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The Five-Fold Path

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

e
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Another Fundamental Problem

* We told you about
- Sets implemented using linked lists

* Next: queues

- Next: stacks
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Queues & Stacks

* Both: pool of items

- Queue

- enq() & deq()
- First-in-first-out (FIFO) order
+ Stack

- push() & pop()
- Last-in-first-out (LIFO) order
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Bounded vs Unbounded

- Bounded
- Fixed capacity
- Good when resources an issue

» Unbounded
- Holds any number of objects
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Blocking vs Non-Blocking

* Problem cases:

- Removing from empty pool

- Adding to full (bounded) pool
» Blocking

- Caller waits until state changes
* Non-Blocking

- Method throws exception
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This Lecture

* Bounded, Blocking, Lock-based Queue

» Unbounded, Non-Blocking, Lock-free
Queue

*+ ABA problem

» Unbounded Non-Blocking Lock-free
Stack

- Elimination-Backoff Stack
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oo BROWN

Queue: Concurrency

eng() and deq()
work at different
ends of the object
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Concurrency

: :%
Challenge: what if
the queue is empty

or full?
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Bounded Queue

r
tail
Sentinel
. J
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Bounded Queue

First actual item

-
head
tail

\_ y,

&
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Bounded Queue

p
- —EB— N
tail
deqlock
Lock out other
deq() calls
G J
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Bounded Queue

-
head
tail
deqlock
enqglock
EL Lock out other
eng() calls
. J
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Not Done Yet

p
. }—E3— BN
tail
deqLockﬁ~m>
enqglock g
Need to tell
whether queue is
full or empty
\_ J
BROWN Art of Multiprocessor 14

Programming® Herlihy-Shavit
2007



Not Done Yet

Permission to enqueue 8 items
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Not Done Yet

permits 6
\ Incremented by deq()

Decremented by enq()

.
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-
head
tail
deqlock
enqglock

permits
. J
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Enqueuer

Ol +— [N

Lock englock
O
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Enqueuer

=TI
=
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Enqueuer

-
head
tail
deqlock
No need to
enqlLock lock tail
permits
. J
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Enqueuer

r
tail
deqlock
enqglock
Enqueue Node
permits
. J
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Enqueuer

getAndDecrement()

&2
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Enqueuer

o

permits

Release lock

.
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Enqueuer

-
head
tail
deqlock
enqLock If queue was empty,
permits 6 notify waiting
dequeuers
. J
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Unsuccesful Enqueuer

-
head
tail

deqlock

enqglock

permits

o=
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Dequeuer

-
tail
deqlock -
enqglock
| Lock deqlock
permits
. J
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Dequeuer

( ==
. )
tail —
deqlock
\\\
engLock v, Read sentinel's
| ' next field
permits \
. y,
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Dequeuer

-
head
tail
deqlock
I
enqLock 1 Read value
I
|
permits ’I
\_ J
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Make first Node
Dequeuer

hew sentinel

r
head
tail
enqglock
permits
. J
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Dequeuer

G
tail
deqlock

englock

permits

Release
deqlock

v
=5. =
&
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Dequeuer

-
head [0‘ h

tail

deqlock [0‘ ]
Eogiee: Increment
permits 6 permits

O
_J

v
=5. =
&
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Unsuccesful Dequeuer

f =
head @B I
tail % \\'
deglLock ¥ \

\y

enqLock \\‘\ Read sentinel's
ermits '\ hnext field

- y
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Bounded Queue

public class BoundedQueue<T> {
ReentrantLock engLock, degLock;
Ccondition notEmptyCondition, notFullCondition;
AtomicInteger permits;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
degLock = new ReentrantLock();
notEmptyCondition = deqLock.newCondition();

=TI
=
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Bounded Queue

| ReentrantLock engLock, deqLock;

Enq & deq locks

&2
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Digression: Monitor Locks

- The ReentrantLock is a monitor

» Allows blocking on a condition
rather than spinning

» Threads:

- acquire and release lock
- wait on a condition

vy,

5[5 BROWN Art of Multiprocessor 34

. (2 Programming® Herlihy-Shavit
2007



The Java Lock Interface

[void TockQ;

Acquire lock
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The Java Lock Interface

(void unlock; oo Release lock
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The Java Lock Interface

|

boolean tryLock();
boolean tryLock(long time, TimeuUnit unit);

Try for lock, but not too hard
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The Java Lock Interface

[condition newCondition();

Create condition to wait on
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The Java Lock Interface

[v0'id TockInterruptibly() throws Inter'r'uptedExcept'ion;]

Guess what this method does?

&2
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Lock Conditions

public interface Condition {
void await():
boolean await(long time, Timeunit unit);

void signalQ:
void signalAll(Q);

}
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Lock Conditions

[void await(Q): J

boolean await(long time, Timeunit unit);

L—

Release lock and
wait on condition

&2
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Lock Conditions

| void signalQ;

Wake up one waiting thread
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Lock Conditions

[void signalAll1();

Wake up all waiting threads
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Await

g.await(Q

Releases lock associated with g
Sleeps (gives up processor)
Awakens (resumes running)

* Reacquires lock & returns

e
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Signal

g.signalQ;

» Awakens one waiting thread
- Which will reacquire lock
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Signal All

g.signalAll();

+ Awakens all waiting threads
- Which will each reacquire lock
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A Monitor Lock

waiting room

AN A

Critical Section
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Unsuccessful Deq

waiting room

[

Critical Section
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Another One

waiting room

H B

Critical Section
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Enqueur to the Rescue

l% waiting rosm

: S
R
+ (
O
Q |
(V)] )
O
.
yrm
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Monitor Signallina

waiting room

-
_ //

= e
2
-
O
Q0
v
8
‘= O Awakend thread
S might still lose lock to
outside contender...
oI5 BROWN Art of Multiprocessor 51
& Programming® Herlihy-Shavit

2007



Dequeurs Signalled

waiting rosm

: S
2
+ (
O
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Vp) )
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Dequeurs Signalled

waiting roem

O[]

Critical Section
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Dollar Short + Day Late

waiting room

&[]

-
2
o
O
Q0
v
K|
=
x
9
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Lost Wake-Ub

waiting room

g S

% ( sugnal ()
0 I

(Vp] )
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Lost Wake-Ub

1% waiting room

-
o
o
O
Q0
v
I
B
£ OO0
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Lost Wake-Ub

waiting room

O
O

Critical Section
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Lost Wake-Up

waiting room
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What's Wrong Here?

waiting rosm

&[]
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O
BROWN Art of Multiprocessor 59

Programming® Herlihy-Shavit
2007



Java Synchronized Methods

public class Queue<T> {

int head = 0, tail = 0;
T[QSIZE] items;

public synchronized T deq() {
while (tail - head == 0)
this.wait();
T result = items[head % QSIZE]; head++;
this.notifyAl1(Q);
return result;

}
1y
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Java Synchronized Methods

[public class Queue<T>

Each object has an implicit
lock with an implicit condition
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Java Synchronized Methods

Lock on entry,

unlock on return
| synchronized
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Java Synchronized Methods

Wait on implicit

condition
[this.wait(Q);
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Java Synchronized Methods

Signal all threads waiting
on condition

[ this.notifyAl1Q);
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(Pop!) The Bounded Queue

public class BoundedQueue<T> {
ReentrantLock engLock, degLock;
Ccondition notEmptyCondition, notFullCondition;
AtomicInteger permits;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
degLock = new ReentrantLock();
notEmptyCondition = deqLock.newCondition();
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Bounded Queue Fields

| ReentrantLock engLock, deqLock;

Enq & deq locks

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

66



Bounded Queue Fields

Enq lock’'s associated
condition

notFul ICondition = enqLock.newCondition(S;l

e
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Bounded Queue Fields

| AtomicInteger %ﬁts;]

Num permits: O to capacity
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Bounded Queue Fields

N :——— Head and Tail

|

Node head;
Node tail;

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

69



Eng Method Part One

public void enq(T x) {
boolean mustwakeDequeuers = false;
engLock. lock();
try {
while (permits.get() == 0)
notFullCondition.await();
Node e = new Node(X);
tail.next = e;
tail = e;
if (permits.getAndDecrement() == capacity)
mustwakeDequeuers = true;
} finally {
engLock.unlock(Q);
}

.
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Eng Method Part One

[ enqLock.TockQ |

~——_  Lock and unlock

enq lock
} finally {
enqLock.unlock(Q);
}
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Eng Method Part One

while (permits.get() == 0)
notFullCondition.await();

If queue is full, patiently
await further instructions ...
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Be Afraid

while (permits.get() == 0)
notFullCondition.await();

How do we know the
permits field won't change?
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Eng Method Part One

[

Node e = new Node(X);
tail.next = e;
tail = e;

Add new node
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Eng Method Part One

|

if (permits.getAndDecrement() == capacity)
mustwakeDequeuers = true;

N

If queue was empty, wake
frustrated dequeuers
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Eng Method Part Deux

public void enq(T x) {

if (mustwakeDequeuers) {
degLock.lock(Q);
try {
notEmptyCondition.signalAll1();
} finally {
degLock.unlock(Q);
}
}
}
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Eng Method Part Deux

[1f (mustwakeDequeuers) |{

Are there dequeuers to be signaled?
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Eng Method Part Deux

Lock and unlock

( deq lock
| degLock.lockQ;

[deqLock.un1ock()
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Eng Method Part Deux

Signal dequeuers that
queue no longer empty

’%‘i tion.signalAll(Q; ]

&2
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The Enqg() & Deq() Methods

- Share no locks
- That's good
- But do share an atomic counter

- Accessed on every method call
- That's not so good

- Can we alleviate this bottleneck?
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Split the Counter

* The enq() method

- Decrements only
- Cares only if value is zero

* The deq() method

- Increments only
- Cares only if value is capacity
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Split Counter

» Enqueuer decrements enqSidePermits
+ Dequeuer increments deqSidePermits

* When enqueuer runs out
- Locks deqlock
- Transfers permits

» Intermittent synchronization
- Not with each method call
- Need both locks! (careful ...)
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A Lock-Free Queue

r
tail
Sentinel
. J
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Compare and Set
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-
head
tail

\_

&

BROWN

Enqueue

Ol +— [N

;nq@)}
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Enqueue

(
tail
. J
BROWN Art of Multiprocessor 86

Programming® Herlihy-Shavit
2007



Logical Enqueue

r
tail
. J
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Physical Enqueue

Enqueue Node

@
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Enqueue

* These two steps are not atomic

+ The tail field refers to either
- Actual last Node (good)
- Penultimate Node (hot so good)

* Be prepared!
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Enqueue

* What do you do if you find
- A trailing tail?
+ Stop and fix it
- If tail node has non-null next field
- CAS the queue's tail field to tail.next

- As in the universal construction
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When CASs Fail

» During logical enqueue
- Abandon hope, restart
- Still lock-free (why?)

» During physical enqueue
- Ignore it (why?)
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Dequeuer

r
head
tail
[
/ Read value
. J
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Make first Node
new sentinel

Dequeuer

. J

&2
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Memory Reuse?

- What do we do with nodes after we
dequeue them?

» Java: let garbage collector deal?

» Suppose there is no GC, or we prefer
nhot to use it?
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Dequeuer
¢ (@

Can recycle

. J

&2
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Simple Solution

Each thread has a free list of unused
queue nodes

Allocate node: pop from list
Free node: push onto list
Deal with underflow somehow ...

vy,
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Why Recycling is Hard

Want to
redirect
tail

] _— L] — ] _— L] — ] _— L] — ]
*
L]
/,

. — ] _— L] — ] _— L] — ] _— L] — L]

S
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Both Nodes Reclaimed

head tail

CaECEN
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One Node Recycled

I head tail I

S
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Why Recycling is Hard

S :
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Final State

- Bad news

zOMG what went wrong?

. — ] _— L] — ] _— L] — ] _— L] — ]
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The Dreaded ABA Problem

Head pointer has value A
Thread reads value A

S :
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Dreaded ABA continued

@ Head pointer has value B
Node A freed =

S :
BROWN Art of Multiprocessor 103

Programming® Herlihy-Shavit
2007




Dreaded ABA continued

w Head pointer has value A again
Node A recycled & reinitialized
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Dr'eaded ABA continued

CAS succeeds because pointer matches
even though pointer's meaning has changed

o -z

S
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The Dreaded ABA Problem

» Is a result of CAS() semantics
- T blame Sun, Intel, AMD, ..
+ Not with Load-Locked/Store-
Conditional
- Good for IBM?

vy,
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Dreaded ABA - A Solution

* Tag each pointer with a counter
» Unique over lifetime of node
* Pointer size vs word size issues

* Overflow?
- Don't worry be happy?
- Bounded tags?

+ AtomicStampedReference class

o,
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Atomic Stamped Reference

« AtomicStampedReference class

— Java.util.concurrent.atomic package

Can get reference and stamp
atomically, details soon

f

.
‘Laddress] [ S
\_

Reference ——

Stamp

o,
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Summary

We saw both lock-based and lock-
free implementations of

queues

Don't be quick to declare a data
structure inherently sequential

- Linearizable stack is not inherently
sequential

ABA is a real problem, pay attention
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SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sug )ests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
{o

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission

from the copyright holder.

Nothing in this license impairs or restricts the author's moral

rights.
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