Universality of Consensus

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

0 110/1]0

» A mathematical model of computation
» Computable = Computable on a T-Machine

s Art of Multiprocessor
oz BROWN Programming® Copyright 2
S Herlihy-Shavit 2007

Shared-Memory Computability

& 8 "

shared memory

* Model of asynchronous concurrent
computation

+ Computable = Wait-free/Lock-free
. computable on aumudtiprocessor

oz BROWN Programming® Copyright 3
S Herlihy-Shavit 2007

The Can we implement them from
any other object that has

consensus number 00?7
A

1 Read/' Like compareAndSe’r()..I.
/ //

FIFO Queue, LIFO St

/

oo | Multiple Assignment |

& Art of Multiprocessor
oo BROWN Programming® Copyright 4
S Herlihy-Shavit 2007

Theorem: Universality

- Consensus is universal

* From n-thread consensus build a
- Wait-free
- Linearizable
- n-threaded implementation
- Of any sequentially specified object

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

Proof Outline

* A universal construction
- From n-consensus objects
- And atomic registers

» Any wait-free linearizable object

- Not a practical construction
- But we know where to start looking ...

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

Like a Turing Machine

- This construction
- Tllustrates what needs to be done
- Optimization fodder

» Correctness, not efficiency
- Why does it work? (Asks the scientist)

- How does it work? (Asks the engineer)
- Would you like fries with that? (Asks the liberal arts major)

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

A Generic Sequential Object

public interface SeqObject {
public abstract Response
apply(Invocation invoc);

}

s Art of Multiprocessor
oz BROWN Programming® Copyright 8
S Herlihy-Shavit 2007

A Generic Sequential Object

[Invocation invoc

Push:5, Pop:null

s Art of Multiprocessor
oz BROWN Programming® Copyright 9
S Herlihy-Shavit 2007

Invocation

public class Invoc {
public String method;
public Object[] args;
}

s Art of Multiprocessor
BROWN Programming® Copyright
S Herlihy-Shavit 2007

10

e
@] BROWN

Invocation

| string method;

Method name

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

11

e
@] BROWN
¥

Invocation

object[] args; |

Arguments

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

12

A Generic Sequential Object

[Response

oK, 4

> Art of Multiprocessor
oz BROWN Programming® Copyright 13
< Herlihy-Shavit 2007

e
@] BROWN

Response

Object value;]

Return value

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

14

A Universal Concurrent Object

public interface SeqObject {
public abstract Response
apply(Invocation invoc);

}

A concurrent object that is
linearizable to the generic
sequential object

> Art of Multiprocessor
oz BROWN Programming® Copyright 15
< Herlihy-Shavit 2007

Start with Lock-Free @
Universal Construction

* First Lock-free: infinitely often
some method call finishes.

- Then Wait-Free: each method call
takes a finite number of steps to
finish

s Art of Multiprocessor

55 BROWN Programming® Copyright 16
< Herlihy-Shavit 2007

Universal Construction:

Ndive Idea

+ Use consensus object to store
pointer to cell with current state
» Each thread creates new cell

- computes outcome,

- and tries to switch pointer to its
outfcome

* Unfortunately not...
- consensus objects can be used once only

> Art of Multiprocessor
oz BROWN Programming® Copyright 17
< Herlihy-Shavit 2007

s
@] BROWN

Naive Idea

deq O
enq @

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

18

Ndive Idea

Concurrent

" Decide which
to apply using
. consensus

&
BROWN
S Herlihy-Shavir2007

Why only once? Why is
consensus object not readable?

Queue based
consensus

pu
propose(value]J;
Ball ball = this.queue.deq(Q;
if (ball == Ball.RED

return proposed[i];
else

return proposed[1-1];

Solved one time 2-consensus. Not clear how to
allow reuse of object or reading its state...

\

Herlihy-Shavit 2007

Improved Idea: Linked-List
Representation

Each node contains a fresh
consensus object used to
decide on next operation

tail

a Art of Multiprocessor
BROWN Programming® Copyright 21
S Herlihy-Shavit 2007

Universal Construction

* Object represented as
- Initial Object State
- A Log: a linked list of the method calls

* New method call
- Find end of list
- Atomically append call

- Compute response by traversing the log
upto the call

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

22

Basic Idea

» Use one-time consensus object to
decide next pointer

» All threads update actual next
pointer based on decision
- OK because they all write the same value

* Challenges

- Lock-free means we need to worry what
happens if a thread stops in the middle

> Art of Multiprocessor
oz BROWN Programming® Copyright 23
< Herlihy-Shavit 2007

Basic Data Structures

public class Node implements

java. lang.Comparable {

public Invoc invoc;

public Consensus<Node> decideNext;

public Node next;

public int seq;

public Node(Invoc invoc) {
invoCc = 1nvocC;
decideNext = new Consensus<Node>()
seq = 0;

}

BROWN Programming® Copyright 24
@ Herlihy-Shavit 2007

Basic Data Structures

java.1ang.comparab1e|
[\

Standard interface for class whose
objects are totally ordered

BROWN Programming® Copyright 25
< Herlihy-Shavit 2007

Basic Data Structures

[public Invoc invoc;

the invocation

oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

26

Basic Data Structures

[public Consensus<Node> decideNext;]

V

Decide on next node
(next method applied to object)

BROWN Programming® Copyright 27
< Herlihy-Shavit 2007

Basic Data Structures

[public Nod@

Traversable pointer to next node
(needed because you cannot
repeatedly read a consensus object)

oo BROWN Frogramming® Copyright 28
< Herlihy-Shavit 2007

Basic Data Structures

[public 'intQ

Seq number

oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

Basic Data Structures

Create a new node for a given
method invocation

) /N

public Node(Invoc invoc) {
1nvoC = 1nvoC;
decideNext = new Consensus<Node>()
seq = 0;

_3 Y,

BROWN Programming® Copyright
Herlihy-Shavit 2007

~

EIE]E@
\ENE|

r

.

N

Invoc

Seq number, Unlver‘sal OijCT

next]

s
@] BROWN

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

decideNext |
(Consensus
Object)

J

Ptr to cell
w/highest
Seq Num

J

31

Universal Object

By I
S 2
N .

N .

N .

S v

A 4
A 4
S 4
S ’
A ’
““

head

tail

-

& Art of Multiprocessor
BROWN Programming® Copyright
@ Herlihy-Shavit 2007

~

All threads
repeatedly
modify
head...back

to where we

strated?

/

32

The Solution

(" .)
Threads find head
hode by finding Max of
_ § nodes pointed to

J

tail by head array

Ptr to
node at
front

Make head updates

N

Thread i J

an arra location i
C[Z BROWN Programming® Copyright

Herlihy-Shavit 2007

33

Universal Object

public class Universal {
private Node[] head;
private Node tail = new Node();
tail.seq = 1;
for (int j=0; j < n; j++){
head[j] = tail
}

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

34

Universal Object

[private Node[] headj

Head Pointers Array

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

35

Universal Object

[

private Node tail = new Node();
tail.seq = 1;

Tail is a sentinel node with
sequence number 1

Art of Multiprocessor

BROWN Programming® Copyright

Herlihy-Shavit 2007

36

Universal Object

[

private Node tail = new Node();
tail.seq = 1;

Tail is a sentinel node with
sequence number 1

Art of Multiprocessor

BROWN Programming® Copyright

Herlihy-Shavit 2007

37

Universal Object

for (int j=0; j < n; j++){
head[j] = tail

Initially
head
points to
1 Art of Multi
BROWN TG' I Pro;rgmmil:_q@p rz:ooneij;;T

5 2 Herlihy-Shavit 2007

38

Find Max Head Value

public static Node max(Node[] array) {
Node max = array[0];
for (int 1 = 1; 1 < array.length; i++)
if (max.seq < array[i].seq)
max = array[i];
return max;

> Art of Multiprocessor
BROWN Programming® Copyright 39
< Herlihy-Shavit 2007

Find Max Head Value

[for (int i = 0; i < array.length; 1++)]

Traverse
the array

& Art of Multiprocessor
BROWN Programming® Copyright 40
@ Herlihy-Shavit 2007

Find Max Head Value

if (max.seq < array[i].seq)
max = arrayl[i];

Compare the seq nums of nodes
pointed to by the array

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

41

Find Max Head Value

[retu rlﬁj

e
@] BROWN

Compare the seq nums of nodes
pointed to by the array

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

42

o,

oy

Universal Application Part I

public Response apply(Invoc invoc) {
int 1 = ThreadID.get();
Node prefer = new node(invoc);
while (prefer.seq == 0) {
Node before = Node.max(Chead);
Node after =
before.decideNext.decide(prefer);
before.next = after;
after.seq = before.seq + 1;
head[i] = after;
}

Art of Multiprocessor

5J3 BROWN Programming® Copyright 43

Herlihy-Shavit 2007

Universal Application Part I

[pub]ic Response apply(Invoc invoc) {]

Apply' will have invocation as input
and return the appropriate response

& Art of Multiprocessor
o2l BROWN Programming® Copyright 44
@ Herlihy-Shavit 2007

Universal Application Part I

[1nt 1 = ThreadID.get();

My id

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

45

Universal Application Part I

[Node prefer = new node(invoc);]

My method call

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

46

Universal Application Part I

[wh11e (prefer.seq == 0) {

As long as I
have not; been
threaded into
list
s Art of Multiprocessor

B2 BROWN Programming® Copyright
S Herlihy-Shavit 2007

47

Universal Application Part I

| Node before = Node.max(head); |

N\

Node at head of
list-that will try
and to append to

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

48

Universal Application Part I

Node after =
before.decideNext.decide(prefer);

—~X "Decide winning
node; could have

already been
decided

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

49

Universal Application

[before.next = after:

Could havealready
been set by winner...in

Set next pointer
based on decision

@hiCh case no af/frecﬁﬁul’riprocessor

oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

50

Universal Application Part I

|after.seq = before.seq + 1; |

Set seq number
indicating node

Art of Multiprocess
BRowN programmings CoprgMQS appended
P Herlihy-Shavit 2007

Universal Application Part I

[head['i] = after; | add to head
array so hew
head will be

> Art of Multiprocessor
o2 BROWN Programming® Copyright found 52

5 2 Herlihy-Shavit 2007

Part IT - Compute Response

Red's]
method call

tail

1l

Pr'lva1'e copy Return OO]

Art of Multiprocessor
Programming® Copyright
Herlihy-Shavit 2007

Universal Application Part IT

//compute my response

SeqObject MyObject = new SeqObject();

current = tail.next;

while (current != prefer){
MyObject.apply(current.invoc);
current = current.next;
}

return MyoObject.apply(current.invoc);

}

> Art of Multiprocessor
ofa BROWN Programming® Copyright 54
@ Herlihy-Shavit 2007

Universal Application Part IT

[//compute my response

Compute the result by
sequentially applying the
method calls in the list to a
private copy of the object
4 starting from the initial state

Wavil cvv

95

Universal Application Part IT

| seqobject Myobject = new Seqobject(); |

Start with initialized copy of
the sequential object

& Art of Multiprocessor
oo BROWN Programming® Copyright 56
< Herlihy-Shavit 2007

Universal Application Part IT

| current = tail.next;

First new method call is
appended after the tail

a Art of Multiprocessor
oz BROWN Programming® Copyright 57
< Herlihy-Shavit 2007

Universal Application Part IT

[wh'i'le (current != prefer){

While not reached my own
art operbhedr call

BROWN Progmmmmgg Copyright 58
< Herlihy-Shavit 2007

Universal Application Part IT

MyObject.apply(current.invoc);
current = current.next;

Apply the current node
method-terobject

ofz BROWN Programming® Copyrigh
S Herlihy-Shavit 2007

59

Universal Application Part IT

[return Myobject.app1y(current.invoc);]

[—

Return the result after
applyjng:myyeown method call

5 2 Herlihy-Shavit 2007

Correctness

» List defines linearized sequential
history

» Thread returns its response based on
list order

> Art of Multiprocessor
oz BROWN Programming® Copyright 61
< Herlihy-Shavit 2007

e

oy

Lock-freedom

Lock-free because

New winner node is added into the
head array within a finite number of
steps

A thread moves forward in list

Can repeatedly fail to win consensus
on "real” head only if another
succeeds

Art of Multiprocessor

B2 BROWN Programming® Copyright

Herlihy-Shavit 2007

62

Wait-free Construction

- Lock-free construction + announce
array

+ Stores (pointer to) node in anhounce
- If a thread doesn't append its node

- Another thread will see it in array and
help append it

> Art of Multiprocessor
oz BROWN Programming® Copyright 63
< Herlihy-Shavit 2007

Helping

» "Announcing” my intention
- Guarantees progress
- Even if the scheduler hates me
- My method call will complete

* Makes protocol wait-free
* Otherwise starvation possible

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

64

Wait-free Construction

Ptr to cell i
wants fo
announce append

tail i

head

& Art of Multiprocessor
BROWN Programming® Copyright 65
S Herlihy-Shavit 2007

The Announce Array

public class Universal {
private Node[] announce;
private Node[] head;
private Node tail = new node();
tail.seq = 1;
for (int j=0; j < n; j++){
head[j] = tail; announce[j] = tail

¥

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

66

The Announce Array

|private Node[] announce; |

Announce array

s Art of Multiprocessor
BROWN Programming® Copyright
S Herlihy-Shavit 2007

67

The Announce Array

We[j] = tail]

All entries initially point to tail

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

A Cry For Help

public Response apply(Invoc invoc) {
int 1 = ThreadID.get();
announcel[1] = new Node(invoc);
head[1] = Node.maxChead);
while (announce[i].seq == 0) {

7/ while node not appended to 1list

:

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

69

A Cry For Help

[announce[i] = new Node(invoc);]

Announce new method call (node), asking help
from others

& Art of Multiprocessor
BROWN Programming® Copyright 70
< Herlihy-Shavit 2007

A Cry For Help

lhead[i] = Node.max(head); |

Look for end of list

& Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

71

A Cry For Help

[whi]e (announce[i].seq == 0) {]

Main loop, while node not appended (either by
me or some thread helping me)

a Art of Multiprocessor
BROWN Programming® Copyright 72
< Herlihy-Shavit 2007

Main Loop

* Non-zero sequence number indicates
success

* Thread keeps helping append nodes
» Until its own node is appended

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

73

Main Loop

while (announce[i].seq == 0) {
Node before = head[i];
Node help = announce[(before.seq + 1% n)];
if (help.seq == 0)
prefer = he1p,
else

prefer = announce[i];

s Art of Multiprocessor
oz BROWN Programming® Copyright 74
S Herlihy-Shavit 2007

Main Loop

[whi]e (announce[i].seq == 0) {]

Keep trying until my cell gets a
sequence humber

& Art of Multiprocessor
BROWN Programming® Copyright
S Herlihy-Shavit 2007

75

Main Loop

[Node before = head[i];

Possible end of list

& Art of Multiprocessor
BROWN Programming® Copyright
S Herlihy-Shavit 2007

76

Main Loop

[Node help = announce[(before.seq + 1 % n)1;]

Who do I help?

a Art of Multiprocessor
BROWN Programming® Copyright 77
< Herlihy-Shavit 2007

Altruism

* Choose a thread to “help”

* If that thread needs help

- Try to append its node
- Otherwise append your own

- Worst case
- Everyone tries to help same pitiful loser
- Someone succeeds

> Art of Multiprocessor
oz BROWN Programming® Copyright 78
< Herlihy-Shavit 2007

Help!

* When last node in list has
sequence number k

- All threads check ...

- Whether thread k+1 mod n wants
help

- If so, try to append her node first

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

79

Help!

- First time after thread k+1 announces
- No guarantees

» After n more nodes appended

- Everyone sees that thread k+1 wants
help

- Everyone tries to append that node
- Someone succeeds

> Art of Multiprocessor
oz BROWN Programming® Copyright 80
< Herlihy-Shavit 2007

Sliding Window Lemma

- After thread A announces its node

- No more than n other calls
- Can start and finish
- Without appending A's node

> Art of Multiprocessor
oz BROWN Programming® Copyright 81
< Herlihy-Shavit 2007

So all see Help'ng

and help
append 4

Thread 4:
Help mel

Max head

anhnounce [*1 = N+4

a Art of Multiprocessor
BROWN Programming® Copyright 82
S Herlihy-Shavit 2007

The Sliding Help Window

announce

Help 3Help 4

& Art of Multiprocessor
BROWN Programming® Copyright 83
S Herlihy-Shavit 2007

Sliding Help Window

[Node help = announce[(before.seq + 1 % n)1;]

In each main loop iteration pick
another thread to help

& Art of Multiprocessor
BROWN Programming® Copyright 84
@ Herlihy-Shavit 2007

Sliding Help Window

Help if help required, but
otherwise it's all about mel

(if (help.seq ==‘6;////2L_‘\

prefer = help;
else

g prefer = announce[i];A)

Art of Multiprocessor
oo BROWN Programming® Copyright
S Herlihy-Shavit 2007

Rest is Same as Lock-free

while (prefer.seq == 0) {

Node after =
before.decideNext.decide(prefer);
before.next = after;

after.seq = before.seq + 1;
head[1] = after;

}

> Art of Multiprocessor
oz BROWN Programming® Copyright 86
< Herlihy-Shavit 2007

Rest is Same as Lock-free

Node after =
before.decideNext.decide(prefer);

Decide next node to be appended

a Art of Multiprocessor
oz BROWN Programming® Copyright 87
< Herlihy-Shavit 2007

Rest is Same as Lock-free

Update next based on decision

[before .hext ﬁ

& Art of Multiprocessor
oo BROWN Programming® Copyright 88
< Herlihy-Shavit 2007

Rest is Same as Lock-free

Tell world that node is appended

o

after.seq = before.seq + 1;
head[1] = after;

& Art of Multiprocessor
oo BROWN Programming® Copyright 89
< Herlihy-Shavit 2007

Finishing the Job

» Once thread's node is linked

* The rest is again the same as in lock-
free alg

»+ Compute the result by sequentially
applying the method calls in the list
to a private copy of the object
starting from the initial state

Art of Multiprocessor

BROWN Programming® Copyright 90
< Herlihy-Shavit 2007

Then Same Part IT

//compute my response

SeqObject MyObject = new SeqObject();

current = tail.next;

while (current != prefer){
MyObject.apply(current.invoc);
current = current.next;
}

return MyoObject.apply(current.invoc);

}

s Art of Multiprocessor
BROWN Programming® Copyright
S Herlihy-Shavit 2007

91

Universal Application Part IT

[return Myobject.app1y(current.invoc);]

[—

Return the result after
applyjng:myyeown method call

5 2 Herlihy-Shavit 2007

Shared-Memory Computability

Universal
Object

Wait-free/Lock-free computable

Threads with methods that solve n-

consensus
& Art of Multiprocessor
oo BROWN Programming® Copyright 93

5 2 Herlihy-Shavit 2007

GetAndSet is not Universal

public class RMWRegister {
private int value;
public boolean getAndSet(int update)
{
int prior = this.value;
this.value = update;
return prior;

}
}

s Art of Multiprocessor
BROWN (1) Programming® Copyright
S Herlihy-Shavit 2007

GetAndSet is not Universal

lboolean getAndset(int update)|

Consensus number 2

> Art of Multiprocessor
oJo BROWN (1) Programming® Copyright 95
< Herlihy-Shavit 2007

GetAndSet is not Universal

lboolean getAndset(int update)|

Not universal for 2 3 threads

> Art of Multiprocessor
oJo BROWN (1) Programming® Copyright 96
< Herlihy-Shavit 2007

CompareAndSet is Universal

public class RMWRegister {
private int value;

public boolean

compareAndSet(int expected,

int update) {

int prior = this.value;

if (this.value == expected) {

this.value = update;

return true;

}

return false;

> Art of Multiprocessor
BROWN (1) Programming® Copyright 97
< Herlihy-Shavit 2007

CompareAndSet is Universal

compareAndSet(int expected,
int update) {

Consensus number oo

s Art of Multiprocessor
BROWN (1) Programming® Copyright
S Herlihy-Shavit 2007

98

CompareAndSet is Universal

compareAndSet(int expected,
int update) {

Universal for any number of threads

s Art of Multiprocessor
BROWN (1) Programming® Copyright
S Herlihy-Shavit 2007

99

Practical Implications

» Any architecture that does not
provide a universal primitive has
inherent limitations

» You cannot avoid locking for
concurrent data structures ...

> Art of Multiprocessor
oz BROWN Programming® Copyright 100
< Herlihy-Shavit 2007

Older Architectures

- IBM 360
- testAndSet (getAndSet)

* NYU UltraComputer
- getAndAdd

* Neither universal
- Except for 2 threads

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

101

Newer Architectures

+ Intel x86, Itanium, SPARC
- compareAndSet

- Alpha AXP, PowerPC

- Load-locked/store-conditional

» All universal
- For any number of threads

- Trend is clear ...

s Art of Multiprocessor
oz BROWN Programming® Copyright
S Herlihy-Shavit 2007

102

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

: Art of Multiprocessor
oz BROWN Programming® Copyright 103
< Herlihy-Shavit 2007

Sl
i

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

