Priority Queues

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Priority Queue

» Multiset of items
- with associated priority(score)

» Methods

- add() a new element
- removeMin() an element with minimum score

- Bounded / Unbounded

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Priority Queue

* Array-based bounded
* Tree-based bounded
* Heap-based unbounded

» SkipList-based unbounded

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Concurrent Priority Queues

* When there's overlapping add() and
removeMin(), what does it mean for an
item to be in the set ?

* Linearizability - instant effect

* Quiescent consistency

- With no additional calls, when all pending
method calls complete, the values they
return are consistent with some valid
sequential execution

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Array based P-Q
[« [

17 Add(7,f)

U e N NG) Iy = N WOV I \VR Bl @)

Array based P-Q

> a /

U e N NG) Iy = N WOV I \VR Bl @)

removeMin()

Array based P-Q

removeMin() returns a

removeMin()

U e N NG) Iy = N WOV I \VR Bl @)

Array based P-Q

removeMin() returns d

N[O b jJw N |- O

Array-based bounded P-Q

» Use a bounded array of Bins

- Each Bin has items with the same priority
- Put()

- Get()

+ Add(item) puts the item into the Bin

- with the same priority

- removeMin() searches the Bin from the
highest priority

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q

* Lock-free quiescently consistent

* A binary tree

- Each internal node has a bounded shared
counter indicating # of items in its left
subtree

- Each leaf has a Bin containing items with
the same priority

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q

(a) — B:deleteMin()
e ‘u.
e J ~a

’ -
o' ’/ ~\
(0). 7 : (1)
' , 4
-
5 e
L) v
‘.l .o
(0) (1) (1) (9
! '
/
2

[[d

3 4 5 6 !/

0 1

A:add(a.2) D:add(d.4)

0123456738

Tree-based bounded P-Q
O O
cficlcoRo

Tree-based bounded P-Q

Tree-based bounded P-Q

Tree-based bounded P-Q

Tree-based bounded P-Q

Tree-based bounded P-Q
O O
cficlcRo

Q

Tree-based bounded P-Q

Tree-based bounded P-Q

Tree-based bounded P-Q

Tree-based bounded P-Q

o
=gl

a d

4
D: add(d,4)

Tree-based bounded P-Q

o
=gl

Tree-based bounded P-Q

=gl

Tree-based bounded P-Q

8
=gl

a d

Tree-based bounded P-Q

8
=gl

a d

Tree-based bounded P-Q

8
oyl

a d

Tree-based bounded P-Q
O (1
cficlcoRo

d

a = deleteMin()

Does it still work

concurrently ?
* Lock-free quiescently consistent

+ A: add(a,2)
» D: add(d,3)

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q
(b) ()

k4

'o
’
-

x\

‘\
©) () (0] (0]
.)
’ L)
')
L 1
’ '
0 | 2 3

4 5 6 !

A:add(a.2) D:add(d,3)

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q
O O
cBclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
ccloRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
ccloRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
colcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
|
O O
cclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
cclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
cclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q

(C) 0 B:deleteMin()

\
(0) : (0) (0
4
al|d
0 1 2 3 = 5 (3] J
A:add(a,2)

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Does it still work

concurrently ?
* Lock-free quiescently consistent

+ A: add(a,2)
» D: add(d,3)
+ B: deleteMin()

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q

D:add(d,3)

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q
O O
cBcloRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
ccloRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
O O
cBolcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
|
O O
cclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
*
O O

cclcRe

alld

A: add(a,2) D: add(d,3)

Tree-based bounded P-Q

6 tn

B: deleteMin()
alld

0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)

Tree-based bounded P-Q
B: deleteMin()

< 4

0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)

Tree-based bounded P-Q

g

B: deleteMin()

alld
0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)

Tree-based bounded P-Q

g

B: deleteMin()

alld
0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)

Tree-based bounded P-Q

g

B: deleteMin()

d

0

1

2
A: add(a,2)

3 4
D: add(d,3)

Tree-based bounded P-Q

0 B: deleteMin()

< 4

0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)

Add()

+ Add(x,k)
- ads x to the bin at the kth leaf

- Increment node counters in leaf-to-root
order

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

RemoveMin()

- Traverse the tree from root-to-leaf order

- Finds the leaf with highest priority whose
bin is not empty

- At each node, if the counter is zero it goes
to the right

- Otherwise, decrement the counter and
goes to the left

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Tree-based bounded P-Q

» ITt's not linearizable

- Threads fraversing the tree may overtake
other thread

+ Add() and removeMin() are lock-free

- If the bins and counters are lock-free

- Both takes finite steps (bounded by tree
depth)

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Heap (sequential)

* a complete binary tree with nodes

whose priority is greater than all its
children's

+ removeMin()

- removes and returns the root of the tree
- rebalances (root to leaf)

- Add()

- appends the item at the end of the list
- rebalances (leaf to root)

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Concurrent Heap

* For concurrency
- Both add() and removeMin() rebalnaces as a
sequence of atomic steps to be interleaved
* heaplock

- for removing the root

* heapnode
- lock

- status
- EMPTY, AVAILABLE, BUSY

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Concurrent Heap

* removeMin()

- Acquires heaplock, decrements the next,
locks top & bottom and releases heaplock

- Get the top value, swaps top & bottom,
mark the bottom Empty and unlocks it

- The top is percolated down holding the lock
- When we swap, we lock both

- add()

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

Concurrent Heap
+ add()

- Acquires heaplLock, increments the next,
locks and initialize the child(Busy, owner),
and releases heaplock, child lock

- The child is percolated up the tree
- It locks the parent and the child

- If parent is Available and child is owned by
the caller, has high priority, then swap

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

A: removeMin()

A: removeMin
(a) will return 1

heapLock A

B: add(2)

A: percolates down(10)

(c)

heaplock ; next

TR status vail |
0 S
: priority \3?‘ .

item

0

{ owner

10 lock

% o 3

~avail avail
4 .
3‘96‘0 ‘,,-40 R 41
o Rl 0
B e el
busy avail avail avail
298] S 5iE 2l
7 t. X 3

B: looking for 2 to move up

(d)

heapLock 1 next
..0_.; status m ':;]0:,}
priority [{3 4 owner o
tem peo 04 lock
2 3
’T)E}y/ avail
2B 4
10 e 0‘)
A R BB N
e avail | | avail | | avail avail
TR pele s Ffe
<2 Sl [bio] Bl [Sio

Skiplist-based unbounded P-Q

* No rebalancing is required |
* PrioritySkipList

- sorted by priority, highest in the front

- removing is done lazily, find AndMarkMin()
* remove()

- Physical remove

- Logarithmic time

- add()

Art of Multiprocessor
Programming®© Herlihy Shavit
2°0N7

Skiplist-based unbounded P-Q

Access for Inserts
and Deletes

=
@« =
o+— 4| @—»

7

. o
@ »i17| ®

34
@+—t 1) O1T—r @— 23 @ 57

A

NIL

Access for
Delete_mins

D D D

Marked as Deleted

Art of Multiprocessor
Programming®© Herlihy Shavit

2007

Skiplist-based unbounded P-Q

* Quiescently consistent, Not linearizable
* Lock-free

+ A thread can fail repeatedly if other
threads repeatedly succeed

- Contention
- Multiple threads traverse together
- Physical removing (neighbors, probably)

» Usually performs better than heap-
based priority queue

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7

