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Priority Queue 

• Multiset of items 
– with associated priority(score)  

• Methods 
– add() a new element 

– removeMin() an element with minimum score 

• Bounded / Unbounded 
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Priority Queue 

• Array-based bounded 

 

• Tree-based bounded 

 

• Heap-based unbounded 

 

• SkipList-based unbounded 
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Concurrent Priority Queues 

• When there’s overlapping add() and 
removeMin(), what does it mean for an 
item to be in the set ? 

• Linearizability - instant effect 

• Quiescent consistency 
– With no additional calls, when all pending 

method calls complete, the values they 
return are consistent with some valid 
sequential execution 
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Array–based bounded P-Q 

• Use a bounded array of Bins 
– Each Bin has items with the same priority 

– Put() 

– Get() 

• Add(item) puts the item into the Bin  
– with the same priority 

• removeMin() searches the Bin from the 
highest priority 
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Tree–based bounded P-Q 

• Lock-free quiescently consistent 

• A binary tree  
– Each internal node has a bounded shared 

counter indicating # of items in its left 
subtree 

– Each leaf has a Bin containing items with 
the same priority 
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Does it still work 
concurrently ? 

• Lock-free quiescently consistent 

 

 

• A: add(a,2) 

• D: add(d,3) 
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Tree–based bounded P-Q 
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Tree–based bounded P-Q 
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Does it still work 
concurrently ? 

• Lock-free quiescently consistent 

 

 

• A: add(a,2) 

• D: add(d,3) 

• B: deleteMin() 



Art of Multiprocessor 

Programming©  Herlihy Shavit 

2007 

Tree–based bounded P-Q 
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Add()  

• Add(x,k) 
– ads x to the bin at the kth leaf 

– Increment node counters in leaf-to-root 
order 
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RemoveMin() 

– Traverse the tree from root-to-leaf order 

– Finds the leaf with highest priority whose 
bin is not empty 

– At each node, if the counter is zero it goes 
to the right  

– Otherwise, decrement the counter and 
goes to the left 
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Tree–based bounded P-Q 

• It’s not linearizable 
– Threads traversing the tree may overtake 

other thread 

• Add() and removeMin() are lock-free 
– If the bins and counters are lock-free 

– Both takes finite steps (bounded by tree 
depth) 
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Heap (sequential) 

• a complete binary tree with nodes 
whose priority is greater than all its 
children’s 

• removeMin()  
– removes and returns the root of the tree 

– rebalances (root to leaf) 

• Add() 
– appends the item at the end of the list 

– rebalances (leaf to root) 
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Concurrent Heap 

• For concurrency 
– Both add() and removeMin() rebalnaces as a 

sequence of atomic steps to be interleaved 

• heaplock 
– for removing the root 

• heapnode 
– lock  

– status 
• EMPTY, AVAILABLE, BUSY 
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Concurrent Heap 

• removeMin()  
– Acquires heapLock, decrements the next, 

locks top & bottom and releases heapLock 

– Get the top value, swaps top & bottom, 
mark the bottom Empty and unlocks it 

– The top is percolated down holding the lock 

– When we swap, we lock both 

• add()  
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Concurrent Heap 

• add()  
– Acquires heapLock, increments the next, 

locks and initialize the child(Busy, owner), 
and releases heapLock, child lock 

– The child is percolated up the tree 

– It locks the parent and the child 

– If parent is Available and child is owned by 
the caller, has high priority, then swap 



A: removeMin() 



B: add(2) 
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B: looking for 2 to move up 
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Skiplist–based unbounded P-Q 

• No rebalancing is required ! 

• PrioritySkipList 
– sorted by priority, highest in the front 

– removing is done lazily, findAndMarkMin() 

• remove() 
– Physical remove 

– Logarithmic time 

• add() 



Art of Multiprocessor 

Programming©  Herlihy Shavit 

2007 

Skiplist–based unbounded P-Q 
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Skiplist–based unbounded P-Q 

• Quiescently consistent, Not linearizable 

• Lock-free 

• A thread can fail repeatedly if other 
threads repeatedly succeed 

• Contention 
– Multiple threads traverse together 

– Physical removing (neighbors, probably) 

• Usually performs better than heap-
based priority queue 


