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Last Lecture:  
Shared-Memory Computability 

• Mathematical model of concurrent computation 

• What is (and is not) concurrently computable 

• Efficiency (mostly) irrelevant 

10011 

Shared Memory 
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Wait-Free Implementation 

• Every method call completes in finite 
number of steps 

• Implies no mutual exclusion 

 

(2) 
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From Weakest Register 

1 

0 1 

Single reader Single writer 

Safe Boolean register 
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All the way to a Wait-free 
Implementation of Atomic 

Snapshots 

MRMW 

MRSW 

SRSW 

Safe 
Regular 

Atomic 

M-valued 

Boolean 

Snapshot 
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Rationale for wait-freedom 

• We wanted atomic registers to 
implement mutual exclusion 

• So we couldn’t use mutual exclusion to 
implement atomic registers 

• But wait, there’s more! 



Why is Mutual Exclusion 
so wrong? 

(2) 
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Asynchronous Interrupts 

(2) 
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Asynchronous Interrupts 

??? ??? 

(2) 
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Heterogeneous Processors 

??? ??? 
yawn 

(1) 

Core i7 Core i7 
Pentium 
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Fault-tolerance 

??? ??? 

(2) 
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Machine Level Instruction 
Granularity 

Eugene Amdahl 

(2) 
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Basic Questions 

• Wait-Free synchronization might be a 
good idea in principle 

• But how do you do it 
– Systematically? 

– Correctly? 

– Efficiently? 
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FIFO Queue: Enqueue Method 

q.enq( ) 
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FIFO Queue: Dequeue Method 

q.deq()/ 
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Two-Thread Wait-Free Queue 
public class LockFreeQueue { 
 int head = 0, tail = 0;  
 Item[QSIZE] items; 
 public void enq(Item x) { 

  while (tail-head == QSIZE) {}; 
  items[tail % QSIZE] = x; tail++; 
  } 
 public Item deq() { 

  while (tail-head == 0) {} 
  Item item = items[head % QSIZE]; 
  head++; return item; 
}} 
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What About Multiple 
Dequeuers? 
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Grand Challenge 

• Implement a FIFO queue 
– Wait-free 

– Linearizable 

– From atomic read-write registers 

– Multiple dequeuers 

 

Only new 
aspect 

(1) 
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Consensus 

• While you are ruminating on the grand 
challenge… 

• We will give you another puzzle 
– Consensus 

– Will be important … 
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Consensus: Each Thread has a 
Private Input 

32 19 

21 
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They Communicate 
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They Agree on One Thread’s 
Input 

19 19 

19 
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Formally: Consensus  

Consistent: all threads decide the same 
value 

Valid: the common decision value is 
some thread's input 
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No Wait-Free Implementation 
of Consensus using Registers 
??? ??? 
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Formally 

• Theorem [adapted from Fischer, 
Lynch, Paterson]: There is no wait-
free implementation of n-thread 
consensus, n>1, from read-write 
registers 

• Implication: asynchronous 
computability fundamentally 
different from Turing computability 
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Proof Strategy  

• Assume otherwise 

• Reason about the properties of any 
such protocol 

• Derive a contradiction 

• Quod Erat Demonstrandum 

• Suffices to prove for binary 
consensus and n=2 
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Wait-Free Computation 

• Either A or B “moves” 

• Moving means 
– Register read 

– Register write 

A moves B moves 
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The Two-Move Tree 

Initial 
state 

Final 
states 

(2) 
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Decision Values 

1 0 0 1 1 1 
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Bivalent: Both Possible 

1 1 1 

 

 

bivalent 

1 0 0 
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Univalent: Single Value Possible 

1 1 1 

 

 

univalent 

1 0 0 
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x-valent: x Only Possible 
Decision 

0 1 1 1 

 

 

1-valent 

0 1 
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Summary 

• Wait-free computation is a tree 

• Bivalent system states 
– Outcome not fixed 

• Univalent states 
– Outcome is fixed 

– May not be “known” yet 

• 1-Valent and 0-Valent states 
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Claim 

• Some initial state is bivalent 

• Outcome depends on 
– Chance 

– Whim of the scheduler 

• Multiprocessor gods do play dice 
… 

• Lets prove this claim 
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Both Inputs 0 

Univalent: all executions must decide 0 

0 0 

(2) (1) 
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Both Inputs 0 

Including this solo execution by A 

(1) (1) 

0 
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Both Inputs 1 

All executions must decide 1 

 

1 1 

(2) (1) 
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Both Inputs 1 

Including this solo execution by B 

(1) (1) 

1 
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What if inputs differ? 

(2) 

1 0 

By Way of contradiction: If univalent 
all executions must decide on same value  
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The Possible Executions 

0 1 

(2) 

Include the solo execution by A 
that decides 0 
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The Possible Executions 

0 1 

(2) 

Also include the solo execution by B 
which we know decides 1 
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Possible Executions Include 

• Solo execution by A 
must decide 0 

• Solo execution by B 
must decide 1 

0 1 

How univalent 
is that? 
(QED) 
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0-valent 

Critical States 

1-valent 

critical 

(3) (3) 
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From a Critical State 

c 

If A goes first, 
protocol decides 0 

If B goes first, 
protocol decides 1 

0-valent 1-valent 
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Reaching Critical State 

CA 

CA 

CB 

c 

 

 

CB 

univalent 

univalent 

univalent 

univalent 

0-valent 1-valent 

initially bivalent 
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Critical States 

• Starting from a bivalent initial state 

• The protocol can reach a critical 
state 
– Otherwise we could stay bivalent 

forever 

– And the protocol is not wait-free 



Art of Multiprocessor 
Programming 

47 

Model Dependency 

• So far, memory-independent! 

• True for 
– Registers 

– Message-passing 

– Carrier pigeons 

– Any kind of asynchronous computation 
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Read-Write Memory 

• Reads and/or writes 

• To same/different registers 
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Completing the Proof 

• Lets look at executions that: 
– Start from a critical state 

– Threads cause state to become univalent 
by reading or writing to same/different 
registers 

– End within a finite number of steps 
deciding either 0 or 1  

• Show this leads to a contradiction 
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Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 
? ? ? ? 

y.read() 

 
? ? ? ? 

x.write() 

 
? ? ? ? 

y.write() 

 
? ? ? ? 

A reads x 
A reads y 
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Some Thread Reads 

A runs solo, 
eventually 
decides 0 

B reads x 

1 

0 

A runs solo, 
eventually  
decides 1 

c 

States look 
the same to A 
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Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 
no no no no 

y.read() 

 
no no no no 

x.write() 

 
no no ? ? 

y.write() 

 
no no ? ? 
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Writing Distinct Registers 

A writes y B writes x 

1 0 

c 

The song is the same 

A writes y B writes x 
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Possible Interactions 

x.read() y.read() x.write() y.write() 

x.read() 

 
no no no no 

y.read() 

 
no no no no 

x.write() 

 
no no ? no 

y.write() 

 
no no no ? 
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Writing Same Registers 

States look 
the same to A 

A writes x B writes x 

1 
A runs solo, 
eventually 
decides 1 

c 

0 

A runs solo, 
eventually 
decides 0 A writes x 
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That’s All, Folks! 

x.read() y.read() x.write() y.write() 

x.read() 

 
no no no no 

y.read() 

 
no no no no 

x.write() 

 
no no no no 

y.write() 

 
no no no no 
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Recap: Atomic Registers Can’t 
Do Consensus 

• If protocol exists 
– It has a bivalent initial state 

– Leading to a critical state 

• What’s up with the critical state? 
– Case analysis for each pair of methods 

– As we showed, all lead to a contradiction 
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What Does Consensus have to 
do with Concurrent Objects? 



Art of Multiprocessor 
Programming 

59 

Consensus Object 

public interface Consensus { 
 Object decide(object value); 
} 

(4) (4) 
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Concurrent Consensus 
Object 

• We consider only one time objects: 
each thread can execute a method 
only once 

• Linearizable to sequential consensus 
object in which  
– the thread who’s input was decided on 

completed its method first 
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Java Jargon Watch 

• Define Consensus protocol as an 
abstract class 

• We implement some methods 

• Leave you to do the rest … 
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Generic Consensus Protocol 

abstract class ConsensusProtocol 
implements Consensus { 
 protected Object[] proposed = 
  new Object[N]; 
 
 private void propose(Object value) { 
  proposed[ThreadID.get()] = value; 
 } 
 
 abstract public Object  
          decide(object value); 
 }} 

(4) (4) 
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abstract class ConsensusProtocol 
implements Consensus { 
 protected Object[] proposed = 
  new Object[N]; 
 
 private void propose(Object value) { 
  proposed[ThreadID.get()] = value; 
 } 
 
 abstract public Object  
                 decide(object value); 
 }} 

Generic Consensus Protocol 

(4) (4) 

Each thread’s 
proposed value 
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abstract class ConsensusProtocol 
implements Consensus { 
 protected Object[] proposed = 
  new Object[N]; 
 
 private void propose(Object value) { 
  proposed[ThreadID.get()] = value; 
 } 
 
 abstract public Object  
                 decide(object value); 
 }} 

Generic Consensus Protocol 

(4) (4) 

Propose a value 
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abstract class ConsensusProtocol 
implements Consensus { 
 protected Object[] proposed = 
  new Object[N]; 
 
 private void propose(Object value) { 
  proposed[ThreadID.get()] = value; 
 } 
 
 abstract public Object  
          decide(object value); 
 }} 

Generic Consensus Protocol 

(4) (4) 

Decide a value: abstract method 
means subclass does the heavy lifting 

(real work) 



Can a FIFO Queue 
Implement Consensus? 
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FIFO Consensus 

  
proposed array 

FIFO Queue 
with red and 
black balls 

8 

Coveted red ball Dreaded black ball 
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Protocol: Write Value to Array 

0 1 
0 
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0 

Protocol: Take Next Item from 
Queue 

0 1 
8 
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0 1 

Protocol: Take Next Item from 
Queue 

I got the coveted 
red ball, so I will 
decide my value 

I got the dreaded 
black ball, so I will 
decide the other’s 
value from the 

array 
8 



Art of Multiprocessor 
Programming 

71 

public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 public QueueConsensus() { 
  queue = new Queue(); 
  queue.enq(Ball.RED); 
  queue.enq(Ball.BLACK); 
 } 
 … 
} 

Consensus Using FIFO Queue 
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public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 public QueueConsensus() { 
  this.queue = new Queue(); 
  this.queue.enq(Ball.RED); 
  this.queue.enq(Ball.BLACK); 
 } 
 … 
} 

Initialize Queue 

8 
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public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 … 
 public decide(object value) { 
  propose(value); 
  Ball ball = this.queue.deq(); 
  if (ball == Ball.RED) 
   return proposed[i]; 
  else 
   return proposed[1-i]; 
 } 
} 

Who Won? 
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public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 … 
 public decide(object value) { 
  propose(value); 
  Ball ball = this.queue.deq(); 
  if (ball == Ball.RED) 
   return proposed[i]; 
  else 
   return proposed[1-ij]; 
 } 
} 

Who Won? 

Race to dequeue 
first queue item 
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public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 … 
 public decide(object value) { 
  propose(value); 
  Ball ball = this.queue.deq(); 
  if (ball == Ball.RED) 
   return proposed[i]; 
  else 
   return proposed[1-i]; 
 } 
} 

Who Won? 

i = ThreadID.get(); 

I win if I was 
first 
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public class QueueConsensus 
  extends ConsensusProtocol { 
 private Queue queue; 
 … 
 public decide(object value) { 
  propose(value); 
  Ball ball = this.queue.deq(); 
  if (ball == Ball.RED) 
   return proposed[i]; 
  else 
   return proposed[1-i]; 
 } 
} 

Who Won? 

Other thread wins if 
I was second 
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Why does this Work? 

• If one thread gets the red ball 

• Then the other gets the black ball 

• Winner decides her own value 

• Loser can find winner’s value in array 
– Because threads write array 

– Before dequeueing from queue 
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Theorem 

• We can solve 2-thread consensus 
using only 
– A two-dequeuer queue, and 

– Some atomic registers 
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Implications 

• Given 
– A consensus protocol from queue and registers 

• Assume there exists 
– A queue implementation from atomic registers 

• Substitution yields: 
– A wait-free consensus protocol from atomic 

registers 

(1) (1) 
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Corollary 

• It is impossible to implement  
– a two-dequeuer wait-free FIFO queue 

– from read/write memory. 
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Consensus Numbers 

• An object X has consensus number n 
– If it can be used to solve n-thread 

consensus 
• Take any number of instances of X  

• together with atomic read/write registers 

• and implement n-thread consensus 

– But not (n+1)-thread consensus 
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Consensus Numbers 

• Theorem 
– Atomic read/write registers have 

consensus number 1 

• Theorem 
– Multi-dequeuer FIFO queues have 

consensus number at least 2 
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Consensus Numbers Measure 
Synchronization Power 

• Theorem 
– If  you can implement X from Y 

– And X has consensus number c 

– Then Y has consensus number at least c 
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Synchronization Speed Limit 

• Conversely 
– If X has consensus number c 

– And Y has consensus number d < c 

– Then there is no way to construct a 
wait-free implementation of X by Y 

• This theorem will be very useful 
– Unforeseen practical implications! 
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Earlier Grand Challenge 

• Snapshot means 
– Write any array element 

– Read multiple array elements atomically 

• What about 
– Write multiple array elements atomically 

– Scan any array elements 

• Call this problem multiple assignment 
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Multiple Assignment Theorem 

• Atomic registers cannot implement 
multiple assignment 

• Weird or what? 
– Single location write/multi location read 

OK 

– Multi location write/multi location read 
impossible 

(1) (1) 
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Proof Strategy 

• If we can write to 2/3 array elements 
– We can solve 2-consensus 

– Impossible with atomic registers 

• Therefore 
– Cannot implement multiple assignment 

with atomic registers 

(1) 
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Proof Strategy 

• Take a 3-element array 
– A writes atomically to slots 0 and 1 

– B writes atomically to slots 1 and 2 

– Any thread can scan any set of locations 

(1) 
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Double Assignment Interface 

interface Assign2 { 
 public void assign(int i1, int v1, 
                    int i2, int v2); 
 public int read(int i); 
}    

(4) (4) 
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Double Assignment Interface 

interface Assign2 { 
 public void assign(int i1, int v1, 
                    int i2, int v2); 
 public int read(int i); 
}    

(4) (4) 

Atomically assign 

value[i1]= v1 
value[i2]= v2 
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Double Assignment Interface 

interface Assign2 { 
 public void assign(int i1, int v1, 
                    int i2, int v2); 
 public int read(int i); 
}    

(4) (4) 

Return i-th value 
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Initially 

Writes to 
0 and 1 

Writes to 
1 and 2 

A 

B 
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Thread A wins if 

A 

B 

(1) 

Thread B 
didn’t move 
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Thread A wins if 

A 

B 

(1) 

Thread B 
moved later 
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Thread A loses if 

A 

B 

(1) 

Thread B 
moved earlier 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i);  
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i);  
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 

Extends ConsensusProtocol  
Decide sets j=i-1 and proposes value 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 

Three slots 
initialized to 

EMPTY 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 

Assign id 0 to 
entries 0,1 (or id 1 

to entries 1,2) 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 

Read the register my 
thread didn’t assign 
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class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

Multi-Consensus Code 

(4) (4) 

Other thread didn’t 
move, so I win 
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class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

Multi-Consensus Code 

(4) (4) 

Other thread moved 
later so I win 
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Multi-Consensus Code 

class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

(4) (4) 

OK, I win. 
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class MultiConsensus extends …{ 
 Assign2 a = new Assign2(3, EMPTY); 
 public Object decide(object value) { 
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3); 
  if (other==EMPTY||other==a.read(1)) 
   return proposed[i];  
  else 
   return proposed[j];        
  }} 

Multi-Consensus Code 

(4) (4) 

(1) 

Other thread moved 
first, so I lose 
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Summary 

• If a thread can assign atomically to 2 
out of 3 array locations 

• Then we can solve 2-consensus 

• Therefore 
– No wait-free multi-assignment 

– From read/write registers 
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Read-Modify-Write Objects 

• Method call 
– Returns object’s prior value x 

– Replaces x with mumble(x) 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized    
  getAndMumble() { 
    int prior  = this.value; 
    this.value = mumble(this.value); 
    return prior; 
  } 
} 

Read-Modify-Write 

(1) 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized    
  getAndMumble() { 
    int prior  = this.value; 
    this.value = mumble(this.value); 
    return prior; 
  } 
} 

Read-Modify-Write 

(1) 

Return prior value 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized    
  getAndMumble() { 
    int prior  = this.value; 
    this.value = mumble(this.value); 
    return prior; 
  } 
} 

Read-Modify-Write 

(1) 

Apply function to current value 
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RMW Everywhere! 

• Most synchronization instructions 
– are RMW methods 

• The rest 
– Can be trivially transformed into RMW 

methods 
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public abstract class RMWRegister { 
  private int value; 
 
  public int synchronized read() { 
    int prior  = this.value; 
    this.value = this.value; 
    return prior; 
  } 
 
} 

Example: Read 

(1) 
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public abstract class RMW { 
  private int value; 
 
  public int synchronized read() { 
    int prior  = this.value; 
    this.value = this.value; 
    return prior; 
  } 
 
} 

Example: Read 

(1) 

Apply f(v)=v, the 
identity function 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndSet(int v) { 
  int prior  = this.value; 
  this.value = v; 
  return prior; 
 } 
 … 
} 

Example: getAndSet 

(1) 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndSet(int v) { 
  int prior  = this.value; 
  this.value = v; 
  return prior; 
 } 
 … 
} 

Example: getAndSet (swap) 

(1) 

F(x)=v is constant function 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndIncrement() { 
  int prior  = this.value; 
  this.value = this.value + 1; 
  return prior; 
 } 
 … 
} 

getAndIncrement 

(1) 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndIncrement() { 
  int prior  = this.value; 
  this.value = this.value + 1; 
  return prior; 
 } 
 … 
} 

getAndIncrement 

(1) 

F(x) = x+1 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndAdd(int a) { 
  int prior  = this.value; 
  this.value = this.value + a; 
  return prior; 
 } 
 … 
} 

getAndAdd 

(1) 
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public abstract class RMWRegister { 
 private int value; 
 
 public int synchronized 
   getAndIncrement(int a) { 
  int prior  = this.value; 
  this.value = this.value + a; 
  return prior; 
 } 
 … 
} 

Example: getAndAdd 

(1) 

F(x) = x+a 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
  int prior = this.value; 
  if (this.value==expected) { 
   this.value = update; return true; 
  } 
  return false; 
  } … } 

compareAndSet 

(1) 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
 int prior = this.value; 
 if (this.value==expected) { 
  this.value = update; return true; 
  } 
 return false; 
 } … } 

compareAndSet 

(1) 

If value is what was 
expected, … 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
 int prior = this.value; 
 if (this.value==expected) { 
  this.value = update; return true; 
  } 
 return false; 
 } … } 

compareAndSet 

(1) 

… replace it 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
 int prior = this.value; 
 if (this.value==expected) { 
  this.value = update; return true; 
  } 
 return false; 
 } … } 

compareAndSet 

(1) 

Report success 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
 int prior = this.value; 
 if (this.value==expected) { 
  this.value = update; return true; 
  } 
 return false; 
 } … } 

compareAndSet 

(1) 

Otherwise report 
failure 
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public abstract class RMWRegister { 
 private int value; 
 
 public void synchronized    
  getAndMumble() { 
    int prior  = this.value; 
    this.value = mumble(this.value); 
    return prior; 
  } 
} 

Read-Modify-Write 

(1) 

Lets characterize F(x)… 
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Definition 

• A RMW method 
– With function mumble(x) 

–  is non-trivial if there exists a value v  

– Such that v ≠ mumble(v) 
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Par Example 

• Identity(x) = x 

–  is trivial  

• getAndIncrement(x) = x+1 
– is non-trivial  
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Theorem 

• Any non-trivial RMW object has 
consensus number at least 2 

• No wait-free implementation of RMW 
registers from atomic registers 

• Hardware RMW instructions not just 
a convenience 
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Reminder 

• Subclasses of consensus have 
– propose(x) method 

• which just stores x into proposed[i] 

• built-in method 

– decide(object value) method 
• which determines winning value 

• customized, class-specific method 
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Proof 

public class RMWConsensus 
     extends ConsensusProtocol { 
 private RMWRegister r = v; 
 public Object decide(object value) { 
  propose(value); 
  if (r.getAndMumble() == v) 
   return proposed[i]; 
  else 
   return proposed[j];     
}} 

(4) 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private RMWRegister r = v; 
 public Object decide(object value) { 
  propose(value); 
  if (r.getAndMumble() == v) 
   return proposed[i]; 
  else 
   return proposed[j];     
}} 

Proof 

(4) 

Initialized to v 
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Proof 

public class RMWConsensus 
     extends Consensus { 
 private RMWRegister r = v; 
 
 public Object decide(object value) { 
 if (r.getAndMumble() == v) 
   return proposed[i]; 
  else 
   return proposed[j];     
  }} 

(4) 

Am I first? 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private RMWRegister r = v; 
 public Object decide(object value) { 
  propose(value); 
  if (r.getAndMumble() == v) 
   return proposed[i]; 
  else 
   return proposed[j];     
}} 

Proof 

(4) 

Yes, return 
my input 



Art of Multiprocessor 
Programming 

133 

public class RMWConsensus 
     extends ConsensusProtocol { 
 private RMWRegister r = v; 
 public Object decide(object value) { 
  propose(value); 
  if (r.getAndMumble() == v) 
   return proposed[i]; 
  else 
   return proposed[j];     
}} 

Proof 

(4) 

No, return 
other’s input 
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Proof 

• We have displayed 
– A two-thread consensus protocol 

– Using any non-trivial RMW object 
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Interfering RMW 

• Let F be a set of functions such that 
for all fi and fj, either 
– Commute: fi(fj(v))=fj(fi(v)) 

– Overwrite: fi(fj(v))=fi(v) 

• Claim: Any set of RMW objects that 
commutes or overwrites has 
consensus number exactly 2 
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Examples 

• “test-and-set” getAndSet(1) f(v)=1 

 

• “swap” getAndSet(x)  f(v,x)=x 

 

• “fetch-and-inc” getAndIncrement() f(v)=v+1 

Overwrite fi(fj(v))=fi(v) 

Overwrite fi(fj(v))=fi(v) 

Commute fi(fj(v))= fj(fi(v)) 
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Meanwhile Back at the Critical 
State 

c 

0-valent 1-valent 

A about to 
apply fA 

B about to 
apply fB 
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Maybe the Functions Commute 

c 

0-valent 

A applies fA B applies fB 

A applies fA B applies fB 

0 1 

C runs solo C runs solo 

1-valent 
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Maybe the Functions Commute 

c 

0-valent 

A applies fA B applies fB 

A applies fA B applies fB 

0 1 

C runs solo C runs solo 

1-valent 

These states look the same to C 
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Maybe the Functions Overwrite 

c 

0-valent 

A applies fA B applies fB 

A applies fA 

0 

1 

C runs solo 

C runs solo 

1-valent 
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Maybe the Functions Overwrite 

c 

0-valent 

A applies fA B applies fB 

A applies fA 

0 

1 

C runs solo 

C runs solo 

1-valent 

These states look the same to C 
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Impact 

• Many early machines provided these 
“weak” RMW instructions 
– Test-and-set (IBM 360) 

– Fetch-and-add (NYU Ultracomputer) 

– Swap (Original SPARCs) 

• We now understand their limitations 
– But why do we want consensus anyway? 



Art of Multiprocessor 
Programming 

143 

public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
  int prior = this.value; 
  if (this.value==expected) { 
   this.value = update; return true; 
  } 
  return false; 
  } … } 

compareAndSet 

(1) 



Art of Multiprocessor 
Programming 

144 

public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
 int prior = this.value; 
 if (this.value==expected) { 
  this.value = update; return true; 
  } 
 return false; 
 } … } 

compareAndSet 

(1) 

replace value if its what we 
expected, … 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private AtomicInteger r = 
   new AtomicInteger(-1); 
 public Object decide(object value) { 
  propose(value); 
  r.compareAndSet(-1,i); 
  return proposed[r.get()];     
 } 
} 

compareAndSet Has ∞ 
Consensus Number 

(4) 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private AtomicInteger r = 
   new AtomicInteger(-1); 
 public Object decide(object value) { 
  propose(value) 
  r.compareAndSet(-1,i); 
  return proposed[r.get()];     
 } 
} 

compareAndSet Has ∞ 
Consensus Number 

(4) 

Initialized to -1 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private AtomicInteger r = 
   new AtomicInteger(-1); 
 public Object decide(object value) { 
  propose(value); 
  r.compareAndSet(-1,i); 
  return proposed[r.get()];     
 } 
} 

compareAndSet Has ∞ 
Consensus Number 

(4) 

Try to swap in 
my id 
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public class RMWConsensus 
     extends ConsensusProtocol { 
 private AtomicInteger r = 
   new AtomicInteger(-1); 
 public Object decide(object value) { 
  propose(value); 
  r.compareAndSet(-1,i); 
  return proposed[r.get()];     
 } 
} 

compareAndSet Has ∞ 
Consensus Number 

(4) 

Decide winner’s 
preference 
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The Consensus Hierarchy 

1 Read/Write Registers, Snapshots… 

2 getAndSet, getAndIncrement, … 

∞ compareAndSet,… 

. 

. 

. 
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Multiple Assignment 

• Atomic k-assignment 

• Solves consensus for 2k-2 threads 

• Every even consensus number has an 
object (can be extended to odd numbers) 
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Lock-Freedom 

• Lock-free: in an infinite execution 
infinitely often some method call 
finishes (obviously, in a finite number 
of steps) 

• Pragmatic approach 

• Implies no mutual exclusion 
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Lock-Free vs. Wait-free 

• Wait-Free: each method call takes a 
finite number of steps to finish 

 

• Lock-free: infinitely often some 
method call finishes 
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Lock-Freedom 

• Any wait-free implementation 
is lock-free.  

• Lock-free is the same as wait-
free if the execution is finite.  

• Old saying: “Lock-free is to 
wait-free as deadlock-free is 
to lockout-free.” 
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Lock-Free Implementations 

• Lock-free consensus is as impossible 
as wait-free consensus  

• All the results we presented hold 
for lock-free algorithms also.  

 

(2) 
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There is More: Universality 

• Consensus is universal 

• From n-thread consensus 
– Wait-free/Lock-free 

– Linearizable 

– n-threaded 

– Implementation 

– Of any sequentially specified object 
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Uninterruptible Instructions 
to Fetch and Update Memory 

• Atomic exchange: interchange value in 
register with one in memory 
– 0  Synchronization variable is free  

– 1  Synchronization variable is locked and 
unavailable 

– Set register to 1 & swap 

– New value in register determines success in 
getting lock 

• 0 if you succeeded in setting lock (you were first) 

• 1 if another processor claimed access first 

– Key: exchange operation is indivisible 
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Uninterruptible Instruction to 
Fetch and Update Memory 

• Hard to read & write in 1 instruction, 
so use 2 

• Load linked (or load locked) + store 
conditional 
– Load linked returns initial value 

– Store conditional returns 1 if succeeds 
(no other store to same memory location 
since preceding load) and 0 otherwise 



Example of atomic swap with LL & SC 

 try: mov R3,R4    ; mov exchange value->R3  

  ll R2,0(R1)  ; get old value 
 sc R3,0(R1)  ; store new value 
 beqz R3,try      ; loop if store fails 
 mov R4,R2      ; put old value in R4 

 

Example of fetch & inc with LL & SC 

 try: ll R2,0(R1)     ; get old value 

 addi R2,R2,#1    ; increment it  

  sc R2,0(R1)     ; store new value  
 beqz R2,try       ; loop if store fails 
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User-Level Synchronization 
Using LL/SC 

• Spin locks: processor continuously 
tries to acquire lock, spinning around 
loop trying to get it 

 

   li R2,#1   

lockit: exch R2,0(R1)  ; atomic exchange 
  bnez R2,lockit  ; loop while locked 
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User-Level Synchronization 
Using LL/SC 

• What about MP with cache 
coherency? 
– Want to spin on cached copy to avoid full 

memory latency 

– Likely to get cache hits for such 
variables 

• Problem: exchange includes write 
– Invalidates all other copies 

– Generates considerable bus traffic 
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User-Level Synchronization 
Using LL/SC (cont’d) 

• Solution to bus traffic: don’t try 
exchange when you know it will fail 
– Keep reading cached copy 

– Lock release will invalidate 

 try:  li R2,#1   

lockit: lw R3,0(R1)  ;load old 
  bnez R3,lockit  ;≠ 0  spin 
  exch R2,0(R1)  ;atomic exchange 
  bnez R2,try   ;spin on failure 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that suggests that 

the authors endorse you or your use of the work).  

– Share Alike. If you alter, transform, or build upon this work, you 

may distribute the resulting work only under the same, similar or a 

compatible license.  

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission 

from the copyright holder.  

• Nothing in this license impairs or restricts the author's moral 

rights.  

 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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A 

B 

1 
1 

0 

4 4 0 

Atomic 3-assignment =>  4-thread consensus 

Phase 1 : 2 X 2-consensus 
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A 

B 

1 
2 

2 

4 3 3 

Atomic 3-assignment =>  4-thread consensus 

Phase 1 : 2 X 2-consensus 

1 won ! 

4 won ! 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

0 0 

0 

0 

0 

0 

0 

0 Writes 1 

Writes 4 Writes 4 

Writes 1 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

1 1 

0 

0 

0 

0 

1 

0 

Writes 1 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

1 4 

0 

0 

0 

4 

1 

4 

Writes 4 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

1 4 

0 

4 

4 

4 

4 

4 

Writes 4 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

1 4 

1 

4 

1 

4 

4 

1 Writes 1 
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

1 4 

1 

4 

1 

4 

4 

1 

Wins ! 
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Atomic 64 bit-assignment =>   
 

   k-thread consensus ? 

byte addressing  ? 
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1 0 0 0 1 1 1 0 

2 0 0 2 0 0 2 2 

3 0 0 3 0 3 0 3 

4 0 0 4 0 4 4 0 

1 2 3 4 12 13 14 23 24 34 

Atomic 64 bit-assignment 
(masking) 

 =>   
 4-thread consensus  
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A 

B 

Atomic 3-assignment =>  4-thread consensus 

Phase 2 :  
2 group consensus 

0 0 

0 

0 

0 

0 

0 

0 Writes 1 

Writes 4 Writes 4 

Writes 1 
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4 thread consensus  
             using 2-assignment ? 

 
• Arrange threads in 2 groups/2 phases 
• Each group selects a leader using 2-

assignment 
• The leaders vote using 2-assignment 

to select the global leader 
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A 

B 

1 
12 

2 

4 34 3 

Atomic 2-assignment =>  4-thread consensus 

Phase 1 : 2 X 2-consensus 
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A 

B 

1 13 

3 

Atomic 2-assignment =>  4-thread consensus 

Phase 2 :  
leader consensus 

I won 

I lost 
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4 thread consensus  
             using 2-assignment ? 

 
• What if the global winner dies right 

after it won ? 
– Examining the registers will reveal it ! 
 

• What if both winners did not make it 
to the 2nd phase ? 
• Nobody knows who won ! 
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A 

B 

1 
12 

2 

4 34 3 

Atomic 3-assignment =>  4-thread consensus 

A special register 

1234 
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4 thread consensus  
             using 3-assignment ? 

 • The special register(1234) knows who 
wrote last. 

• Two registers (12), (34) know who 
won in each group. 

• However, it would be impossible who 
was the first ! 

• We can first choose the group which 
did not write last and choose the 
leader of the group.   --- really ? 
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4 thread consensus  
             using 3-assignment ? 

 • Let’s assume the output is (112, 334, 1) 
• We know 2->1, 4->3 & 3->1 
• Possible cases :  

2->4->3->1, 4->2->3->1, 4->3->2->1 

• Can we just say 4 wins in this case ? 
 

• If 2,4 participate and the output is 
(022,044,4), then they have to decide 2 
won. 

• However, 1,3 later participate (112,334,1) 
then what ? 


