Spin Locks and Contention

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Focus so far: Correctness

- Models

- Accurate (we never lied to you)
- But idealized (so we forgot to mention a few things)

* Protocols
- Elegant
- Important
- But ndive

ofa BROWN Art of Multiprocessor 2

. (2 Programming® Herlihy-Shavit
2007

New Focus: Performance

- Models

- More complicated (not the same as complex!)
- Still focus on principles (not soon obsolete)

* Protocols
- Elegant (in their fashion)
- II’\'\POF‘TGHT (why else would we pay attention)
- And realistic (your mileage may vary)

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Kinds of Architectures

»+ SISD (Uniprocessor)

- Single instruction stream
- Single data stream

- SIMD (Vector)

- Single instruction
- Multiple data

* MIMD (Multiprocessors)

- Multiple instruction
- Multiple data.

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Kinds of Architectures

- MIMD (Multiprocessors)

- Multiple instruction
- Multiple data.

J

e

ofja BROWN (1) Art of Multiprocessor

(B
\E

2007

Our space

Programming® Herlihy-Shavit

MIMD Architectures
A

%
g
o o ¢

Shared Bus Distributed

* Memory Contention
- Communication Contention
+ Communication Latency

o2l BROWN Art of Multiprocessor 6

S B Programming® Herlihy-Shavit
2007

Today: Revisit Mutual Exclusion

* Think of performance, not just
correctness and progress

» Begin to understand how performance
depends on our software properly
utilizing the multiprocessor machine's
hardware

» And get to know a collection of
locking algorithms...

o,

33 BROWN Art of Multiprocessor 7(1)

S B Programming® Herlihy-Shavit
2007

What Should you do if you can't
get a lock?

+ Keep trying
- "spin” or "busy-wait"
- Good if delays are short
* Give up the processor
- Good if delays are long
- Always good on uniprocessor

o,

2j5 BROWN Art of Multiprocessor 8 (1)

. (2 Programming® Herlihy-Shavit
2007

What Should you do if you can't

get a lock?
N

y @eep trying

- "spin” or "busy-wait"

- Good if delays are short
* Give up the proc
- Good if delays are long
- Always good on uniprocessor

our focus

S
BROWN Art of Multiprocessor 9

Programming® Herlihy-Shavit
2007

Basic Spin-Lock

=

n
i
i

> CS
é spin critical Resets lock
/ lock section upon exit
5J3 BROWN Art of Multiprocessor
& Programming® Herlihy-Shavit

2007

10

Basic Spin-Lock

.lock introduces

@%F‘ sequential bottleneck

"9

“

Resets lock

spin critical :
/ lock section upon exit

R

&2
BROWN Art of Multiprocessor 1
@ Programming® Herlihy-Shavit

2007

L =
B
R

e
@] BROWN

Basic Spin-Lock

.lock suffers from
contention

6
spin critical Resets I_ock
lock section upon exit

Art of Multiprocessor 12

Programming® Herlihy-Shavit
2007

Basic Spin-Lock

w o I

.lock suffers from
contention

“

Resets lock

spin critical :
/ lock section upon exit

Notice: these are distinct

phenomena

&2
BROWN Art of Multiprocessor 13
@ Programming® Herlihy-Shavit

2007

e
@] BROWN

Basic Spin-Lock

\%

.lock suffers from
contention

/§)

~

@@ s _;‘

spin critical Resets I_ock
lock section upon exit

Seq Bottleneck - no
parallelism

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

14

e
@] BROWN

Basic Spin-Lock

\%

.lock suffers from
contention

/§)

~

@@ s _;‘

spin critical Resets I_ock
lock section upon exit

Contention > ??7?

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

15

Review: Test-and-Set

- Boolean value
+ Test-and-set (TAS)

- Swap true with current value
- Return value tells if prior value was true
or false
» Can reset just by writing false

+ TAS aka "getAndSet”

o,

5[5 BROWN Art of Multiprocessor 16

. (2 Programming® Herlihy-Shavit
2007

Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndset(boolean newvalue)

boolean prior = value;
value = newvalue;
return prior;

}
}

BROWN Art of Multiprocessor 17(5)

Programming® Herlihy-Shavit
2007

Review: Test-and-Set

[pub11c class AtomicBoolean {]

Package
java.util.concurrent.atomic

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

18

Review: Test-and-Set

’rpub1ic synchronized boolean A

getAndset(boolean newvalue) {
boolean prior = value;
value = newvalue;

. return prior; ‘\\\\\J/____)

Swap old and new
values

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)

boolean prior = lock.getAndSet(true)

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

20

Review: Test-and-Set

[boo1ean prior

1ock.getAndset(true)]

\/

Swapping in true is called
“test-and-set” or TAS

=
BROWN Art of Multiprocessor 21(5)

Programming® Herlihy-Shavit
2007

Test-and-Set Locks

* Locking

- Lock is free: value is false
- Lock is taken: value is true

- Acquire
- If resu
- If resu

ock by calling TAS

t is false, you win
t is true, you lose

* Release lock by writing false

oo BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

22

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}
}

void unlock() {
state.set(false);

b}

e

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

23

Test-and-set Lock

|

AtomicBoolean state =
new AtomicBoolean(false);

Lock state is AtomicBoolean

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

24

Test-and-set Lock

[wh1"|e (state.getAndSet(true)) {}]

"

Keep trying until lock acquired

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

25

Test-and-set Lock

Release lock by resetting
state to false

[state.set(fa1se);

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

26

Space Complexity

*+ TAS spin-lock has small "footprint”
* N thread spin-lock uses O(1) space
+ As opposed to O(h) Peterson/Bakery

+ How did we overcome the Q(n) lower
bound?

* We used a RMW operation...

o,

5[5 BROWN Art of Multiprocessor 27

. (2 Programming® Herlihy-Shavit
2007

Performance

+ Experiment
- h threads
- Increment shared counter 1 million times

* How long should it take?
* How long does it take?

ofa BROWN Art of Multiprocessor 28

. (2 Programming® Herlihy-Shavit
2007

Exercise

- Use

- Test and set

- Test and test and set
- Compare and exchange
- Fetch and add

- Other synchronization primitives

* On

vy,

oy

- Various hardwares

ofa BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

29

Graph

no speedup
because of
sequential

%rleneck Yy

4)

time

ideal

threads

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Mystery #1

Q)
E

+)

What is
threads 901ng
on?
- J
BROWN Art of Multiprocessor 31(1)

Programming® Herlihy-Shavit
2007

Test-and-Test-and-Set Locks

* Lurking stage
- Wait until lock “looks" free
- Spin while read returns true (lock taken)

» Pouncing state
- As soon as lock “looks" available
- Read returns false (lock free)
- Call TAS to acquire lock
- If TAS loses, back to lurking

ofa BROWN Art of Multiprocessor 32

. (2 Programming® Herlihy-Shavit
2007

e

oy

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

35 BROWN Art of Multiprocessor 33

Programming® Herlihy-Shavit
2007

Test-and-test-and-set Lock

| while (state.get(Q)) {}

Wait until lock looks free

o2l BROWN Art of Multiprocessor 34

S B Programming® Herlihy-Shavit
2007

Test-and-test-and-set Lock

Then try to
acquire it

if (Istate.getAndset(true))
return;

o2l BROWN Art of Multiprocessor 35

S B Programming® Herlihy-Shavit
2007

s
@] BROWN
¥

time

Mystery #2

e

threads

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

TTAS lock

Ideal

36

Mystery

* Both
- TASand TTAS
- Do the same thing (in our model)

+ Except that
- TTAS performs much better than TAS
- Neither approaches ideal

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

37

Opinion

* Our memory abstraction is broken

- TAS & TTAS methods

- Are provably the same (in our model)
- Except they aren't (in field tests)

- Need a more detailed model ...

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

38

Bus-Based Architectures

oo BROWN

ﬁ

B

<>

>

memory

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

39

Bus-Based Architectures
N

Random access memory
(10s of cycles)

| —_—
e
memory

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

40

/B.LIS;BCIS.Zd_ALLh.iIZf_tIJ{'eS

Shared Bus
‘broadcast medium
*One broadcaster at a time
‘Processors and memory all

_ “snoop”

>

——=

&2 :
BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

2007

41

Per-Processor Caches
Bus-ﬁ

s
@] BROWN

*Small
*Fast: 1 or 2 cycles

-Address & state information

memory

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

42

Jargon Watch

 Cache hit

- "I found what I wanted in my cache”
- Good Thing™

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

43

Jargon Watch

 Cache hit

- "I found what I wanted in my cache”
- Good Thing™

- Cache miss

- "I had to shlep all the way to memory
for that data”

- Bad Thing™

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

44

Cave Canem

» This model is still a simplification
- But not in any essential way
- Tllustrates basic principles

+ Will discuss complexities later

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

45

Processor Issues Load Request

a5
<

Bus >
memory e

35 BROWN Art of Multiprocessor 46

. (2 Programming® Herlihy-Shavit
2007

Processor Issues Load Request

data
Oo,

memory e

o2l BROWN Art of Multiprocessor 47

S B Programming® Herlihy-Shavit
2007

Memory Responds

Got your

A

data right

memory

oo BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

48

oo BROWN

memory

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

49

oo BROWN

memory

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

50

Processor Issues Load Request
I got

memory

o2l BROWN Art of Multiprocessor 51

S B Programming® Herlihy-Shavit
2007

Qiher Processor Responds

data
£ i N
| | |

=
memory

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Other Processor Responds

8 8

==
memory

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Modify Cached Data

QI@

_data [data |

=
memory IEEN

oo BROWN Art of Multiprocessor 54 (1)
&P Programming® Herlihy-Shavit
2007

Modify Cached Data

R RS

ata | data | | |
<:- l/%(’;; >

memory IEEN

2j5 BROWN Art of Multiprocessor 55 (1)

. (2 Programming® Herlihy-Shavit
2007

Modify Cached Data

QI@

da’ra | data |

Bus

==

memory e

ofa BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit
2007

Modify Cached Data

= >

Bus
other copies? _ OTY

2007

What's up with the R
i I o
ofa BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

Y

Cache Coherence

* We have lots of copies of data
- Original copy in memory
- Cached copies at processors

+ Some processor modifies its own copy
- What do we do with the others?
- How to avoid confusion?

ofa BROWN Art of Multiprocessor 58

S B Programming® Herlihy-Shavit
2007

Write-Back Caches

» Accumulate changes in cache

- Write back when needed

- Need the cache for something else
- Another processor wants it

- On first modification
- Invalidate other entries
- Requires non-trivial protocol ...

ofa BROWN Art of Multiprocessor 59

S B Programming® Herlihy-Shavit
2007

Write-Back Caches

* Cache entry has three states
- Invalid: contains raw seething bits
- Valid: I can read but I can't write

- Dirty: Data has been modified
* Intercept other load requests
 Write back to memory before using cache

vy,

5[5 BROWN Art of Multiprocessor 60

. (2 Programming® Herlihy-Shavit
2007

Tnvalidate

o i N

daTa

| data |

Bus

<

==

memory

oo BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

61

e
@] BROWN

Tnvalidate

memory

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

62

Tnvalidate

memory

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Thnvalidate

Other caches lose read permission

MH@

(3}@

memory

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

64

Thnvalidate

Other caches lose read permission

MW@

_{ This cache acquires write permission J

S
BROWN Art of Multiprocessor 65

Programming® Herlihy-Shavit
2007

Tnvalidate

P/ A A

Memory provides data only if not
present in any cache, so no need to
change it now (expensive)

& =

memory

L
2o BROWN Art of Multiprocessor 66(2)

S B Programming® Herlihy-Shavit
2007

.

Another Processor Asks for
Data

memory

&
o BROWN Art of Multiprocessor 67(2)

S B Programming® Herlihy-Shavit
2007

memory

G
oJa BROWN Art of Multiprocessor 68(2)
S Programming® Herlihy-Shavit

2007

End of the Day ..

| Reading OK, no wr'i’rif\mg’;rl

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Mutual Exclusion

* What do we want to optimize?
- Bus bandwidth used by spinning threads
- Release/Acquire latency
- Acquire latency for idle lock

ofa BROWN Art of Multiprocessor 70

. (2 Programming® Herlihy-Shavit
2007

Simple TASLock

+ TAS invalidates cache lines
* Spihners

- Miss in cache

- Go to bus

- Thread wants to release lock
- delayed behind spinners

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

71

Test-and-test-and-set

- Wait until lock “looks" free

- Spin on local cache
- No bus use while lock busy

- Problem: when lock is released
- Tnvalidation storm ...

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

72

Local Spinning while Lock is

oo BROWN

ﬁ

Busy

i

>

<>

memory IEEM

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

73

s
@] BROWN

On Release

&

memory I

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

74

On Release
Everyone misses,
rereads

memory I

s
BROWN Art of Multiprocessor 75 (1)

Programming® Herlihy-Shavit
2007

On Release
Everyone tries TAS

memory I

s
BROWN Art of Multiprocessor 76 (1)

Programming® Herlihy-Shavit
2007

Problems

» Everyone misses
- Reads satisfied sequentially

+ Everyone does TAS
- Invalidates others' caches

» Eventually quiesces after lock
acquired
- How long does this take?

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

77

Measuring Quiescence Time

=
l“<_—’

X = time of ops that don't
use the bus oy
Y = time of ops that cause @"
intensive bus traffic ¥ ,‘:

In critical section, run ops X then ops Y. As long as
Quiescence time is less than X, no drop in performance.

By gradually varying X, can determine the exact time
to quiesce.

&2
BROWN Art of Multiprocessor 78

Programming® Herlihy-Shavit
2007

Quiescence Time

Increses
linearly with
Q) the number of
= processors for
+— bus architecture
threads
BROWN Art of Multiprocessor 79

Programming® Herlihy-Shavit
2007

Mystery Explained

TTAS lock

time

Ideal

B&tter than
TAS but still
not as good as
ideal Yy

S
BROWN Art of Multiprocessor 80

Programming® Herlihy-Shavit
2007

Solution: Introduce Delay

- If the lock looks free
But I fail to get it
- There must be lots of contention

Better to back of f ’rhan/’ra.rsllide again

“‘*
time -- ' I spin lock
r,d rld

o2l BROWN Art of Multiprocessor 81
@ Programming® Herlihy-Shavit
2007

Dynamic Example:
Exponential Backoff
N

d o
Ng-

spin lock

time --
4d

If I fail to get lock
- wait random duration before retry

- Each subsequent failure doubles
expected wait

ofa BROWN Art of Multiprocessor 82
@ Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
it (!lock.getAndset(true))
return;
sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;
11}

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

83

Exponential Backoff Lock

|int delay = MIN_DELAY;

Fix minimum delay

o2l BROWN Art of Multiprocessor 84

S B Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

| while (state.get()) {}

Wait until lock looks free

o2l BROWN Art of Multiprocessor 85

S B Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

[:1f (!'Tock.getAndset(true))
return;

If we win, return

o2l BROWN Art of Multiprocessor 86

S B Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

Back off for random duration

[s1eep(random() % delay);

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

Double max delay, within reason

[F (deTay < MAX_DELAY)]
delay = 2 * delay;

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Spin-Waiting Overhead

TTAS Lock

Q)
£
. Backoff lock
threads
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

89

Backoff: Other Issues

+ Good

- Easy to implement
- Beats TTAS lock

+ Bad

- Must choose parameters carefully
- Not portable across platforms

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

90

Tdea

+ Avoid useless invalidations
- By keeping a queue of threads

- Each thread

- Notifies next in line
- Without bothering the others

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

91

Anderson Queue Lock
idle

hext
' ﬁ

flags

TI|F|F|F|F|F|F

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

92

Anderson Queue Lock

acquiring

hext
U " getAndIncrement

flags
TIF|F|F|F|F]| F]|]F

o2l BROWN Art of Multiprocessor 93

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

acquiring

hext
{ " getAndIncrement

flags

T|F|F|F|F|F|F|F

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

acquired

hext

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

95

Anderson Queue Lock

acquired acquiring

L

hext

flags

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

' iri
oxt acquired acquiring

[mst i

flags getAndIncrement

T|F|F|F|F|F|F|F

o2l BROWN Art of Multiprocessor 97

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

acquired acquiring

flags getAndIncrement

hext

{

TIF|¥|F|F|F|F|F

o,

ofa BROWN Art of Multiprocessor 98

S B Programming® Herlihy-Shavit
2007

Anderson Queuz ! ock

acquired a %)

hext

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

released acquired

hext

flags

o2l BROWN Art of Multiprocessor 100

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

released acquired
next

o2l BROWN Art of Multiprocessor 101

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,..,false};
AtomicInteger next
= new AtomicInteger(0);
int[] slot = new int[n];

BROWN Art of Multiprocessor 102

Programming® Herlihy-Shavit
2007

Anderson Queue Lock

[boo1ean[] f1ags={true,fa1se,m,fa1se};]

L

One flag per thread

o2l BROWN Art of Multiprocessor 103

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

AtomicInteger next
= new AtomicInteger(0);

Next flag to use

o2l BROWN Art of Multiprocessor 104

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

[ThreadLoca1<Integer> mys1ot;]

Thread-local variable

o2l BROWN Art of Multiprocessor 105

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

public lock() {
int mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
¥

public unlock() {
flags[(mySlot+1l) % n] = true;
¥

e

35 BROWN Art of Multiprocessor 106

. (2 Programming® Herlihy-Shavit
2007

Anderson Queue Lock

[1 nt mys-lot = next.getAndIncr'ement()];

Take next slot

o2l BROWN Art of Multiprocessor 107

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

|while (!flags[myslot % n1) {}; |

Spin until told to go

o2l BROWN Art of Multiprocessor 108

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

| flags[slot[i] % n] = false; |

N

Prepare slot for re-use

o2l BROWN Art of Multiprocessor 109

S B Programming® Herlihy-Shavit
2007

Anderson Queue Lock

Tell next thread to go
|

1
{F'Iags[(mys'lot+1) % n] = true;l

o2l BROWN Art of Multiprocessor 110

S B Programming® Herlihy-Shavit
2007

Performance

TTAS

Shorter handover than
backoff

* Curve is practically flat
queue * Scalable performance
- FIFO fairness

S
BROWN Art of Multiprocessor 111

Programming® Herlihy-Shavit
2007

Anderson Queue Lock

+ Good

- First truly scalable lock
- Simple, easy to implement
* Bad

- Space hog
- One bit per thread

- Unknown number of threads?
- Small number of actual contenders?

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

112

CLH Lock

- FIFO order

» Small, constant-size overhead per
thread

o,

5[5 BROWN Art of Multiprocessor 113

. (2 Programming® Herlihy-Shavit
2007

Initially

idle

tail
|
BROWN Art of Multiprocessor 114

Programming® Herlihy-Shavit
2007

Initially

(.
tail .
-j_> = Queue fail
.
BROWN Art of Multiprocessor 115

Programming® Herlihy-Shavit
2007

Initially

Lock is free

tail
l

S :
BROWN Art of Multiprocessor 116

Programming® Herlihy-Shavit
2007

Initially

idle

tail
s e flse
BROWN Art of Multiprocessor 117

Programming® Herlihy-Shavit
2007

Purple Wants the Lock

acquiring

i

|

S :
BROWN Art of Multiprocessor 118

Programming® Herlihy-Shavit
2007

Purple Wants the Lock

acquiring

tail
=
&

BROWN Art of Multiprocessor 119

Programming® Herlihy-Shavit
2007

Purple Wants the Lock

acquiring

i

Swap

" tail
\.
BROWN Art of Multiprocessor 120

Programming® Herlihy-Shavit
2007

Purple Has the Lock

acquired

i

.

mm 8 B
BROWNLAHiprocessor

Programming® Herlihy-Shavit
2007

121

Red Wants the Lock

acquired acquiring

2
.

[] false true true
BROWNLAHiprocessor 122

Programming® Herlihy-Shavit
2007

Red Wants the Lock

acquired acquiring

L

Swap

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

123

Red Wants the Lock

acquired acquiring

&
.)

[] false true true
BROWN\ Art of Multiprocessor /
S ' eonavi

2007

124

Red Wants the Lock

acquired acquiring

2
*
L 2
L 2
L 2

*

. » "4 ‘> P
tail
-

g
BROWN Art of Multiprocessor
S ' =onavi

2007

125

Red Wants the Lock

acquired acquiring

A Implicitely
> > N Linked list

tail &

- alse True

g
BROWN Art of Multiprocessor
S ' =onavi

2007

126

tail

acquired

i

5

false
. J
BROWN Art of Multiprocessor
S ' =onavi

2007

True

Red Wants T"‘ L ock

true

127

Red Wants the Lock
acquired %

acy)
Actually, it
» spins on
tail

cached copy
[] false true true
BROWN\ Art of Multiprocessor /
S ' eonavi

2007

128

Purple Releases

release acquiring

’
tail

- false false true
BROWN\ Art of Multiprocessor /
S ' eonavi

2007

129

Purple Releases

released acquired

i

g
BROWN Art of Multiprocessor
S ' =onavi

2007

130

Space Usage

+ Let

- L = number of locks
- N = number of threads

+ Alock
- O(LN)
» CLH lock
- O(L+N)

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

131

CLH Queue Lock

class Qnode {
AtomicBoolean locked =
new AtomicBoolean(true):

BROWN Art of Multiprocessor 132

Programming® Herlihy-Shavit
2007

CLH Queue Lock

new AtomicBoolean(true);

[AtomicBoo1ean locked =
¥

Not released yet

&2
BROWN Art of Multiprocessor 133

Programming® Herlihy-Shavit
2007

CLH Queue Lock

class CLHLock implements Lock {
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode
= new Qnode();
public void lock({
Qnode pred
= tail.getAndSet(myNode) ;
while (pred.locked) {}

}}

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

134(3)

CLH Queue Lock

[Atom1CReference<Qnode> ta11;]

Tail of the queue

&2
BROWN Art of Multiprocessor 135(3)

Programming® Herlihy-Shavit
2007

CLH Queue Lock

ThreadLocal<Qnode> myNode
= new Qnode();

\

Thread-local Qnode

&2
oJa BROWN Art of Multiprocessor 136(3)

S B Programming® Herlihy-Shavit
2007

CLH Queue Lock

Swap in my node

Qnode pred
= queue.getAndSet(myNode) ;

&2
ofa BROWN Art of Multiprocessor 137(3)

S B Programming® Herlihy-Shavit
2007

CLH Queue Lock

Spin until predecessor
releases lock

[whi1e (pred.locked) {}

&2
BROWN Art of Multiprocessor 138(3)

Programming® Herlihy-Shavit
2007

CLH Queue Lock

Class CLHLock implements Lock {

public void unlock() {
myNode. locked.set(false);
myNode = pred;
}
}

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

139(3)

CLH Queue Lock

[myNode.1ocked.set(fa1se)

Notify successor

&2
oJa BROWN Art of Multiprocessor 140(3)

S B Programming® Herlihy-Shavit
2007

CLH Queue Lock

[myNode = pred;

Recycle
predecessor's node

S
BROWN Art of Multiprocessor 141(3)

Programming® Herlihy-Shavit
2007

CLH Queue Lock

[mYNode = Qe/d_;]

(notice that we actually
don't reuse myNode. Code in
Handout shows how its done.)

S :
BROWN Art of Multiprocessor 142(3)

Programming® Herlihy-Shavit
2007

CLH Lock

+ Good

- Lock release affects predecessor only
- Small, constant-sized space

+ Bad

- Doesn't work for uncached NUMA
architectures

BROWN Art of Multiprocessor 143

Programming® Herlihy-Shavit
2007

NUMA Architecturs

- Acronym:

- Non-Uniform Memory Architecture
* Tllusion:

- Flat shared memory

* Truth:

- No caches (sometimes)
- Some memory regions faster than others

e

35 BROWN Art of Multiprocessor 144

. (2 Programming® Herlihy-Shavit
2007

NUMA Machines

Spinning on local
memory is fast

o2l BROWN Art of Multiprocessor 145

S B Programming® Herlihy-Shavit
2007

NLU

é\/\achines
<@

¢ @

Spinning on remote
memory is slow

S
BROWN Art of Multiprocessor 146

Programming® Herlihy-Shavit
2007

CLH Lock

» Each thread spin's on predecessor's
memory

» Could be far away ...

o,

5[5 BROWN Art of Multiprocessor 147

. (2 Programming® Herlihy-Shavit
2007

MCS Lock

- FIFO order
» Spin on local memory only
- Small, Constant-size overhead

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

148

Initially

idle

tail

[—in

S
BROWN Art of Multiprocessor 149

Programming® Herlihy-Shavit
2007

Acquiring
acquiring

(allocate Qnode)

S :
BROWN Art of Multiprocessor 150

Programming® Herlihy-Shavit
2007

Acquiring

acquired

S
BROWN Art of Multiprocessor 151

Programming® Herlihy-Shavit
2007

Acquired

acquired

tail

S
BROWN Art of Multiprocessor 152

Programming® Herlihy-Shavit
2007

Acquiring

acquired acqiring

swap

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Acquiring

acquiring

¥
i
-\/\ u

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

acquired

i

Acquiring

acquiring

acquired

i

_

-\/—\u

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Acquur

. a- T
acquired .

tail
S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

156

S
BROWN Art of Multiprocessor 157

Programming® Herlihy-Shavit
2007

Acquiring

acquiring

°0
I O

released

i

S :
BROWN Art of Multiprocessor 158

Programming® Herlihy-Shavit
2007

MCS Queue Lock

class Qnode {

boolean locked = false;
gnode next = null;
}
S5 BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

2007

159

MCS Queue Lock

class MCSLock implements Lock {
AtomicReference tail;
public void lock() {
Qnode gnode = new Qnode();
Qnode pred = tail.getAndSet(gnode);
if (pred != null) {
gnode.locked = true;
pred.next = qnode;
while (gnode.locked) {}

)

5[5 BROWN Art of Multiprocessor 160(3)

. (2 Programming® Herlihy-Shavit
2007

MCS Queue Lock
Make a

QNode
| Qnode gnode = new Qnode(Q);

&2
ofa BROWN Art of Multiprocessor 161(3)

S B Programming® Herlihy-Shavit
2007

MCS Queue Lock

|Qnode pred = tail.getAndset(gnode); |

\/
add my Node to
the tail of
queue
BROWN Art of Multiprocessor 162(3)

Programming® Herlihy-Shavit
2007

MCS Queue Lock

Fix if queue
was non-empty

A1f (pred T= n%

gnode. locked = true;
_ pred.next = gnode; |

BROWN Art of Multiprocessor 163(3)

S B Programming® Herlihy-Shavit
2007

MCS Queue Lock

Wait until

unlocked
|_while (gnode.locked
BROWN Art of Multiprocessor 164(3)
@ Programming® Herlihy-Shavit

2007

MCS Queue Unlock

class MCSLock implements Lock {
AtomicReference tail;
public void unlock() {
if (gnode.next == null) {
if (tail.CAS(gnode, null)
return;

while (qnode.next == null) {}
}

gnode.next.locked = false;

3}

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

165(3)

MCS Queue Lock

[if (gnode.next == null) {

1SSIng
successor?

&2
oJa BROWN Art of Multiprocessor 166(3)

S B Programming® Herlihy-Shavit
2007

MCS Queue Lock

If really no successor,

return l\

if (tail.CAS(gnode, null)
return;

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

167(3)

MCS Queue Lock

Otherwise wait for
successor to catch up

S

[wh'i'le (gnode.next == null) {}]

S
BROWN Art of Multiprocessor 168(3)

Programming® Herlihy-Shavit
2007

MCS Queue Lock

Pass lock to successor

[qnode.next.1ocked = fa1se;|

&2
oJa BROWN Art of Multiprocessor 169(3)

S B Programming® Herlihy-Shavit
2007

Purple Got the lock;
Red requesting

acquired acquiring

ofa BROWN Art of Multiprocessor 170(2)

Programming® Herlihy-Shavit
2007

Purple Release;
Red isn't quite finished

releasing acquiring

<

S
BROWN Art of Multiprocessor 171(2)

Programming® Herlihy-Shavit
2007

Purple Release

By looking at the queue, I "
see another thread is
active

releasi

<

S
BROWN Art of Multiprocessor 172(2)

Programming® Herlihy-Shavit
2007

s
@] BROWN

Purple Release

By looking at the queue, I "
see another thread is

releasi

active

4

; 1

A

KA T have to wait for that
thread to finish

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

:

173(2)

Purple Release

releasing prepare to spin

S
BROWN Art of Multiprocessor 174

Programming® Herlihy-Shavit
2007

Purple Release

releasing spinning

i

S
BROWN Art of Multiprocessor 175

Programming® Herlihy-Shavit
2007

Purple Release

releasing spinning

S
BROWN Art of Multiprocessor 176

Programming® Herlihy-Shavit
2007

Purple Release

releasing Acquired

o
SR

S
BROWN Art of Multiprocessor 177

Programming® Herlihy-Shavit
2007

Abortable Locks

* What if you want to give up waiting
for a lock?

* For example
- Timeout
- Database transaction aborted by user

ofa BROWN Art of Multiprocessor 178

. (2 Programming® Herlihy-Shavit
2007

Back-off Lock

» Aborting is trivial

- Just return from lock() call
+ Extra benefit:

- No cleaning up

- Wait-free

- Immediate return

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

179

Queue Locks

+ Can't just quit
- Thread in line behind will starve
* Need a graceful way out

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

180

Queue Locks

spinning spinning spinning

s
@] BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

181

Queue Locks

locked spinning spinning

false

S :
BROWN Art of Multiprocessor 182

Programming® Herlihy-Shavit
2007

Queue Locks

locked spinning

S
BROWN Art of Multiprocessor 183

Programming® Herlihy-Shavit
2007

Queue Locks

locked

&2
BROWN Art of Multiprocessor 184

Programming® Herlihy-Shavit
2007

Queue Locks

spinning spinning spinning

s
@] BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

185

Queue Locks

spinning spinning

S
BROWN Art of Multiprocessor 186

Programming® Herlihy-Shavit
2007

Queue Locks

locked spinning

S
BROWN Art of Multiprocessor 187

Programming® Herlihy-Shavit
2007

Queue Locks

spinning

S
BROWN Art of Multiprocessor 188

Programming® Herlihy-Shavit
2007

Queue Locks

pwhed

&2
BROWN Art of Multiprocessor 189

Programming® Herlihy-Shavit
2007

Abortable CLH Lock

* When a thread gives up
- Removing node in a wait-free way is hard
» Idea:

- let successor deal with it.

e

35 BROWN Art of Multiprocessor 190

. (2 Programming® Herlihy-Shavit
2007

Initially
idle

Pointer to
predecessor
(or null)

tail

S
BROWN Art of Multiprocessor 191

Programming® Herlihy-Shavit
2007

Initially
idle

Distinguished
available node
means lock is

free
tail
‘ A
. J
BROWN Art of Multiprocessor 192

Programming® Herlihy-Shavit
2007

Acquiring

acquiring

tail
| [-

S :
BROWN Art of Multiprocessor 193

Programming® Herlihy-Shavit
2007

. . _Null predecessor
ACC]LIII"IF\Q means lock not

acquiring released or

aborted
=
T

BROWN Art of Multiprocessor 194

Programming® Herlihy-Shavit
2007

Acquiring

acquiring

e

Swap .—>||'
L[4

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

195

Acquiring

acquiring

=
= |

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

196

Acquired
locked

Pointer to
AVAILABLE means
lock is free.

0O

=

= |

S
BROWN Art of Multiprocessor 197

Programming® Herlihy-Shavit
2007

Normal Case

locked spinning spinning
=

Null means lock is
not free & request
not aborted

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

One Thread Aborts

locked

=
—|

Timed out spihning

i~
-

Art of Multiprocessor 199

BROWN
S B Programming® Herlihy-Shavit

2007

Successor Notices

locked Timed out spinning
I I
®
@®

Non-Null means
predecessor
aborted

S
BROWN Art of Multiprocessor 200

Programming® Herlihy-Shavit
2007

Recycle Predecessor's Node

locked spinning

i i~
—>.->||. .->||.

S
BROWN Art of Multiprocessor 201

Programming® Herlihy-Shavit
2007

Spin on Earlier Node

Iocked spinning

=

-

S
BROWN Art of Multiprocessor 202

Programming® Herlihy-Shavit
2007

Spin on Earlier Node

released spinning

/

The lock is now
mine

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Time-out Lock

public class TOLock implements Lock {
static Qnode AVAILABLE
= new Qnode();
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode;

BROWN Art of Multiprocessor 204

Programming® Herlihy-Shavit
2007

Time-out Lock

static Qnode AVAILABLE
= new Qnode();

1

Distinguished node to
signify free lock

S
BROWN Art of Multiprocessor 205

Programming® Herlihy-Shavit
2007

Time-out Lock

[Atom'i cReference<Qnode> tail;]

Tail of the queue

S
BROWN Art of Multiprocessor 206

Programming® Herlihy-Shavit
2007

Time-out Lock

ThreadLocal<Qnode> myNode;

Remember my node ...

S
BROWN Art of Multiprocessor 207

Programming® Herlihy-Shavit
2007

Time-out Lock

public boolean lock(long timeout) {
Qnode gnode = new Qnode();
myNode. set(gnode) ;
qgnode.prev = null;
Qnode myPred = tail.getAndSet(qnode);
if (myPred== null
|| myPred.prev == AVAILABLE) {
return true;

BROWN Art of Multiprocessor 208

Programming® Herlihy-Shavit
2007

Time-out Lock

anode gnode = new Qnode(Q); R
myNode.set(qnode) ;
anode.prev = null;

Create & initialize node

S
BROWN Art of Multiprocessor 209

Programming® Herlihy-Shavit
2007

Time-out Lock

[Qnode myPred = tai1.getAndSet(qnodeJ;

Swap with tail

S
BROWN Art of Multiprocessor 210

Programming® Herlihy-Shavit
2007

Time-

out Lock

-
if (myPred == null
|| myPred.prev
return true;

\

== AVAILABLE)| {

If predecessor absent or
released, we are done

BROWN Art of Multiprocessor 211
&P Programming® Herlihy-Shavit

2007

Time-out Lock

Tong start = now();
while (now()- start < timeout) {
Qnode predPred = myPred.prev;
if (predPred == AVAILABLE) {
return true;
} else if (predpred != null) {
myPred = predPred;

BROWN Art of Multiprocessor 212

Programming® Herlihy-Shavit
2007

Time-out Lock

Tong start = now();
while (nhow()- start < timeout) {

Keep trying for a while ...

S
BROWN Art of Multiprocessor 213

Programming® Herlihy-Shavit
2007

Time-out Lock

| Qnode predpred = myPred.prev;

Spin on predecessor's
prev field

S
BROWN Art of Multiprocessor 214

Programming® Herlihy-Shavit
2007

Time-out Lock

[T: (predPred == AVAILABLE) {
return true;

Predecessor released lock

S
BROWN Art of Multiprocessor 215

Programming® Herlihy-Shavit
2007

Time-out Lock

[} else if (predpred != null)
myPred = predPred;

Predecessor aborted,
advance one

S
BROWN Art of Multiprocessor 216

Programming® Herlihy-Shavit
2007

Time-out Lock

if (ltail.compareAndSet(qnode, myPred))
gnode.prev = myPred;
return false;

=TI
=

e EROWN Art of Multiprocessor
q Programming® Herlihy-Shavit
2007

217

Time-out Locks

if (!tail.compareAndSet(qnode, myPred))
gnode.prev = myPred;

Do I have a successor? If CAS

fails: I do have a successor,
tell it about myPred

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

218

Time-out Locks

[qnode.prev = myPred:
return false;

If CAS succeeds: no successor,
simply return false

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

219

Time-Out Unlock

public void unlock() {
Qnode gnode = myNode.get();
if (!tail.compareAndset(qnode, null))
gnode.prev = AVAILABLE;

BROWN Art of Multiprocessor 220

Programming® Herlihy-Shavit
2007

Time-out Unlock

if (!tail.compareAndset(qnode, null))
gnode.prev = AVAILABLE;

If CAS failed: exists
successor, notify successor
It can enter

S
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

221

Timing-out Lock

[if (!tail.compareAndset(qnode, null))]

N

CAS successful: set tail to
null, no clean up since no
successor waiting

S
BROWN Art of Multiprocessor 222

Programming® Herlihy-Shavit
2007

One Lock To Rule Them All?

- TTAS+Backoff, CLH, MCS, Tolock...
* Each better than others in some way
» There is nho one solution

* Lock we pick really depends on:
- the application
- the hardware
- which properties are important

ofa BROWN Art of Multiprocessor 223

. (2 Programming® Herlihy-Shavit
2007

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

S
s

ofa BROWN Art of Multiprocessor 224
&P Programming® Herlihy-Shavit
2007

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

