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Priority Queue

» Multiset of items
- with associated priority(score)

» Methods

- add() a new element
- removeMin() an element with minimum score

- Bounded / Unbounded
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Priority Queue

* Array-based bounded
* Tree-based bounded
* Heap-based unbounded

» SkipList-based unbounded
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Concurrent Priority Queues

* When there's overlapping add() and
removeMin(), what does it mean for an
item to be in the set ?

* Linearizability - instant effect

* Quiescent consistency

- With no additional calls, when all pending
method calls complete, the values they
return are consistent with some valid
sequential execution
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Array based P-Q
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Array based P-Q

removeMin() returns a

removeMin()

U e N NG ) Iy = N WOV I \VR Bl @)




Array based P-Q

removeMin() returns d
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Array-based bounded P-Q

» Use a bounded array of Bins

- Each Bin has items with the same priority
- Put()

- Get()

+ Add(item) puts the item into the Bin

- with the same priority

- removeMin() searches the Bin from the
highest priority
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Tree-based bounded P-Q

* Lock-free quiescently consistent

* A binary tree

- Each internal node has a bounded shared
counter indicating # of items in its left
subtree

- Each leaf has a Bin containing items with
the same priority
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Tree-based bounded P-Q
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Tree-based bounded P-Q
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Does it still work

concurrently ?
* Lock-free quiescently consistent

+ A: add(a,2)
» D: add(d,3)
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Tree-based bounded P-Q
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Tree-based bounded P-Q
O O
cBclcRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
O O
ccloRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
O O
ccloRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
O O
colcRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
|
O O
cclcRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
O O
cclcRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
O O
cclcRe

alld

A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
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Does it still work

concurrently ?
* Lock-free quiescently consistent

+ A: add(a,2)
» D: add(d,3)
+ B: deleteMin()
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Tree-based bounded P-Q

D:add(d,3)
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Tree-based bounded P-Q
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Tree-based bounded P-Q
B: deleteMin()

< 4

0 1 2 3 4 5 6 7
A: add(a,2) D: add(d,3)




Tree-based bounded P-Q
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Add()

+ Add(x,k)
- ads x to the bin at the kth leaf

- Increment node counters in leaf-to-root
order
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RemoveMin()

- Traverse the tree from root-to-leaf order

- Finds the leaf with highest priority whose
bin is not empty

- At each node, if the counter is zero it goes
to the right

- Otherwise, decrement the counter and
goes to the left

Art of Multiprocessor

Programming®© Herlihy Shavit
2°0N7



Tree-based bounded P-Q

» ITt's not linearizable

- Threads fraversing the tree may overtake
other thread

+ Add() and removeMin() are lock-free

- If the bins and counters are lock-free

- Both takes finite steps (bounded by tree
depth)
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Heap (sequential)

* a complete binary tree with nodes

whose priority is greater than all its
children's

+ removeMin()

- removes and returns the root of the tree
- rebalances (root to leaf)

- Add()

- appends the item at the end of the list
- rebalances (leaf to root)
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Concurrent Heap

* For concurrency
- Both add() and removeMin() rebalnaces as a
sequence of atomic steps to be interleaved
* heaplock

- for removing the root

* heapnode
- lock

- status
- EMPTY, AVAILABLE, BUSY
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Concurrent Heap

* removeMin()

- Acquires heaplock, decrements the next,
locks top & bottom and releases heaplock

- Get the top value, swaps top & bottom,
mark the bottom Empty and unlocks it

- The top is percolated down holding the lock
- When we swap, we lock both

- add()
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Concurrent Heap
+ add()

- Acquires heaplLock, increments the next,
locks and initialize the child(Busy, owner),
and releases heaplock, child lock

- The child is percolated up the tree
- It locks the parent and the child

- If parent is Available and child is owned by
the caller, has high priority, then swap
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A: removeMin()

A: removeMin
(a) will return 1
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A: percolates down(10)
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B: looking for 2 to move up
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Skiplist-based unbounded P-Q

* No rebalancing is required |
* PrioritySkipList

- sorted by priority, highest in the front

- removing is done lazily, find AndMarkMin()
* remove()

- Physical remove

- Logarithmic time

- add()
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Skiplist-based unbounded P-Q

Access for Inserts
and Deletes
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Skiplist-based unbounded P-Q

* Quiescently consistent, Not linearizable
* Lock-free

+ A thread can fail repeatedly if other
threads repeatedly succeed

- Contention
- Multiple threads traverse together
- Physical removing (neighbors, probably)

» Usually performs better than heap-
based priority queue
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