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A Shared Pool 

• Put 
– Inserts object 

– blocks if full 

 

• Remove 
– Removes & returns 

an object 

– blocks if empty 

 

public interface Pool {     
  public void put(Object x); 
  public Object remove(); 
} 

Unordered set of objects 
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put 

Simple Locking Implementation 

put 
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put 

Simple Locking Implementation 

put 

Problem: hot-
spot contention 
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put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put 
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put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put Solution: 
Queue Lock 
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put 

Simple Locking Implementation 

Problem: hot-
spot contention 

Problem: 
sequential 
bottleneck 

put Solution: 
Queue Lock 

Solution
??? 



Art of Multiprocessor 
Programming 

8 

Counting Implementation 

19 

20 

21 

remove 

put 

19 

20 

21 
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Counting Implementation 

19 

20 

21 

Only the counters 
are sequential 

remove 

put 

19 

20 

21 
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Shared Counter 

3 

2 

1 

0 
1 2 
3 
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Shared Counter 

3 

2 

1 

0 
1 2 
3 

No duplication 
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Shared Counter 

3 

2 

1 

0 
1 2 
3 

No duplication 

No Omission 
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Shared Counter 

3 

2 

1 

0 
1 2 
3 

Not necessarily 
linearizable 

No duplication 

No Omission 
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Shared Counters 

• Can we build a shared counter with 
– Low memory contention, and 

– Real parallelism? 

• Locking 
– Can use queue locks to reduce contention 

– No help with parallelism issue … 
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Software Combining Tree 
4 

Contention: 
All spinning local 

Parallelism: 
Potential n/log n 

speedup 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A(+2)  B(+3) C(+1) D(+4) E(+1) F(+3) G(+1) H(+2) 

Arrival :    1 3 2 1.1 2.1 1.3 3.1 2.3 

At each step, it takes 0.2 

Timeout to wait for 
partner : 0.9 

Tiebreak : right child wins 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A(+2)  B(+3) C(+1) D(+4) E(+1) F(+3) G(+1) H(+2) 

Arrival :    1 2.4 1.4 1.2 1.6 1.4 2.2 1.6 



Combining Tree 

3 6 5 

2 

4 

1 

0 

A  B C D E F G H  . 
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Combining Trees 

0 
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Combining Trees 

0 

+3 
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Combining Trees 

0 

+3 +2 
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Combining Trees 

0 

+3 +2 
Two threads meet, 

combine sums 
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Combining Trees 

0 

+3 +2 
Two threads meet, 

combine sums 

+5 
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Combining Trees 

5 

+3 +2 

+5 

Combined sum 
added to root 
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Combining Trees 

5 

+3 +2 

0 

Result returned 
to children 
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Combining Trees 

5 

0 

0 
3 

0 Results returned to 
threads 
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Devil in the Details 

• What if 
– threads don’t arrive at the same time? 

• Wait for a partner to show up? 
– How long to wait? 
– Waiting times add up … 

• Instead 
– Use multi-phase algorithm 
– Try to wait in parallel … 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

Nothing going on 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

1st thread ISO partner for 
combining, will return soon to 

check for 2nd thread 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

2nd thread arrived with 
value for combining 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

1st thread has completed 
operation & deposited result 

for 2nd thread 
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Combining Status 

enum CStatus{ 

 IDLE, FIRST, SECOND, DONE, ROOT}; 

Special case: root node 
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Node Synchronization 

• Short-term 
– Synchronized methods 

– Consistency during method call 

• Long-term 
– Boolean locked field 

– Consistency across calls 
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Phases 

• Precombining 
– Set up combining rendez-vous 

• Combining 
– Collect and combine operations 

• Operation 
– Hand off to higher thread 

• Distribution 
– Distribute results to waiting threads 
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Precombining Phase 

0 

Examine status  
IDLE 
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Precombining Phase 

0 

0 
If IDLE, promise to 
return to look for 

partner  

FIRST 



Art of Multiprocessor 
Programming 

38 

Precombining Phase 

0 

At ROOT, turn 
back  

FIRST 
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Precombining Phase 

0 

FIRST 
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Precombining Phase 

0 

0 
SECOND 

If FIRST, I’m 
willing to combine, 
but lock for now 
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Code 

• Tree class 
– In charge of navigation 

• Node class 
– Combining state 

– Synchronization state 

– Bookkeeping 
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Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 
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Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Start at leaf 
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Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Move up while 
instructed to do so 
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Precombining Navigation 
Node node = myLeaf; 

while (node.precombine()) { 

  node = node.parent; 

  } 

Node stop = node; 

Remember where we 
stopped 
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Precombining Node 
synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 
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synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Precombining Node 

Short-term 
synchronization 
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synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Synchronization 

Wait while node is 
locked 
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synchronized boolean precombine() { 

 while (locked) wait(); 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Precombining Node 

Check combining status 
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Node was IDLE 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

I will return to look for 
combining value 
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Precombining Node 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Continue up the tree 
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I’m the 2nd Thread 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

If 1st thread has promised to return, 
lock node so it won’t leave without me 
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Precombining Node 
synchronized boolean precombine() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Prepare to deposit 2nd 
value 



Art of Multiprocessor 
Programming 

54 

Precombining Node 
synchronized boolean phase1() { 

 while (sStatus==SStatus.BUSY) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

End of phase 1, don’t 
continue up tree 
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Node is the Root 
synchronized boolean phase1() { 

 while (sStatus==SStatus.BUSY) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

If root, phase 1 ends, 
don’t continue up tree 
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Precombining Node 
synchronized boolean phase1() { 

 while (locked) {wait();} 

 switch (cStatus) { 

  case IDLE: cStatus = CStatus.FIRST; 

             return true; 

  case FIRST: locked = true; 

              cStatus = CStatus.SECOND; 

              return false; 

  case ROOT: return false; 

  default: throw new PanicException() 

  } 

} 

Always check for 
unexpected values! 
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Combining Phase 

0 

0 
SECOND 

1st thread locked 
out until 2nd 

provides value +3 
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Combining Phase 

0 

0 
SECOND 

2nd thread deposits 
value to be combined, 

unlocks node, & waits … 
2 

+3 

zzz 
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Combining Phase 

+3 +2 

+5 

SECOND 
2 

0 

1st thread moves up 
the tree with combined 

value … 

zzz 
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Combining (reloaded) 

0 

0 2nd thread has not 
yet deposited value … 

FIRST 
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Combining (reloaded) 

0 

+3 

FIRST 

1st thread is alone, 
locks out late 

partner 
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Combining (reloaded) 

0 

+3 

+3 

FIRST 

Stop at root 
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Combining (reloaded) 

0 

+3 

+3 

FIRST 

2nd thread’s phase 
1 visit locked out 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Start at leaf 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Add 1 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Revisit nodes 
visited in phase 1 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Accumulate combined 
values, if any 
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node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Combining Navigation 

We will retraverse path in 
reverse order … 
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Combining Navigation 
node = myLeaf; 

int combined = 1; 

while (node != stop) { 

  combined = node.combine(combined); 

  stack.push(node); 

  node = node.parent; 

  } 

Move up the tree 
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Combining Phase Node 
synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 
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synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Wait until node is unlocked 
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synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Lock out late 
attempts to combine 
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synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Remember our contribution 



Art of Multiprocessor 
Programming 

75 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

Check status 
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synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Phase Node 

1st thread is alone 



Art of Multiprocessor 
Programming 

77 

synchronized int combine(int combined) { 

  while (locked) wait(); 

  locked = true; 

  firstValue = combined; 

  switch (cStatus) { 

    case FIRST: 

      return firstValue; 

    case SECOND: 

      return firstValue + secondValue; 

    default: … 

    } 

  } 

Combining Node 

Combine with 
2nd thread 
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Operation Phase 

5 

+3 +2 

+5 

Add combined value to root, 
start back down (phase 4) 

zzz 
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Operation Phase (reloaded) 

5 

Leave value to 
be combined … SECOND 

2 
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Operation Phase (reloaded) 

5 

+2 

Unlock, and 
wait … 

SECOND 
2 

zzz 
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Operation Phase Navigation 
prior = stop.op(combined); 
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Operation Phase Navigation 
prior = stop.op(combined); 

Get result of 
combining 
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Operation Phase Node 
synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     



Art of Multiprocessor 
Programming 

84 

synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

At Root 

Add sum to root, 
return prior value 
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synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Deposit value for 
later combining … 
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synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Unlock node, notify 
1st thread 
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synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Wait for 1st 
thread to deliver 

results 
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synchronized int op(int combined) { 

  switch (cStatus) { 

    case ROOT: int oldValue = result; 

      result += combined; 

      return oldValue; 

    case SECOND: secondValue = combined; 

      locked = false; notifyAll(); 

      while (cStatus != CStatus.DONE) wait(); 

      locked = false; notifyAll(); 

      cStatus = CStatus.IDLE; 

      return result; 

    default: …     

Intermediate Node 

Unlock node & 
return 
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Distribution Phase 

5 

0 

zzz 

Move down with 
result SECOND 
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Distribution Phase 

5 

zzz 

Leave result 
for 2nd thread 
& lock node 

SECOND 
2 
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Distribution Phase 

5 

0 

zzz 

Move result 
back down tree SECOND 

2 
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Distribution Phase 

5 

2nd thread awakens, 
unlocks, takes value IDLE 

3 
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Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  
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Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Traverse path in 
reverse order 
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Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Distribute results to 
waiting 2nd threads 
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Distribution Phase Navigation 
while (!stack.empty()) { 

  node = stack.pop(); 

  node.distribute(prior); 

  } 

return prior;  

Return result 
to caller 
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Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 
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Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 
No combining, unlock 

node & reset 
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Distribution Phase 
 synchronized void distribute(int prior) { 

    switch (cStatus) { 

      case FIRST: 

        cStatus = CStatus.IDLE; 

        locked = false; notifyAll(); 

        return; 

      case SECOND: 

        result = prior + firstValue; 

        cStatus = CStatus.DONE; notifyAll(); 

        return; 

      default: … 

Notify 2nd thread 
that result is 

available 
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Bad News: High Latency  

+2 +3 

+5 

Log n 
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Good News: Real Parallelism  

+2 +3 

+5 

2 threads 

1 thread 
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Throughput Puzzles 

• Ideal circumstances 
– All n threads move together, combine 

– n increments in O(log n) time 

• Worst circumstances 
– All n threads slightly skewed, locked out 

– n increments in O(n · log n) time 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

How many iterations 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Expected time between 
incrementing counter 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Take a number 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i < iters) { 

  i = r.getAndIncrement(); 

  Thread.sleep(random() % work); 

 }} 

Pretend to work 
(more work, less concurrency) 
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Performance Benchmarks 

• Alewife 
– NUMA architecture 

– Simulated 

• Throughput: 
– average number of 

inc operations                      
in 1 million cycle 
period. 

• Latency: 
– average number of 

simulator cycles                 
per inc operation. 
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Performance 

Latency: Throughput: 
90000 

80000 

60000 

50000 
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Performance 

Latency: Throughput: 
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The Combining Paradigm 

• Implements any RMW operation 

• When tree is loaded 
– Takes 2 log n steps 
– for n requests 

• Very sensitive to load fluctuations: 
– if the arrival rates drop 
– the combining rates drop 
– overall performance deteriorates! 
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Combining Load Sensitivity 

Notice Load Fluctuations 

T
h
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h
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processors 
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Combining Rate vs Work 
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Better to Wait Longer 

Short wait 

Indefinite wait 

Medium wait 

T
h
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h
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processors 
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Conclusions 

• Combining Trees 
– Work well under high contention 

– Sensitive to load fluctuations 

– Can be used for getAndMumble() ops 

• Next 
– Counting networks 

– A different approach … 
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A Balancer 

Input 
wires 

Output 
wires 



Art of Multiprocessor 
Programming 

117 

Tokens Traverse Balancers 

• Token i enters on any wire 

• leaves on wire i mod (fan-out) 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 

Arbitrary input 
distribution 

Balanced output 
distribution 
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Smoothing Network 

k-smooth property 
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Counting Network 

step property 
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Counting Networks Count! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 
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Bitonic[4] 
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Bitonic[4] 
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Bitonic[4] 
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Bitonic[4] 
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Bitonic[4] 
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Bitonic[4] 
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Counting Networks 

• Good for counting number of tokens 

• low contention 

• no sequential bottleneck 

• high throughput 

• practical networks depth nlog2
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Bitonic[k] is not Linearizable 
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Bitonic[k] is not Linearizable 
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Bitonic[k] is not Linearizable 

2 
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Bitonic[k] is not Linearizable 

2 

0 
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Bitonic[k] is not Linearizable 

2 

0 

Problem is: 
•Red finished before Yellow started 
•Red took 2 
•Yellow took 0 



Art of Multiprocessor 
Programming 

138 

Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 
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Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

state 
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Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

Output connections 
to balancers 
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Shared Memory 
Implementation 

class balancer { 

 boolean toggle; 

 balancer[] next; 

  

synchronized boolean flip() { 

 boolean oldValue = this.toggle; 

 this.toggle = !this.toggle; 

 return oldValue; 

} 

Get-and-complement 
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Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 
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Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Stop when we 
get to the 

end 
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Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Flip state 
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Shared Memory 
Implementation 

Balancer traverse (Balancer b) { 

 while(!b.isLeaf()) {   

  boolean toggle = b.flip();  

  if (toggle) 

    b = b.next[0] 

  else 

    b = b.next[1] 

  return b; 

} 

Exit on wire 
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Alternative Implementation: 
Message-Passing  
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Bitonic[2k] Schematic 

Bitonic[k] 

Bitonic[k] 

Merger[2k] 
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Bitonic[2k] Layout 
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Unfolded Bitonic Network 
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Unfolded Bitonic Network 

Merger[8] 
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Unfolded Bitonic Network 
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Unfolded Bitonic Network 

Merger[4] 

Merger[4] 
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Unfolded Bitonic Network 
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Unfolded Bitonic Network 

Merger[2] 

Merger[2] 

Merger[2] 

Merger[2] 
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Bitonic[k] Depth 

• Width k 

• Depth is (log2 k)(log2 k + 1)/2 



Art of Multiprocessor 
Programming 

156 

Merger[2k] 

Merger[2k] 
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Merger[2k] Schematic 

Merger[k] 

Merger[k] 
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Merger[2k] Layout 
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Lemma 

If a sequence has the 
step property … 
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Lemma 

So does its even 
subsequence 
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Lemma 

And its odd 
subsequence 
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Merger[2k] Schematic 

Merger[k] 

Merger[k] Bitonic[k] 

Bitonic[k] 

even 

even 
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Proof Outline 

Outputs from Bitonic[k] Inputs to Merger[k] 

even 

odd 

odd 

even 
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Proof Outline 

Inputs to Merger[k] 

even 

odd 

odd 

even 

Outputs of Merger[k] 
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Proof Outline 

Outputs of Merger[k] Outputs of last layer 
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Periodic Network Block 
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Periodic Network Block 
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Periodic Network Block 
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Periodic Network Block 
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Block[2k] Schematic 

Block[k] 

Block[k] 
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Block[2k] Layout 
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Periodic[8] 
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Network Depth 

• Each block[k] has depth log2 k 

• Need log2 k blocks 

• Grand total of (log2 k)2 
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Lower Bound on Depth 

Theorem: The depth of any width w counting 
network is at least Ω(log w). 

Theorem: there exists a counting network of 
θ(log w) depth. 

Unfortunately, proof is non-constructive and 
constants in the 1000s. 
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Sequential Theorem 

• If a balancing network counts 
– Sequentially, meaning that 

– Tokens traverse one at a time 

• Then it counts 
– Even if tokens traverse concurrently 
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Red First, Blue Second 

(2) 
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Blue First, Red Second 

(2) 



Art of Multiprocessor 
Programming 

178 

Either Way 

Same balancer states 
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Order Doesn’t Matter 

Same balancer states 

Same output 
distribution 
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Index Distribution Benchmark 

void indexBench(int iters, int work) { 

 while (int i = 0 < iters) { 

  i = fetch&inc(); 

  Thread.sleep(random() % work); 

 } 

} 



Art of Multiprocessor 
Programming 

181 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

Higher is better! 
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Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

Higher is better! 
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Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

Combining and counting 
are pretty close 



Art of Multiprocessor 
Programming 

184 

Performance (Simulated) 

* All graphs taken from Herlihy,Lim,Shavit, copyright ACM.  

MCS queue lock 

Spin lock 

Number processors 

T
h
ro

ug
h
pu

t 

64-leaf combining tree 

80-balancer counting network 

But they beat the hell 
out of the competition! 
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Saturation and Performance 

Undersaturated   P < w log w 

Saturated            P = w log w 

Oversaturated    P > w log w 

Optimal performance 



Art of Multiprocessor 
Programming 

186 

Throughput vs. Size 

Bitonic[16] 

Bitonic[4] 

Bitonic[8] 

Number processors 

T
h
ro

ug
h
pu

t 
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Shared Pool 

Put 
counting 
network 

Remove 
counting 
network 
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Put/Remove Network 

• Guarantees never: 
– Put waiting for item, while 

– Get has deposited item 

• Otherwise OK to wait 
– Put delayed while pool slot is full 

– Get delayed while pool slot is empty 
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What About 

• Decrements 

• Adding arbitrary values 

• Other operations 
– Multiplication 

– Vector addition 

– Horoscope casting … 
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First Step 

• Can we decrement as well as 
increment? 

• What goes up, must come down … 
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Anti-Tokens 
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Tokens & Anti-Tokens Cancel 
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Tokens & Anti-Tokens Cancel 
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Tokens & Anti-Tokens Cancel 

 
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Tokens & Anti-Tokens Cancel 

As if nothing happened 
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Tokens vs Antitokens 

• Tokens 
– read balancer 

– flip 

– proceed 

• Antitokens 
– flip balancer 

– read 

– proceed 
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Pumping Lemma 

Keep pumping tokens through one wire 

Eventually, after Ω tokens, 
network repeats a state 



Art of Multiprocessor 
Programming 

198 

Anti-Token Effect 
token 

anti-token 
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Observation 

• Each anti-token on wire i 
– Has same effect as Ω-1 tokens on wire i 

– So network still in legal state 

• Moreover, network width w divides Ω 
– So Ω-1 tokens  
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Before Antitoken 
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Balancer states as if … 

Ω-1 

Ω-1 is one 
brick shy of a 

load 
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Post Antitoken 

Next token 
shows up here 
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Implication 

• Counting networks with 
– Tokens (+1) 
– Anti-tokens (-1) 

• Give 
– Highly concurrent 
– Low contention 

• getAndIncrement + 
getAndDecrement methods 
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Adding Networks 

• Combining trees implement  
– Fetch&add 

– Add any number, not just 1 

• What about counting networks? 
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Fetch-and-add 

• Beyond getAndIncrement + 
getAndDecrement 

• What about getAndAdd(x)? 
– Atomically returns prior value 
– And adds x to value? 

• Not to mention 
– getAndMultiply 
– getAndFourierTransform?   
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Bad News 

• If an adding network  
– Supports n concurrent tokens 

• Then every token must traverse 
– At least n-1 balancers 

– In sequential executions 
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Uh-Oh 

• Adding network size depends on n 
– Like combining trees 

– Unlike counting networks 

• High latency 
– Depth linear in n 

– Not logarithmic in w 
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Generic Counting Network 

+1 

+2 

+2 

2 

+2 

2 
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First Token 

+1 

+2 

+2 

+2 

First token would visit green 
balancers if it runs solo 
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Claim 

• Look at path of +1 token 

• All other +2 tokens must visit some 
balancer on +1 token’s path 
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Second Token 

+1 

Takes 0 

+2 

+2 

+2 
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Second Token 

Takes 0 
+2 

+1 

Takes 0 

They can’t both take zero! 

+2 

+2 
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If Second avoids First’s Path 

• Second token 
– Doesn’t observe first 
– First hasn’t run 
– Chooses 0 

• First token 
– Doesn’t observe second 
– Disjoint paths 
– Chooses 0 
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If Second avoids First’s Path 

• Because +1 token chooses 0 
– It must be ordered first 

– So +2 token ordered second 

– So +2 token should return 1 

• Something’s  wrong!  
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Second Token 

+1 

+2 

Halt blue token before 
first green balancer 

+2 

+2 
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Third Token 

+1 

Takes 0 
or 2 

+2 

+2 

+2 



Art of Multiprocessor 
Programming 

217 

Third Token 

+2 

+1 

Takes 0 
+2 

+2 

Takes 0 
or 2 

They can’t both take zero, 
and they can’t take 0 and 2! 
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First,Second, & Third Tokens 
must be Ordered 

• Third (+2) token 
– Did not observe +1 token 

– May have observed earlier +2 token 

– Takes an even number 



Art of Multiprocessor 
Programming 

219 

First,Second, & Third Tokens 
must be Ordered 

• Because +1 token’s path is disjoint 
– It chooses 0 

– Ordered first 

– Rest take odd numbers 

• But last token takes an even number 

• Something’s wrong! 
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Third Token 

+1 

+2 

+2 

+2 

Halt blue token before 
first green balancer 
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Continuing in this way 

• We can “park” a token 
– In front of a balancer 

– That token #1 will visit 

• There are n-1 other tokens 
– Two wires per balancer 

– Path includes n-1 balancers! 



Art of Multiprocessor 
Programming 

222 

Theorem 

• In any adding network 
– In sequential executions 

– Tokens traverse at least n-1 balancers 

• Same arguments apply to 
– Linearizable counting networks 

– Multiplying networks 

– And others 
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Clip Art 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 

suggests that the authors endorse you or your use of the 

work).  

– Share Alike. If you alter, transform, or build upon this work, 

you may distribute the resulting work only under the same, 

similar or a compatible license.  

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission 

from the copyright holder.  

• Nothing in this license impairs or restricts the author's moral 

rights.  
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Diffracting Trees 
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A Simple Balancer 

Input 
wire 

Output 
wires 
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Tokens Traverse Balancers 

• Token i enters  

• leaves on wire i mod (fan-out) 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 
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Tokens Traverse Balancers 

Arbitrary input Balanced output 
distribution 
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Counting Tree 

Step property 
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Counting Tree Counts! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 
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Back to square 1 ! 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 
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Introducing Diffracting Tree 

0, 4,  8..... 

1, 5,  9..... 

2, 6,10.... 

3, 7 ........ 

Prism 
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Diffracting Tree 

Prism No toggle 
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Diffracting Tree 

Prism  toggle 
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Diffracting Tree 

Prism  toggle 


