Concurrent Queues

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

The Five-Fold Path

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

e

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

Another Fundamental Problem

* We told you about
- Sets implemented using linked lists

* Next: queues

- Next: stacks

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

Queues & Stacks

* Both: pool of items

- Queue

- enq() & deq()
- First-in-first-out (FIFO) order
+ Stack

- push() & pop()
- Last-in-first-out (LIFO) order

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Bounded vs Unbounded

- Bounded
- Fixed capacity
- Good when resources an issue

» Unbounded
- Holds any number of objects

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

Blocking vs Non-Blocking

* Problem cases:

- Removing from empty pool

- Adding to full (bounded) pool
» Blocking

- Caller waits until state changes
* Non-Blocking

- Method throws exception

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

This Lecture

* Bounded, Blocking, Lock-based Queue

» Unbounded, Non-Blocking, Lock-free
Queue

*+ ABA problem

» Unbounded Non-Blocking Lock-free
Stack

- Elimination-Backoff Stack

ofa BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit
2007

oo BROWN

Queue: Concurrency

eng() and deq()
work at different
ends of the object

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Concurrency

: :%
Challenge: what if
the queue is empty

or full?
o2l BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

2007

Bounded Queue

r
tail
Sentinel
. J
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

10

Bounded Queue

First actual item

-
head
tail

_ y,

&

BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

11

Bounded Queue

p
- —EB— N
tail
deqlock
Lock out other
deq() calls
G J
BROWN Art of Multiprocessor 12

Programming® Herlihy-Shavit
2007

Bounded Queue

-
head
tail
deqlock
enqglock
EL Lock out other
eng() calls
. J
BROWN Art of Multiprocessor 13

Programming® Herlihy-Shavit
2007

Not Done Yet

p
. }—E3— BN
tail
deqLockﬁ~m>
enqglock g
Need to tell
whether queue is
full or empty
_ J
BROWN Art of Multiprocessor 14

Programming® Herlihy-Shavit
2007

Not Done Yet

Permission to enqueue 8 items

BROWN Art of Multiprocessor 15

Programming® Herlihy-Shavit
2007

Not Done Yet

permits 6
\ Incremented by deq()

Decremented by enq()

.
BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

16

-
head
tail
deqlock
enqglock

permits
. J
BROWN
E

Enqueuer

Ol +— [N

Lock englock
O

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

17

Enqueuer

=TI
=

2j5 BROWN Art of Multiprocessor 18
S B Programming® Herlihy-Shavit
2007

Enqueuer

-
head
tail
deqlock
No need to
enqlLock lock tail
permits
. J
25 BROWN Art of Multiprocessor 19
@ e Programming® Herlihy-Shavit

2007

Enqueuer

r
tail
deqlock
enqglock
Enqueue Node
permits
. J
5j5 BROWN Art of Multiprocessor 20
&P Programming® Herlihy-Shavit

2007

Enqueuer

getAndDecrement()

&2
BROWN Art of Multiprocessor 21

Programming® Herlihy-Shavit
2007

Enqueuer

o

permits

Release lock

.

&2
BROWN Art of Multiprocessor 22

Programming® Herlihy-Shavit
2007

Enqueuer

-
head
tail
deqlock
enqLock If queue was empty,
permits 6 notify waiting
dequeuers
. J
BROWN Art of Multiprocessor 23

Programming® Herlihy-Shavit
2007

Unsuccesful Enqueuer

-
head
tail

deqlock

enqglock

permits

o=

BROWN Art of Multiprocessor 24

Programming® Herlihy-Shavit
2007

Dequeuer

-
tail
deqlock -
enqglock
| Lock deqlock
permits
. J
25 BROWN Art of Multiprocessor 25
€5 Programming® Herlihy-Shavit

2007

Dequeuer

(==
.)
tail —
deqlock
\\\
engLock v, Read sentinel's
| ' next field
permits \
. y,
2[5 BROWN Art of Multiprocessor 26
S Programming® Herlihy-Shavit

2007

Dequeuer

-
head
tail
deqlock
I
enqLock 1 Read value
I
|
permits ’I
_ J
BROWN Art of Multiprocessor 27

Programming® Herlihy-Shavit
2007

Make first Node
Dequeuer

hew sentinel

r
head
tail
enqglock
permits
. J
BROWN Art of Multiprocessor 28

Programming® Herlihy-Shavit
2007

Dequeuer

G
tail
deqlock

englock

permits

Release
deqlock

v
=5. =
&

ofa BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit
2007

@

Dequeuer

-
head [0‘ h

tail

deqlock [0‘]
Eogiee: Increment
permits 6 permits

O
_J

v
=5. =
&

%f%l BROWN Art of Multiprocessor 30
@ Programming® Herlihy-Shavit
2007

Unsuccesful Dequeuer

f =
head @B I
tail % \\'
deglLock ¥ \

\y

enqLock \\‘\ Read sentinel's
ermits '\ hnext field

- y

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Bounded Queue

public class BoundedQueue<T> {
ReentrantLock engLock, degLock;
Ccondition notEmptyCondition, notFullCondition;
AtomicInteger permits;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
degLock = new ReentrantLock();
notEmptyCondition = deqLock.newCondition();

=TI
=

o2 BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit
2007

32

Bounded Queue

| ReentrantLock engLock, deqLock;

Enq & deq locks

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

33

Digression: Monitor Locks

- The ReentrantLock is a monitor

» Allows blocking on a condition
rather than spinning

» Threads:

- acquire and release lock
- wait on a condition

vy,

5[5 BROWN Art of Multiprocessor 34

. (2 Programming® Herlihy-Shavit
2007

The Java Lock Interface

[void TockQ;

Acquire lock

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

35

The Java Lock Interface

(void unlock; oo Release lock

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

36

The Java Lock Interface

|

boolean tryLock();
boolean tryLock(long time, TimeuUnit unit);

Try for lock, but not too hard

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

37

The Java Lock Interface

[condition newCondition();

Create condition to wait on

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

38

The Java Lock Interface

[v0'id TockInterruptibly() throws Inter'r'uptedExcept'ion;]

Guess what this method does?

&2
BROWN Art of Multiprocessor 39

Programming® Herlihy-Shavit
2007

Lock Conditions

public interface Condition {
void await():
boolean await(long time, Timeunit unit);

void signalQ:
void signalAll(Q);

}

BROWN Art of Multiprocessor 40

Programming® Herlihy-Shavit
2007

Lock Conditions

[void await(Q): J

boolean await(long time, Timeunit unit);

L—

Release lock and
wait on condition

&2
BROWN Art of Multiprocessor 41

Programming® Herlihy-Shavit
2007

Lock Conditions

| void signalQ;

Wake up one waiting thread

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Lock Conditions

[void signalAll1();

Wake up all waiting threads

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Await

g.await(Q

Releases lock associated with g
Sleeps (gives up processor)
Awakens (resumes running)

* Reacquires lock & returns

e

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

44

Signal

g.signalQ;

» Awakens one waiting thread
- Which will reacquire lock

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

45

Signal All

g.signalAll();

+ Awakens all waiting threads
- Which will each reacquire lock

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

46

oo BROWN

A Monitor Lock

waiting room

AN A

Critical Section

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

47

BROWN

Unsuccessful Deq

waiting room

[

Critical Section

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

48

s
@] BROWN

Another One

waiting room

H B

Critical Section

Art of Multiprocessor 49

Programming® Herlihy-Shavit
2007

Enqueur to the Rescue

l% waiting rosm

: S
R
+ (
O
Q |
(V)])
O
.
yrm
g O
QO
BROWN Art of Multiprocessor 50

Programming® Herlihy-Shavit
2007

Monitor Signallina

waiting room

-
_ //

= e
2
-
O
Q0
v
8
‘= O Awakend thread
S might still lose lock to
outside contender...
oI5 BROWN Art of Multiprocessor 51
& Programming® Herlihy-Shavit

2007

Dequeurs Signalled

waiting rosm

: S
2
+ (
O
v |
Vp))
_U
= i
yrm
= O
QO
BROWN Art of Multiprocessor 52

Programming® Herlihy-Shavit
2007

s
@] BROWN

Dequeurs Signalled

waiting roem

O[]

Critical Section

Art of Multiprocessor 53

Programming® Herlihy-Shavit
2007

Dollar Short + Day Late

waiting room

&[]

-
2
o
O
Q0
v
K|
=
x
9
QO
o2l BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

2007

54

BROWN

Lost Wake-Ub

waiting room

g S

% (sugnal ()
0 I

(Vp])

K=

9

-

+ ©

O

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

95

Lost Wake-Ub

1% waiting room

-
o
o
O
Q0
v
I
B
£ OO0
QO
o2l BROWN Art of Multiprocessor
@ Programming® Herlihy-Shavit

2007

o

BROWN

Lost Wake-Ub

waiting room

O
O

Critical Section

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Y

Lost Wake-Up

waiting room

c o
2
-
O
Q
Vp)
K=
=
y
S
S
L P OWN Art of Multiprocessor
q Programming® Herlihy-Shavit

2007

What's Wrong Here?

waiting rosm

&[]

[-
O
gt
(@)
Q
)
o
£l O
gt
C
O
BROWN Art of Multiprocessor 59

Programming® Herlihy-Shavit
2007

Java Synchronized Methods

public class Queue<T> {

int head = 0, tail = 0;
T[QSIZE] items;

public synchronized T deq() {
while (tail - head == 0)
this.wait();
T result = items[head % QSIZE]; head++;
this.notifyAl1(Q);
return result;

}
1y

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

60

Java Synchronized Methods

[public class Queue<T>

Each object has an implicit
lock with an implicit condition

2o BROWN Art of Multiprocessor 61

S B Programming® Herlihy-Shavit
2007

Java Synchronized Methods

Lock on entry,

unlock on return
| synchronized

ofa BROWN Art of Multiprocessor 62

S B Programming® Herlihy-Shavit
2007

Java Synchronized Methods

Wait on implicit

condition
[this.wait(Q);
o2l BROWN Art of Multiprocessor 63
&P Programming® Herlihy-Shavit

2007

Java Synchronized Methods

Signal all threads waiting
on condition

[this.notifyAl1Q);
o2l BROWN Art of Multiprocessor 64
&P Programming® Herlihy-Shavit

2007

(Pop!) The Bounded Queue

public class BoundedQueue<T> {
ReentrantLock engLock, degLock;
Ccondition notEmptyCondition, notFullCondition;
AtomicInteger permits;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
degLock = new ReentrantLock();
notEmptyCondition = deqLock.newCondition();

53 BROWN Art of Multiprocessor 65
@ Programming® Herlihy-Shavit
2007

Bounded Queue Fields

| ReentrantLock engLock, deqLock;

Enq & deq locks

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

66

Bounded Queue Fields

Enq lock’'s associated
condition

notFul ICondition = enqLock.newCondition(S;l

e
@] BROWN

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

67

Bounded Queue Fields

| AtomicInteger %ﬁts;]

Num permits: O to capacity

BROWN Art of Multiprocessor 68

Programming® Herlihy-Shavit
2007

Bounded Queue Fields

N :——— Head and Tail

|

Node head;
Node tail;

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

69

Eng Method Part One

public void enq(T x) {
boolean mustwakeDequeuers = false;
engLock. lock();
try {
while (permits.get() == 0)
notFullCondition.await();
Node e = new Node(X);
tail.next = e;
tail = e;
if (permits.getAndDecrement() == capacity)
mustwakeDequeuers = true;
} finally {
engLock.unlock(Q);
}

.

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Eng Method Part One

[enqLock.TockQ |

~——_ Lock and unlock

enq lock
} finally {
enqLock.unlock(Q);
}
BROWN Art of Multiprocessor 71
S O Programming® Herlihy-Shavit

2007

Eng Method Part One

while (permits.get() == 0)
notFullCondition.await();

If queue is full, patiently
await further instructions ...

BROWN Art of Multiprocessor 72

Programming® Herlihy-Shavit
2007

Be Afraid

while (permits.get() == 0)
notFullCondition.await();

How do we know the
permits field won't change?

BROWN Art of Multiprocessor 73

Programming® Herlihy-Shavit
2007

Eng Method Part One

[

Node e = new Node(X);
tail.next = e;
tail = e;

Add new node

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

74

Eng Method Part One

|

if (permits.getAndDecrement() == capacity)
mustwakeDequeuers = true;

N

If queue was empty, wake
frustrated dequeuers

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

75

Eng Method Part Deux

public void enq(T x) {

if (mustwakeDequeuers) {
degLock.lock(Q);
try {
notEmptyCondition.signalAll1();
} finally {
degLock.unlock(Q);
}
}
}

BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

76

Eng Method Part Deux

[1f (mustwakeDequeuers) |{

Are there dequeuers to be signaled?

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

77

Eng Method Part Deux

Lock and unlock

(deq lock
| degLock.lockQ;

[deqLock.un1ock()

o2l BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

Eng Method Part Deux

Signal dequeuers that
queue no longer empty

’%‘i tion.signalAll(Q;]

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

79

The Enqg() & Deq() Methods

- Share no locks
- That's good
- But do share an atomic counter

- Accessed on every method call
- That's not so good

- Can we alleviate this bottleneck?

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

80

Split the Counter

* The enq() method

- Decrements only
- Cares only if value is zero

* The deq() method

- Increments only
- Cares only if value is capacity

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

81

Split Counter

» Enqueuer decrements enqSidePermits
+ Dequeuer increments deqSidePermits

* When enqueuer runs out
- Locks deqlock
- Transfers permits

» Intermittent synchronization
- Not with each method call
- Need both locks! (careful ...)

ofa BROWN Art of Multiprocessor 82
@ Programming® Herlihy-Shavit
2007

A Lock-Free Queue

r
tail
Sentinel
. J
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

e
@] BROWN

Compare and Set

25

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

84

-
head
tail

_

&

BROWN

Enqueue

Ol +— [N

;nq@)}

Art of Multiprocessor

Programming® Herlihy-Shavit
2007

85

Enqueue

(
tail
. J
BROWN Art of Multiprocessor 86

Programming® Herlihy-Shavit
2007

Logical Enqueue

r
tail
. J
BROWN Art of Multiprocessor 87

Programming® Herlihy-Shavit
2007

Physical Enqueue

Enqueue Node

@

o2l BROWN Art of Multiprocessor 88

S B Programming® Herlihy-Shavit
2007

Enqueue

* These two steps are not atomic

+ The tail field refers to either
- Actual last Node (good)
- Penultimate Node (hot so good)

* Be prepared!

ofa BROWN Art of Multiprocessor

S B Programming® Herlihy-Shavit
2007

89

Enqueue

* What do you do if you find
- A trailing tail?
+ Stop and fix it
- If tail node has non-null next field
- CAS the queue's tail field to tail.next

- As in the universal construction

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

90

When CASs Fail

» During logical enqueue
- Abandon hope, restart
- Still lock-free (why?)

» During physical enqueue
- Ignore it (why?)

ofa BROWN Art of Multiprocessor

. (2 Programming® Herlihy-Shavit
2007

91

Dequeuer

r
head
tail
[
/ Read value
. J
BROWN Art of Multiprocessor 92

Programming® Herlihy-Shavit
2007

Make first Node
new sentinel

Dequeuer

. J

&2
BROWN Art of Multiprocessor

Programming® Herlihy-Shavit
2007

Memory Reuse?

- What do we do with nodes after we
dequeue them?

» Java: let garbage collector deal?

» Suppose there is no GC, or we prefer
nhot to use it?

ofa BROWN Art of Multiprocessor 94

. (2 Programming® Herlihy-Shavit
2007

Dequeuer
¢ (@

Can recycle

. J

&2
BROWN Art of Multiprocessor 95

Programming® Herlihy-Shavit
2007

Simple Solution

Each thread has a free list of unused
queue nodes

Allocate node: pop from list
Free node: push onto list
Deal with underflow somehow ...

vy,

5[5 BROWN Art of Multiprocessor 96

. (2 Programming® Herlihy-Shavit
2007

Why Recycling is Hard

Want to
redirect
tail

] _— L] —] _— L] —] _— L] —]
*
L]
/,

. —] _— L] —] _— L] —] _— L] — L]

S
BROWN Art of Multiprocessor 97

Programming® Herlihy-Shavit
2007

Both Nodes Reclaimed

head tail

CaECEN

Art of Multiprocessor 98

Programming® Herlihy-Shavit
2007

One Node Recycled

I head tail I

S
BROWN Art of Multiprocessor 99

Programming® Herlihy-Shavit
2007

. —] _— L]

Why Recycling is Hard

S :
BROWN Art of Multiprocessor 100

Programming® Herlihy-Shavit
2007

Final State

- Bad news

zOMG what went wrong?

. —] _— L] —] _— L] —] _— L] —]

S
BROWN Art of Multiprocessor 101

Programming® Herlihy-Shavit
2007

The Dreaded ABA Problem

Head pointer has value A
Thread reads value A

S :
BROWN Art of Multiprocessor 102

Programming® Herlihy-Shavit
2007

Dreaded ABA continued

@ Head pointer has value B
Node A freed =

S :
BROWN Art of Multiprocessor 103

Programming® Herlihy-Shavit
2007

Dreaded ABA continued

w Head pointer has value A again
Node A recycled & reinitialized

En o BROWN Art of Multiprocessor 104
q > Programming® Herlihy-Shavit
2007

Dr'eaded ABA continued

CAS succeeds because pointer matches
even though pointer's meaning has changed

o -z

S
BROWN Art of Multiprocessor 105

Programming® Herlihy-Shavit
2007

The Dreaded ABA Problem

» Is a result of CAS() semantics
- T blame Sun, Intel, AMD, ..
+ Not with Load-Locked/Store-
Conditional
- Good for IBM?

vy,

5[5 BROWN Art of Multiprocessor 106

. (2 Programming® Herlihy-Shavit
2007

Dreaded ABA - A Solution

* Tag each pointer with a counter
» Unique over lifetime of node
* Pointer size vs word size issues

* Overflow?
- Don't worry be happy?
- Bounded tags?

+ AtomicStampedReference class

o,

5[5 BROWN Art of Multiprocessor 107

. (2 Programming® Herlihy-Shavit
2007

Atomic Stamped Reference

« AtomicStampedReference class

— Java.util.concurrent.atomic package

Can get reference and stamp
atomically, details soon

f

.
‘Laddress] [S
_

Reference ——

Stamp

o,

5[5 BROWN Art of Multiprocessor 108

. (2 Programming® Herlihy-Shavit
2007

Summary

We saw both lock-based and lock-
free implementations of

queues

Don't be quick to declare a data
structure inherently sequential

- Linearizable stack is not inherently
sequential

ABA is a real problem, pay attention

ofa BROWN Art of Multiprocessor 109
&P Programming® Herlihy-Shavit
2007

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sug)ests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
{o

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission

from the copyright holder.

Nothing in this license impairs or restricts the author's moral

rights.
S5 BROWN Art of Multiprocessor 110
&P Programming® Herlihy-Shavit

2007

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

