
Shared Counters and 
Parallelism 

Companion slides for 
The Art of Multiprocessor 

Programming 
by Maurice Herlihy & Nir Shavit 



Art of Multiprocessor 
Programming 

2 

A Shared Pool 

• Put 
– Inserts object 

– blocks if full 

 

• Remove 
– Removes & returns 

an object 

– blocks if empty 

 

public interface Pool {     
  public void put(Object x); 
  public Object remove(); 
} 

Unordered set of objects 



Art of Multiprocessor 
Programming 

3 

put 

Simple Locking Implementation 

put 



Art of Multiprocessor 
Programming 

4 

put 

Simple Locking Implementation 

put 

Problem: hot-
spot contention 



Art of Multiprocessor 
Programming 

5 

put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put 



Art of Multiprocessor 
Programming 

6 

put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put Solution: 
Queue Lock 



Art of Multiprocessor 
Programming 

7 

put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put Solution: 
Queue Lock 

Solution
??? 



Art of Multiprocessor 
Programming 

8 

Counting Implementation 

19 

20 

21 

remove 

put 

19 

20 

21 



Art of Multiprocessor 
Programming 

9 

Counting Implementation 

19 

20 

21 

Only the counters 
are sequential 

remove 

put 

19 

20 

21 



Art of Multiprocessor 
Programming 

10 

Shared Counter 

3 

2 

1 

0 
1 2 
3 



Art of Multiprocessor 
Programming 

11 

Shared Counter 

3 

2 

1 

0 
1 2 
3 

No duplication 



Art of Multiprocessor 
Programming 

12 

Shared Counter 

3 

2 

1 

0 
1 2 
3 

No duplication 

No Omission 



Art of Multiprocessor 
Programming 

13 

Shared Counter 

3 

2 

1 

0 
1 2 
3 

Not necessarily 
linearizable 

No duplication 

No Omission 



Art of Multiprocessor 
Programming 

14 

Shared Counters 

• Can we build a shared counter with 
– Low memory contention, and 

– Real parallelism? 

• Locking 
– Can use queue locks to reduce contention 

– No help with parallelism issue … 



Art of Multiprocessor 
Programming 

15 

Software Combining Tree 
4 

Contention: 
All spinning local 

Parallelism: 
Potential n/log n 

speedup 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A(+2)  B(+3) C(+1) D(+4) E(+1) F(+3) G(+1) H(+2) 

Arrival :    1 3 2 1.1 2.1 1.3 3.1 2.3 

At each step, it takes 0.2 

Timeout to wait for 
partner : 0.9 

Tiebreak : right child wins 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A(+2)  B(+3) C(+1) D(+4) E(+1) F(+3) G(+1) H(+2) 

Arrival :    1 2.4 1.4 1.2 1.6 1.4 2.2 1.6 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A  B C D E F G H  . 



Art of Multiprocessor 
Programming 

19 

Combining Trees 

0 



Art of Multiprocessor 
Programming 

20 

Combining Trees 

0 

+3 



Art of Multiprocessor 
Programming 

21 

Combining Trees 

0 

+3 +2 



Art of Multiprocessor 
Programming 

22 

Combining Trees 

0 

+3 +2 
Two threads meet, 

combine sums 



Art of Multiprocessor 
Programming 

23 

Combining Trees 

0 

+3 +2 
Two threads meet, 

combine sums 

+5 



Art of Multiprocessor 
Programming 

24 

Combining Trees 

5 

+3 +2 

+5 

Combined sum 
added to root 



Art of Multiprocessor 
Programming 

25 

Combining Trees 

5 

+3 +2 

0 

Result returned 
to children 



Art of Multiprocessor 
Programming 

26 

Combining Trees 

5 

0 

0 
3 

0 Results returned to 
threads 



Art of Multiprocessor 
Programming 

27 

Devil in the Details 

• What if 
– threads don’t arrive at the same time? 

• Wait for a partner to show up? 
– How long to wait? 
– Waiting times add up … 

• Instead 
– Use multi-phase algorithm 
– Try to wait in parallel … 



Art of Multiprocessor 
Programming 

28 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 



Art of Multiprocessor 
Programming 

29 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

Nothing going on 



Art of Multiprocessor 
Programming 

30 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

1st thread ISO partner for 
combining, will return soon to 

check for 2nd thread 



Art of Multiprocessor 
Programming 

31 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

2nd thread arrived with 
value for combining 



Art of Multiprocessor 
Programming 

32 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

1st thread has completed 
operation & deposited result 

for 2nd thread 



Art of Multiprocessor 
Programming 

33 

Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

Special case: root node 



Art of Multiprocessor 
Programming 

34 

Node Synchronization 

• Short-term 
– Synchronized methods 

– Consistency during method call 

• Long-term 
– Boolean locked field 

– Consistency across calls 



Art of Multiprocessor 
Programming 

35 

Phases 

• Precombining 
– Set up combining rendez-vous 

• Combining 
– Collect and combine operations 

• Operation 
– Hand off to higher thread 

• Distribution 
– Distribute results to waiting threads 



Art of Multiprocessor 
Programming 

36 

Precombining Phase 

0 

Examine status  
IDLE 



Art of Multiprocessor 
Programming 

37 

Precombining Phase 

0 

0 
If IDLE, promise to 
return to look for 

partner  

FIRST 



Art of Multiprocessor 
Programming 

38 

Precombining Phase 

0 

At ROOT, turn 
back  

FIRST 



Art of Multiprocessor 
Programming 

39 

Precombining Phase 

0 

FIRST 



Art of Multiprocessor 
Programming 

40 

Precombining Phase 

0 

0 
SECOND 

If FIRST, I’m 
willing to combine, 
but lock for now 



Art of Multiprocessor 
Programming 

41 

Code 

• Tree class 
– In charge of navigation 

• Node class 
– Combining state 

– Synchronization state 

– Bookkeeping 



Art of Multiprocessor 
Programming 

42 

Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 



Art of Multiprocessor 
Programming 

43 

Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Start at leaf 



Art of Multiprocessor 
Programming 

44 

Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Move up while 
instructed to do so 



Art of Multiprocessor 
Programming 

45 

Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Remember where we 
stopped 



Art of Multiprocessor 
Programming 

46 

Precombining Node 
synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 



Art of Multiprocessor 
Programming 

47 

synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Precombining Node 

Short-term 
synchronization 



Art of Multiprocessor 
Programming 

48 

synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Synchronization 

Wait while node is 
locked 



Art of Multiprocessor 
Programming 

49 

synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Precombining Node 

Check combining status 



Art of Multiprocessor 
Programming 

50 

Node was IDLE 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

I will return to look for 
combining value 



Art of Multiprocessor 
Programming 

51 

Precombining Node 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Continue up the tree 



Art of Multiprocessor 
Programming 

52 

I’m the 2nd Thread 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

If 1st thread has promised to return, 
lock node so it won’t leave without me 



Art of Multiprocessor 
Programming 

53 

Precombining Node 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Prepare to deposit 2nd 
value 



Art of Multiprocessor 
Programming 

54 

Precombining Node 
synchronized boolean phase1() { 

 while (sStatus==SStatus.BUSY) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

End of phase 1, don’t 
continue up tree 



Art of Multiprocessor 
Programming 

55 

Node is the Root 
synchronized boolean phase1() { 

 while (sStatus==SStatus.BUSY) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

If root, phase 1 ends, 
don’t continue up tree 



Art of Multiprocessor 
Programming 

56 

Precombining Node 
synchronized boolean phase1() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Always check for 
unexpected values! 



Art of Multiprocessor 
Programming 

57 

Combining Phase 

0 

0 
SECOND 

1st thread locked 
out until 2nd 

provides value +3 



Art of Multiprocessor 
Programming 

58 

Combining Phase 

0 

0 
SECOND 

2nd thread deposits 
value to be combined, 

unlocks node, & waits … 
2 

+3 

zzz 



Art of Multiprocessor 
Programming 

59 

Combining Phase 

+3 +2 

+5 

SECOND 
2 

0 

1st thread moves up 
the tree with combined 

value … 

zzz 



Art of Multiprocessor 
Programming 

60 

Combining (reloaded) 

0 

0 2nd thread has not 
yet deposited value … 

FIRST 



Art of Multiprocessor 
Programming 

61 

Combining (reloaded) 

0 

+3 

FIRST 

1st thread is alone, 
locks out late 

partner 



Art of Multiprocessor 
Programming 

62 

Combining (reloaded) 

0 

+3 

+3 

FIRST 

Stop at root 



Art of Multiprocessor 
Programming 

63 

Combining (reloaded) 

0 

+3 

+3 

FIRST 

2nd thread’s phase 
1 visit locked out 



Art of Multiprocessor 
Programming 

64 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 



Art of Multiprocessor 
Programming 

65 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Start at leaf 



Art of Multiprocessor 
Programming 

66 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Add 1 



Art of Multiprocessor 
Programming 

67 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Revisit nodes 
visited in phase 1 



Art of Multiprocessor 
Programming 

68 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Accumulate combined 
values, if any 



Art of Multiprocessor 
Programming 

69 

node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Combining Navigation 

We will retraverse path in 
reverse order … 



Art of Multiprocessor 
Programming 

70 

Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Move up the tree 



Art of Multiprocessor 
Programming 

71 

Combining Phase Node 
synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 



Art of Multiprocessor 
Programming 

72 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Wait until node is unlocked 



Art of Multiprocessor 
Programming 

73 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Lock out late 
attempts to combine 



Art of Multiprocessor 
Programming 

74 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Remember our contribution 



Art of Multiprocessor 
Programming 

75 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Check status 



Art of Multiprocessor 
Programming 

76 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

1st thread is alone 



Art of Multiprocessor 
Programming 

77 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Node 

Combine with 
2nd thread 



Art of Multiprocessor 
Programming 

78 

Operation Phase 

5 

+3 +2 

+5 

Add combined value to root, 
start back down (phase 4) 

zzz 



Art of Multiprocessor 
Programming 

79 

Operation Phase (reloaded) 

5 

Leave value to 
be combined … SECOND 

2 



Art of Multiprocessor 
Programming 

80 

Operation Phase (reloaded) 

5 

+2 

Unlock, and 
wait … 

SECOND 
2 

zzz 



Art of Multiprocessor 
Programming 

81 

Operation Phase Navigation 
prior = stop.op(combined); 



Art of Multiprocessor 
Programming 

82 

Operation Phase Navigation 
prior = stop.op(combined); 

Get result of 
combining 



Art of Multiprocessor 
Programming 

83 

Operation Phase Node 
synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     



Art of Multiprocessor 
Programming 

84 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

At Root 

Add sum to root, 
return prior value 



Art of Multiprocessor 
Programming 

85 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Deposit value for 
later combining … 



Art of Multiprocessor 
Programming 

86 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Unlock node, notify 
1st thread 



Art of Multiprocessor 
Programming 

87 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Wait for 1st 
thread to deliver 

results 



Art of Multiprocessor 
Programming 

88 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Unlock node & 
return 



Art of Multiprocessor 
Programming 

89 

Distribution Phase 

5 

0 

zzz 

Move down with 
result SECOND 



Art of Multiprocessor 
Programming 

90 

Distribution Phase 

5 

zzz 

Leave result 
for 2nd thread 
& lock node 

SECOND 
2 



Art of Multiprocessor 
Programming 

91 

Distribution Phase 

5 

0 

zzz 

Move result 
back down tree SECOND 

2 



Art of Multiprocessor 
Programming 

92 

Distribution Phase 

5 

2nd thread awakens, 
unlocks, takes value IDLE 

3 



Art of Multiprocessor 
Programming 

93 

Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  



Art of Multiprocessor 
Programming 

94 

Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Traverse path in 
reverse order 



Art of Multiprocessor 
Programming 

95 

Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Distribute results to 
waiting 2nd threads 



Art of Multiprocessor 
Programming 

96 

Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Return result 
to caller 



Art of Multiprocessor 
Programming 

97 

Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 



Art of Multiprocessor 
Programming 

98 

Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 
No combining, unlock 

node & reset 



Art of Multiprocessor 
Programming 

99 

Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 

Notify 2nd thread 
that result is 

available 



Art of Multiprocessor 
Programming 

100 

Bad News: High Latency  

+2 +3 

+5 

Log n 



Art of Multiprocessor 
Programming 

101 

Good News: Real Parallelism  

+2 +3 

+5 

2 threads 

1 thread 



Art of Multiprocessor 
Programming 

102 

Throughput Puzzles 

• Ideal circumstances 
– All n threads move together, combine 

– n increments in O(log n) time 

• Worst circumstances 
– All n threads slightly skewed, locked out 

– n increments in O(n · log n) time 

 

 



Art of Multiprocessor 
Programming 

103 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 



Art of Multiprocessor 
Programming 

104 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

How many iterations 



Art of Multiprocessor 
Programming 

105 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Expected time between 
incrementing counter 



Art of Multiprocessor 
Programming 

106 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Take a number 



Art of Multiprocessor 
Programming 

107 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Pretend to work 
(more work, less concurrency) 



Art of Multiprocessor 
Programming 

108 

Performance Benchmarks 

• Alewife 
– NUMA architecture 

– Simulated 

• Throughput: 
– average number of 

inc operations                      
in 1 million cycle 
period. 

• Latency: 
– average number of 

simulator cycles                 
per inc operation. 

 



Art of Multiprocessor 
Programming 

109 

Performance 

Latency: Throughput: 
90000 

80000 

60000 

50000 

30000 

20000 

0 
0 50 100 150 200 250 300 

Splock 

Ctree[n] 

num of processors 

cycles  
per  
operation 

100 150 200 250 300 

90000 

80000 

70000 

60000 

50000 

40000 

30000 

20000 

Splock 

Ctree[n] 

operations 
per million 
cycles 

50 

10000 

0 
0 

num of processors 

work = 0 



Art of Multiprocessor 
Programming 

110 

Performance 

Latency: Throughput: 
90000 

80000 

60000 

50000 

30000 

20000 

0 
0 50 100 150 200 250 300 

Splock 

Ctree[n] 

num of processors 

cycles  
per  
operation 

100 150 200 250 300 

90000 

80000 

70000 

60000 

50000 

40000 

30000 

20000 

Splock 

Ctree[n] 

operations 
per million 
cycles 

50 

10000 

0 
0 

num of processors 

work = 0 



Art of Multiprocessor 
Programming 

111 

The Combining Paradigm 

• Implements any RMW operation 

• When tree is loaded 
– Takes 2 log n steps 
– for n requests 

• Very sensitive to load fluctuations: 
– if the arrival rates drop 
– the combining rates drop 
– overall performance deteriorates! 

 

 



Art of Multiprocessor 
Programming 

112 

Combining Load Sensitivity 

Notice Load Fluctuations 

T
h
ro

ug
h
pu

t 

processors 



Art of Multiprocessor 
Programming 

113 

Combining Rate vs Work 

0

10

20

30

40

50

60

70

1 2 4 8 16 31 48 64

W=100

W=1000

W=5000



Art of Multiprocessor 
Programming 

114 

Better to Wait Longer 

Short wait 

Indefinite wait 

Medium wait 

T
h
ro

ug
h
pu

t 

processors 



Art of Multiprocessor 
Programming 

115 

Conclusions 

• Combining Trees 
– Work well under high contention 

– Sensitive to load fluctuations 

– Can be used for getAndMumble() ops 

• Next 
– Counting networks 

– A different approach … 



Art of Multiprocessor 
Programming 

116 

A Balancer 

Input 
wires 

Output 
wires 



Art of Multiprocessor 
Programming 

117 

Tokens Traverse Balancers 

• Token i enters on any wire 

• leaves on wire i mod (fan-out) 



Art of Multiprocessor 
Programming 

118 

Tokens Traverse Balancers 



Art of Multiprocessor 
Programming 

119 

Tokens Traverse Balancers 



Art of Multiprocessor 
Programming 

120 

Tokens Traverse Balancers 



Art of Multiprocessor 
Programming 

121 

Tokens Traverse Balancers 



Art of Multiprocessor 
Programming 

122 

Tokens Traverse Balancers 

Arbitrary input 
distribution 

Balanced output 
distribution 



Art of Multiprocessor 
Programming 

123 

Smoothing Network 

k-smooth property 



Art of Multiprocessor 
Programming 

124 

Counting Network 

step property 



Art of Multiprocessor 
Programming 

125 

Counting Networks Count! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 



Art of Multiprocessor 
Programming 

126 

Bitonic[4] 



Art of Multiprocessor 
Programming 

127 

Bitonic[4] 



Art of Multiprocessor 
Programming 

128 

Bitonic[4] 



Art of Multiprocessor 
Programming 

129 

Bitonic[4] 



Art of Multiprocessor 
Programming 

130 

Bitonic[4] 



Art of Multiprocessor 
Programming 

131 

Bitonic[4] 



Art of Multiprocessor 
Programming 

132 

Counting Networks 

• Good for counting number of tokens 

• low contention 

• no sequential bottleneck 

• high throughput 

• practical networks depth nlog2



Art of Multiprocessor 
Programming 

133 

Bitonic[k] is not Linearizable 



Art of Multiprocessor 
Programming 

134 

Bitonic[k] is not Linearizable 



Art of Multiprocessor 
Programming 

135 

Bitonic[k] is not Linearizable 

2 



Art of Multiprocessor 
Programming 

136 

Bitonic[k] is not Linearizable 

2 

0 



Art of Multiprocessor 
Programming 

137 

Bitonic[k] is not Linearizable 

2 

0 

Problem is: 
•Red finished before Yellow started 
•Red took 2 
•Yellow took 0 



Art of Multiprocessor 
Programming 

138 

Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 



Art of Multiprocessor 
Programming 

139 

Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

state 



Art of Multiprocessor 
Programming 

140 

Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

Output connections 
to balancers 



Art of Multiprocessor 
Programming 

141 

Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

Get-and-complement 

 



Art of Multiprocessor 
Programming 

142 

Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 



Art of Multiprocessor 
Programming 

143 

Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Stop when we 
get to the 

end 



Art of Multiprocessor 
Programming 

144 

Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Flip state 



Art of Multiprocessor 
Programming 

145 

Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Exit on wire 



Art of Multiprocessor 
Programming 

146 

Alternative Implementation: 
Message-Passing  



Art of Multiprocessor 
Programming 

147 

Bitonic[2k] Schematic 

Bitonic[k] 

Bitonic[k] 

Merger[2k] 



Art of Multiprocessor 
Programming 

148 

Bitonic[2k] Layout 



Art of Multiprocessor 
Programming 

149 

Unfolded Bitonic Network 



Art of Multiprocessor 
Programming 

150 

Unfolded Bitonic Network 

Merger[8] 



Art of Multiprocessor 
Programming 

151 

Unfolded Bitonic Network 



Art of Multiprocessor 
Programming 

152 

Unfolded Bitonic Network 

Merger[4] 

Merger[4] 



Art of Multiprocessor 
Programming 

153 

Unfolded Bitonic Network 



Art of Multiprocessor 
Programming 

154 

Unfolded Bitonic Network 

Merger[2] 

Merger[2] 

Merger[2] 

Merger[2] 



Art of Multiprocessor 
Programming 

155 

Bitonic[k] Depth 

• Width k 

• Depth is (log2 k)(log2 k + 1)/2 



Art of Multiprocessor 
Programming 

156 

Merger[2k] 

Merger[2k] 



Art of Multiprocessor 
Programming 

157 

Merger[2k] Schematic 

Merger[k] 

Merger[k] 



Art of Multiprocessor 
Programming 

158 

Merger[2k] Layout 



Art of Multiprocessor 
Programming 

159 

Lemma 

If a sequence has the 
step property … 



Art of Multiprocessor 
Programming 

160 

Lemma 

So does its even 
subsequence 



Art of Multiprocessor 
Programming 

161 

Lemma 

And its odd 
subsequence 



Art of Multiprocessor 
Programming 

162 

Merger[2k] Schematic 

Merger[k] 

Merger[k] Bitonic[k] 

Bitonic[k] 

even 

even 



Art of Multiprocessor 
Programming 

163 

Proof Outline 

Outputs from Bitonic[k] Inputs to Merger[k] 

even 

odd 

odd 

even 



Art of Multiprocessor 
Programming 

164 

Proof Outline 

Inputs to Merger[k] 

even 

odd 

odd 

even 

Outputs of Merger[k] 



Art of Multiprocessor 
Programming 

165 

Proof Outline 

Outputs of Merger[k] Outputs of last layer 



Art of Multiprocessor 
Programming 

166 

Periodic Network Block 



Art of Multiprocessor 
Programming 

167 

Periodic Network Block 



Art of Multiprocessor 
Programming 

168 

Periodic Network Block 



Art of Multiprocessor 
Programming 

169 

Periodic Network Block 



Art of Multiprocessor 
Programming 

170 

Block[2k] Schematic 

Block[k] 

Block[k] 



Art of Multiprocessor 
Programming 

171 

Block[2k] Layout 



Art of Multiprocessor 
Programming 

172 

Periodic[8] 



Art of Multiprocessor 
Programming 

173 

Network Depth 

• Each block[k] has depth log2 k 

• Need log2 k blocks 

• Grand total of (log2 k)2 



Art of Multiprocessor 
Programming 

174 

Lower Bound on Depth 

Theorem: The depth of any width w counting 
network is at least Ω(log w). 

Theorem: there exists a counting network of 
θ(log w) depth. 

Unfortunately, proof is non-constructive and 
constants in the 1000s. 



Art of Multiprocessor 
Programming 

175 

Sequential Theorem 

• If a balancing network counts 
– Sequentially, meaning that 

– Tokens traverse one at a time 

• Then it counts 
– Even if tokens traverse concurrently 



Art of Multiprocessor 
Programming 

176 

Red First, Blue Second 

(2) 



Art of Multiprocessor 
Programming 

177 

Blue First, Red Second 

(2) 



Art of Multiprocessor 
Programming 

178 

Either Way 

Same balancer states 



Art of Multiprocessor 
Programming 

179 

Order Doesn’t Matter 

Same balancer states 

Same output 
distribution 



Art of Multiprocessor 
Programming 

180 

Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i = 0 < iters) { 

  i = fetch&inc(); 

  Thread.sleep(random() % work); 

 } 

} 



Art of Multiprocessor 
Programming 

181 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

Higher is better! 



Art of Multiprocessor 
Programming 

182 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

Higher is better! 



Art of Multiprocessor 
Programming 

183 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

Combining and counting 
are pretty close 



Art of Multiprocessor 
Programming 

184 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

But they beat the hell 
out of the competition! 



Art of Multiprocessor 
Programming 

185 

Saturation and Performance 

Undersaturated   P < w log w 

Saturated            P = w log w 

Oversaturated    P > w log w 

Optimal performance 



Art of Multiprocessor 
Programming 

186 

Throughput vs. Size 

Bitonic[16] 

Bitonic[4] 

Bitonic[8] 

Number processors 

T
h
ro

ug
h
pu

t 



Art of Multiprocessor 
Programming 

187 

Shared Pool 

Put 
counting 
network 

Remove 
counting 
network 



Art of Multiprocessor 
Programming 

188 

Put/Remove Network 

• Guarantees never: 
– Put waiting for item, while 

– Get has deposited item 

• Otherwise OK to wait 
– Put delayed while pool slot is full 

– Get delayed while pool slot is empty 



Art of Multiprocessor 
Programming 

189 

What About 

• Decrements 

• Adding arbitrary values 

• Other operations 
– Multiplication 

– Vector addition 

– Horoscope casting … 



Art of Multiprocessor 
Programming 

190 

First Step 

• Can we decrement as well as 
increment? 

• What goes up, must come down … 



Art of Multiprocessor 
Programming 

191 

Anti-Tokens 



Art of Multiprocessor 
Programming 

192 

Tokens & Anti-Tokens Cancel 



Art of Multiprocessor 
Programming 

193 

Tokens & Anti-Tokens Cancel 



Art of Multiprocessor 
Programming 

194 

Tokens & Anti-Tokens Cancel 

 



Art of Multiprocessor 
Programming 

195 

Tokens & Anti-Tokens Cancel 

As if nothing happened 



Art of Multiprocessor 
Programming 

196 

Tokens vs Antitokens 

• Tokens 
– read balancer 

– flip 

– proceed 

• Antitokens 
– flip balancer 

– read 

– proceed 



Art of Multiprocessor 
Programming 

197 

Pumping Lemma 

Keep pumping tokens through one wire 

Eventually, after Ω tokens, 
network repeats a state 



Art of Multiprocessor 
Programming 

198 

Anti-Token Effect 
token 

anti-token 



Art of Multiprocessor 
Programming 

199 

Observation 

• Each anti-token on wire i 
– Has same effect as Ω-1 tokens on wire i 

– So network still in legal state 

• Moreover, network width w divides Ω 
– So Ω-1 tokens  

 



Art of Multiprocessor 
Programming 

200 

Before Antitoken 



Art of Multiprocessor 
Programming 

201 

Balancer states as if … 

Ω-1 

Ω-1 is one 
brick shy of a 

load 



Art of Multiprocessor 
Programming 

202 

Post Antitoken 

Next token 
shows up here 



Art of Multiprocessor 
Programming 

203 

Implication 

• Counting networks with 
– Tokens (+1) 
– Anti-tokens (-1) 

• Give 
– Highly concurrent 
– Low contention 

• getAndIncrement + 
getAndDecrement methods 



Art of Multiprocessor 
Programming 

204 

Adding Networks 

• Combining trees implement  
– Fetch&add 

– Add any number, not just 1 

• What about counting networks? 



Art of Multiprocessor 
Programming 

205 

Fetch-and-add 

• Beyond getAndIncrement + 
getAndDecrement 

• What about getAndAdd(x)? 
– Atomically returns prior value 
– And adds x to value? 

• Not to mention 
– getAndMultiply 
– getAndFourierTransform?   



Art of Multiprocessor 
Programming 

206 

Bad News 

• If an adding network  
– Supports n concurrent tokens 

• Then every token must traverse 
– At least n-1 balancers 

– In sequential executions 



Art of Multiprocessor 
Programming 

207 

Uh-Oh 

• Adding network size depends on n 
– Like combining trees 

– Unlike counting networks 

• High latency 
– Depth linear in n 

– Not logarithmic in w 



Art of Multiprocessor 
Programming 

208 

Generic Counting Network 

+1 

+2 

+2 

2 

+2 

2 



Art of Multiprocessor 
Programming 

209 

First Token 

+1 

+2 

+2 

+2 

First token would visit green 
balancers if it runs solo 



Art of Multiprocessor 
Programming 

210 

Claim 

• Look at path of +1 token 

• All other +2 tokens must visit some 
balancer on +1 token’s path 



Art of Multiprocessor 
Programming 

211 

Second Token 

+1 

Takes 0 

+2 

+2 

+2 



Art of Multiprocessor 
Programming 

212 

Second Token 

Takes 0 
+2 

+1 

Takes 0 

They can’t both take zero! 

+2 

+2 



Art of Multiprocessor 
Programming 

213 

If Second avoids First’s Path 

• Second token 
– Doesn’t observe first 
– First hasn’t run 
– Chooses 0 

• First token 
– Doesn’t observe second 
– Disjoint paths 
– Chooses 0 



Art of Multiprocessor 
Programming 

214 

If Second avoids First’s Path 

• Because +1 token chooses 0 
– It must be ordered first 

– So +2 token ordered second 

– So +2 token should return 1 

• Something’s  wrong!  
 



Art of Multiprocessor 
Programming 

215 

Second Token 

+1 

+2 

Halt blue token before 
first green balancer 

+2 

+2 



Art of Multiprocessor 
Programming 

216 

Third Token 

+1 

Takes 0 
or 2 

+2 

+2 

+2 



Art of Multiprocessor 
Programming 

217 

Third Token 

+2 

+1 

Takes 0 
+2 

+2 

Takes 0 
or 2 

They can’t both take zero, 
and they can’t take 0 and 2! 



Art of Multiprocessor 
Programming 

218 

First,Second, & Third Tokens 
must be Ordered 

• Third (+2) token 
– Did not observe +1 token 

– May have observed earlier +2 token 

– Takes an even number 



Art of Multiprocessor 
Programming 

219 

First,Second, & Third Tokens 
must be Ordered 

• Because +1 token’s path is disjoint 
– It chooses 0 

– Ordered first 

– Rest take odd numbers 

• But last token takes an even number 

• Something’s wrong! 
 



Art of Multiprocessor 
Programming 

220 

Third Token 

+1 

+2 

+2 

+2 

Halt blue token before 
first green balancer 



Art of Multiprocessor 
Programming 

221 

Continuing in this way 

• We can “park” a token 
– In front of a balancer 

– That token #1 will visit 

• There are n-1 other tokens 
– Two wires per balancer 

– Path includes n-1 balancers! 



Art of Multiprocessor 
Programming 

222 

Theorem 

• In any adding network 
– In sequential executions 

– Tokens traverse at least n-1 balancers 

• Same arguments apply to 
– Linearizable counting networks 

– Multiplying networks 

– And others 



Art of Multiprocessor 
Programming 

223 

Clip Art 



Art of Multiprocessor 
Programming 

224 

            
This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 

suggests that the authors endorse you or your use of the 

work).  

– Share Alike. If you alter, transform, or build upon this work, 

you may distribute the resulting work only under the same, 

similar or a compatible license.  

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission 

from the copyright holder.  

• Nothing in this license impairs or restricts the author's moral 

rights.  

 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Diffracting Trees 



226 

A Simple Balancer 

Input 
wire 

Output 
wires 



227 

Tokens Traverse Balancers 

• Token i enters  

• leaves on wire i mod (fan-out) 



228 

Tokens Traverse Balancers 



229 

Tokens Traverse Balancers 



230 

Tokens Traverse Balancers 



231 

Tokens Traverse Balancers 



232 

Tokens Traverse Balancers 

Arbitrary input Balanced output 
distribution 



233 

Counting Tree 

Step property 



234 

Counting Tree Counts! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 



235 

Back to square 1 ! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 



236 

Introducing Diffracting Tree 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 

Prism 



237 

Diffracting Tree 

Prism No toggle 



238 

Diffracting Tree 

Prism  toggle 



239 

Diffracting Tree 

Prism  toggle 


