threads in 2 groups/2 phases
• Each group selects a leader using 2-

assignment
• The leaders vote using 2-assignment

to select the global leader

Art of Multiprocessor
Programming

175

A

B

1
12

2

4 34 3

Atomic 2-assignment => 4-thread consensus

Phase 1 : 2 X 2-consensus

Art of Multiprocessor
Programming

176

A

B

1 13

3

Atomic 2-assignment => 4-thread consensus

Phase 2 :
leader consensus

I won

I lost

© 2007 Herlihy & Shavit 177

4 thread consensus
 using 2-assignment ?

• What if the global winner dies right

after it won ?
– Examining the registers will reveal it !

• What if both winners did not make it
to the 2nd phase ?
• Nobody knows who won !

Art of Multiprocessor
Programming

178

A

B

1
12

2

4 34 3

Atomic 3-assignment => 4-thread consensus

A special register

1234

© 2007 Herlihy & Shavit 179

4 thread consensus
 using 3-assignment ?

 • The special register(1234) knows who
wrote last.

• Two registers (12), (34) know who
won in each group.

• However, it would be impossible who
was the first !

• We can first choose the group which
did not write last and choose the
leader of the group. --- really ?

© 2007 Herlihy & Shavit 180

4 thread consensus
 using 3-assignment ?

 • Let’s assume the output is (112, 334, 1)
• We know 2->1, 4->3 & 3->1
• Possible cases :

2->4->3->1, 4->2->3->1, 4->3->2->1

• Can we just say 4 wins in this case ?

• If 2,4 participate and the output is
(022,044,4), then they have to decide 2
won.

• However, 1,3 later participate (112,334,1)
then what ?

