
Universality of Consensus

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
2

Turing Computability

• A mathematical model of computation
• Computable = Computable on a T-Machine

0 1 1 0 1 0 1

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
3

Shared-Memory Computability

• Model of asynchronous concurrent
computation

• Computable = Wait-free/Lock-free
computable on a multiprocessor

cache

shared memory

cache cache

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
4

The Consensus Hierarchy
[Herlihy]

1 Read/Write Registers, Snapshots…

2 getAndSet, getAndIncrement, …

∞ compareAndSet,…

.

.

.

FIFO Queue, LIFO Stack

Multiple Assignment

Can we implement them from
any other object that has

consensus number ∞?

Like compareAndSet()…

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
5

Theorem: Universality

• Consensus is universal

• From n-thread consensus build a
– Wait-free

– Linearizable

– n-threaded implementation

– Of any sequentially specified object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
6

Proof Outline

• A universal construction
– From n-consensus objects

– And atomic registers

• Any wait-free linearizable object
– Not a practical construction

– But we know where to start looking …

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
7

Like a Turing Machine

• This construction
– Illustrates what needs to be done

– Optimization fodder

• Correctness, not efficiency
– Why does it work? (Asks the scientist)

– How does it work? (Asks the engineer)
– Would you like fries with that? (Asks the liberal arts major)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
8

A Generic Sequential Object
public interface SeqObject {
 public abstract Response
apply(Invocation invoc);
}

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
9

A Generic Sequential Object
public interface SeqObject {
 public abstract Response
apply(Invocation invoc);
}

Push:5, Pop:null

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
10

Invocation
public class Invoc {
 public String method;
 public Object[] args;
}

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
11

Invocation
public class Invoc {
 public String method;
 public Object[] args;
}

Method name

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
12

Invocation
public class Invoc {
 public String method;
 public Object[] args;
}

Arguments

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
13

A Generic Sequential Object
public interface SeqObject {
 public abstract Response
apply(Invocation invoc);
}

OK, 4

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
14

Response
public class Response {
public Object value;
}

Return value

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
15

A Universal Concurrent Object

public interface SeqObject {
 public abstract Response
apply(Invocation invoc);
}

A concurrent object that is
linearizable to the generic
sequential object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
16

Start with Lock-Free
Universal Construction

• First Lock-free: infinitely often
some method call finishes.

• Then Wait-Free: each method call
takes a finite number of steps to
finish

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
17

Universal Construction:
Naïve Idea

• Use consensus object to store
pointer to cell with current state

• Each thread creates new cell
– computes outcome,
– and tries to switch pointer to its

outcome

• Unfortunately not…
– consensus objects can be used once only

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
18

Naïve Idea

enq

deq

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
19

head

Naïve Idea

deq

Concurrent
Object

enq

?

Decide which
to apply using

consensus

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
20

Why only once? Why is
consensus object not readable?

(1)

public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
}

Solved one time 2-consensus. Not clear how to
allow reuse of object or reading its state…

Queue based
consensus

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
21

Improved Idea: Linked-List
Representation

enq enq enq tail

deq

Each node contains a fresh
consensus object used to
decide on next operation

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
22

 Universal Construction

• Object represented as
– Initial Object State

– A Log: a linked list of the method calls

• New method call
– Find end of list

– Atomically append call

– Compute response by traversing the log
upto the call

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
23

Basic Idea

• Use one-time consensus object to
decide next pointer

• All threads update actual next
pointer based on decision
– OK because they all write the same value

• Challenges
– Lock-free means we need to worry what

happens if a thread stops in the middle

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
24

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
25

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Standard interface for class whose
objects are totally ordered

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
26

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

the invocation

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
27

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Decide on next node
(next method applied to object)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
28

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Traversable pointer to next node
(needed because you cannot

repeatedly read a consensus object)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
29

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Seq number

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
30

public class Node implements
java.lang.Comparable {
 public Invoc invoc;
 public Consensus<Node> decideNext;
 public Node next;
 public int seq;
 public Node(Invoc invoc) {
 invoc = invoc;
 decideNext = new Consensus<Node>()
 seq = 0;
 }

Basic Data Structures

Create a new node for a given
method invocation

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
31

Universal Object

head

1 2 3

decideNext
(Consensus
Object)

Ptr to cell
w/highest
Seq Num

Seq number,
Invoc

tail

node

next

4

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
32

Universal Object

head

1 2 3 All threads
repeatedly

modify
head…back
to where we

strated?

tail

node

4

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
33

…

The Solution

head

1 2 3
tail

node

i

4

Make head
an array

Ptr to
node at
front Thread i

updates
location i

Threads find head
by finding Max of
nodes pointed to
by head array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
34

Universal Object

public class Universal {
 private Node[] head;
 private Node tail = new Node();
 tail.seq = 1;
 for (int j=0; j < n; j++){

 head[j] = tail
}

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
35

Universal Object

public class Universal {
 private Node[] head;
 private Node tail = new Node();
 tail.seq = 1;
 for (int j=0; j < n; j++){

 head[j] = tail
}

Head Pointers Array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
36

Universal Object

public class Universal {
 private Node[] head;
 private Node tail = new Node();
 tail.seq = 1;
 for (int j=0; j < n; j++){

 head[j] = tail
}

Tail is a sentinel node with
sequence number 1

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
37

Universal Object

public class Universal {
 private Node[] head;
 private Node tail = new Node();
 tail.seq = 1;
 for (int j=0; j < n; j++){

 head[j] = tail
}

Tail is a sentinel node with
sequence number 1

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
38

Universal Object

public class Universal {
 private Node[] head;
 private Node tail = new Node();
 tail.seq = 1;
 for (int j=0; j < n; j++){

 head[j] = tail
}

Initially
head

points to
tail

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
39

public static Node max(Node[] array) {
 Node max = array[0];
 for (int i = 1; i < array.length; i++)
 if (max.seq < array[i].seq)
 max = array[i];
 return max;
 }

Find Max Head Value

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
40

public static Node max(Node[] array) {
 Node max = array[0];
 for (int i = 0; i < array.length; i++)
 if (max.seq < array[i].seq)
 max = array[i];
 return max;
 }

Find Max Head Value

Traverse
the array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
41

public static Node max(Node[] array) {
 Node max = array[0];
 for (int i = 0; i < array.length; i++)
 if (max.seq < array[i].seq)
 max = array[i];
 return max;
 }

Find Max Head Value

Compare the seq nums of nodes
pointed to by the array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
42

public static Node max(Node[] array) {
 Node max = array[0];
 for (int i = 0; i < array.length; i++)
 if (max.seq < array[i].seq)
 max = array[i];
 return max;
 }

Find Max Head Value

Compare the seq nums of nodes
pointed to by the array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
43

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
44

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

Apply will have invocation as input
and return the appropriate response

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
45

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

My id

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
46

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

My method call

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
47

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

As long as I
have not been
threaded into

list

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
48

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

Node at head of
list that will try
and to append to

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
49

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
}

Decide winning
node; could have

already been
decided

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
50

Universal Application

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
}

Set next pointer
based on decision

Could have already
been set by winner…in
which case no affect

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
51

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

Set seq number
indicating node
was appended

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
52

Universal Application Part I

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 Node prefer = new node(invoc);
 while (prefer.seq == 0) {
 Node before = Node.max(head);
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }
 …

add to head
array so new
head will be

found

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
53

Part II – Compute Response

null enq()

tail

Red’s
method call

… deq() enq()

Return Private copy
of object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
54

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
55

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Compute the result by
sequentially applying the

method calls in the list to a
private copy of the object

starting from the initial state

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
56

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Start with initialized copy of
the sequential object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
57

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

First new method call is
appended after the tail

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
58

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

While not reached my own
method call

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
59

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Apply the current nodes
method to object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
60

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Return the result after
applying my own method call

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
61

Correctness

• List defines linearized sequential
history

• Thread returns its response based on
list order

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
62

Lock-freedom

• Lock-free because

• New winner node is added into the
head array within a finite number of
steps

• A thread moves forward in list

• Can repeatedly fail to win consensus
on “real” head only if another
succeeds

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
63

Wait-free Construction

• Lock-free construction + announce
array

• Stores (pointer to) node in announce
– If a thread doesn’t append its node

– Another thread will see it in array and
help append it

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
64

Helping

• “Announcing” my intention
– Guarantees progress

– Even if the scheduler hates me

– My method call will complete

• Makes protocol wait-free

• Otherwise starvation possible

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
65

…

…

Wait-free Construction

head

1 2 3
tail i

4

announce

Ptr to cell i
wants to
append

i

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
66

public class Universal {
 private Node[] announce;
 private Node[] head;
 private Node tail = new node();
 tail.seq = 1;
 for (int j=0; j < n; j++){
 head[j] = tail; announce[j] = tail
 };

The Announce Array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
67

public class Universal {
 private Node[] announce;
 private Node[] head;
 private Node tail = new node();
 tail.seq = 1;
 for (int j=0; j < n; j++){
 head[j] = tail; announce[j] = tail
 };

The Announce Array

Announce array

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
68

public class Universal {
 private Node[] announce;
 private Node[] head;
 private Node tail = new node();
 tail.seq = 1;
 for (int j=0; j < n; j++){
 head[j] = tail; announce[j] = tail
 };

The Announce Array

All entries initially point to tail

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
69

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 announce[i] = new Node(invoc);
 head[i] = Node.max(head);
 while (announce[i].seq == 0) {
 …
 // while node not appended to list
 …
 }

A Cry For Help

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
70

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 announce[i] = new Node(invoc);
 head[i] = Node.max(head);
 while (announce[i].seq == 0) {
 …
 // while node not appended to list
 …
 }

A Cry For Help

Announce new method call (node), asking help
from others

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
71

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 announce[i] = new Node(invoc);
 head[i] = Node.max(head);
 while (announce[i].seq == 0) {
 …
 // while node not appended to list
 …
 }

A Cry For Help

Look for end of list

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
72

public Response apply(Invoc invoc) {
 int i = ThreadID.get();
 announce[i] = new Node(invoc);
 head[i] = Node.max(head);
 while (announce[i].seq == 0) {
 …
 // while node not appended to list
 …
 }

A Cry For Help

Main loop, while node not appended (either by
me or some thread helping me)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
73

Main Loop

• Non-zero sequence number indicates
success

• Thread keeps helping append nodes

• Until its own node is appended

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
74

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Main Loop

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
75

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Main Loop

Keep trying until my cell gets a
sequence number

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
76

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Main Loop

Possible end of list

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
77

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Main Loop

Who do I help?

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
78

Altruism

• Choose a thread to “help”

• If that thread needs help
– Try to append its node

– Otherwise append your own

• Worst case
– Everyone tries to help same pitiful loser

– Someone succeeds

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
79

Help!

• When last node in list has
sequence number k

• All threads check …
– Whether thread k+1 mod n wants

help

– If so, try to append her node first

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
80

Help!

• First time after thread k+1 announces
– No guarantees

• After n more nodes appended
– Everyone sees that thread k+1 wants

help

– Everyone tries to append that node

– Someone succeeds

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
81

Sliding Window Lemma

• After thread A announces its node

• No more than n other calls
– Can start and finish

– Without appending A’s node

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
82

Helping

head

1 2 3

Max head
+1 = N+4

N+2 N+3 …

announce

Thread 4:
Help me!

4

So all see
and help
append 4

tail

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
83

The Sliding Help Window

head

1 2 3 N+2 N+3 …

announce

4

tail

Help 3 Help 4 3

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
84

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Sliding Help Window

In each main loop iteration pick
another thread to help

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
85

while (announce[i].seq == 0) {
 Node before = head[i];
 Node help = announce[(before.seq + 1 % n)];
 if (help.seq == 0)
 prefer = help;
 else
 prefer = announce[i];
…

Sliding Help Window
Help if help required, but
otherwise it’s all about me!

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
86

Rest is Same as Lock-free

 while (prefer.seq == 0) {
 …
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
87

Rest is Same as Lock-free

 while (prefer.seq == 0) {
 …
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }

Decide next node to be appended

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
88

Rest is Same as Lock-free

 while (prefer.seq == 0) {
 …
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }

Update next based on decision

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
89

Rest is Same as Lock-free

 while (prefer.seq == 0) {
 …
 Node after =
 before.decideNext.decide(prefer);
 before.next = after;
 after.seq = before.seq + 1;
 head[i] = after;
 }

Tell world that node is appended

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
90

Finishing the Job

• Once thread’s node is linked

• The rest is again the same as in lock-
free alg

• Compute the result by sequentially
applying the method calls in the list
to a private copy of the object
starting from the initial state

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
91

Then Same Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
92

Universal Application Part II

...
//compute my response
SeqObject MyObject = new SeqObject();
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

 }
return MyObject.apply(current.invoc);
}

Return the result after
applying my own method call

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
93

Shared-Memory Computability

Wait-free/Lock-free computable

=
Threads with methods that solve n-

consensus

10011 Universal
 Object

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
94

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
95

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Consensus number 2

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
96

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Not universal for ≥ 3 threads

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
97

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
98

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Consensus number ∞

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
99

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Universal for any number of threads

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
100

Practical Implications

• Any architecture that does not
provide a universal primitive has
inherent limitations

• You cannot avoid locking for
concurrent data structures …

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
101

Older Architectures

• IBM 360
– testAndSet (getAndSet)

• NYU UltraComputer
– getAndAdd

• Neither universal
– Except for 2 threads

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
102

Newer Architectures

• Intel x86, Itanium, SPARC
– compareAndSet

• Alpha AXP, PowerPC
– Load-locked/store-conditional

• All universal
– For any number of threads

• Trend is clear …

Art of Multiprocessor
Programming© Copyright

Herlihy-Shavit 2007
103

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that

the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you

may distribute the resulting work only under the same, similar or a

compatible license.

• For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from

the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

