
Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Priority Queues

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Priority Queue

• Multiset of items
– with associated priority(score)

• Methods
– add() a new element

– removeMin() an element with minimum score

• Bounded / Unbounded

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Priority Queue

• Array-based bounded

• Tree-based bounded

• Heap-based unbounded

• SkipList-based unbounded

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Concurrent Priority Queues

• When there’s overlapping add() and
removeMin(), what does it mean for an
item to be in the set ?

• Linearizability - instant effect

• Quiescent consistency
– With no additional calls, when all pending

method calls complete, the values they
return are consistent with some valid
sequential execution

5

Array based P-Q

0

1

2

3

a

c

d

4

5

6

7 b

Add(7,f)

6

Array based P-Q

0

1

2

3

a

c

d

4

5

6

7 b f

removeMin()

7

Array based P-Q

0

1

2

3

c

d

4

5

6

7 b f

removeMin() returns a

removeMin()

8

Array based P-Q

0

1

2

3

c 4

5

6

7 b f

removeMin() returns d

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Array–based bounded P-Q

• Use a bounded array of Bins
– Each Bin has items with the same priority

– Put()

– Get()

• Add(item) puts the item into the Bin
– with the same priority

• removeMin() searches the Bin from the
highest priority

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Tree–based bounded P-Q

• Lock-free quiescently consistent

• A binary tree
– Each internal node has a bounded shared

counter indicating # of items in its left
subtree

– Each leaf has a Bin containing items with
the same priority

0 1 2 3 4 5 6 7 8

Tree–based bounded P-Q

Tree–based bounded P-Q

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

D:0 G:0 F:0

C:0

E:0

B:0

A:0

0 1 2 3 4 5 6 7

A: add(a,2)

Tree–based bounded P-Q

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

A: add(a,2)

Tree–based bounded P-Q

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

A: add(a,2)

Tree–based bounded P-Q

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 0

0

1

0

1

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 0

0

1

0

1

D: add(d,4)

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 0

0

1

0

1

D: add(d,4)

d

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

0

1

0

1

D: add(d,4)

d

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

1

0

1

D: add(d,4)

d

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

1

0

1

d

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

1

0

1

d

B: deleteMin()

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

1

0

0

d

B: deleteMin()

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

1

0

0

d

B: deleteMin()

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

a

0 0 1

1

0

0

0

d

B: deleteMin()

0 1 2 3 4 5 6 7

Tree–based bounded P-Q

0 0 1

1

0

0

0

d

a = deleteMin()

0 1 2 3 4 5 6 7

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Does it still work
concurrently ?

• Lock-free quiescently consistent

• A: add(a,2)

• D: add(d,3)

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Tree–based bounded P-Q

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d
* *

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

* *

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

1

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

2

0 1 2 3 4 5 6 7

d

*

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Tree–based bounded P-Q

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Does it still work
concurrently ?

• Lock-free quiescently consistent

• A: add(a,2)

• D: add(d,3)

• B: deleteMin()

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Tree–based bounded P-Q

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d

* *

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d
*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

* *

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

1

0 1 2 3 4 5 6 7

d

*

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

1

0 1 2 3 4 5 6 7

d

*

B: deleteMin()

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

*

B: deleteMin()

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

1

0

0

0 1 2 3 4 5 6 7

d

*

B: deleteMin()

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d

*

B: deleteMin()

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

a

0 0 0

0

0

0

0

0 1 2 3 4 5 6 7

d

*

B: deleteMin()

*

A: add(a,2)

Tree–based bounded P-Q

D: add(d,3)

0 0 0

0

0

0

1

0 1 2 3 4 5 6 7

d

* B: deleteMin()

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Add()

• Add(x,k)
– ads x to the bin at the kth leaf

– Increment node counters in leaf-to-root
order

Art of Multiprocessor

Programming© Herlihy Shavit

2007

RemoveMin()

– Traverse the tree from root-to-leaf order

– Finds the leaf with highest priority whose
bin is not empty

– At each node, if the counter is zero it goes
to the right

– Otherwise, decrement the counter and
goes to the left

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Tree–based bounded P-Q

• It’s not linearizable
– Threads traversing the tree may overtake

other thread

• Add() and removeMin() are lock-free
– If the bins and counters are lock-free

– Both takes finite steps (bounded by tree
depth)

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Heap (sequential)

• a complete binary tree with nodes
whose priority is greater than all its
children’s

• removeMin()
– removes and returns the root of the tree

– rebalances (root to leaf)

• Add()
– appends the item at the end of the list

– rebalances (leaf to root)

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Concurrent Heap

• For concurrency
– Both add() and removeMin() rebalnaces as a

sequence of atomic steps to be interleaved

• heaplock
– for removing the root

• heapnode
– lock

– status
• EMPTY, AVAILABLE, BUSY

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Concurrent Heap

• removeMin()
– Acquires heapLock, decrements the next,

locks top & bottom and releases heapLock

– Get the top value, swaps top & bottom,
mark the bottom Empty and unlocks it

– The top is percolated down holding the lock

– When we swap, we lock both

• add()

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Concurrent Heap

• add()
– Acquires heapLock, increments the next,

locks and initialize the child(Busy, owner),
and releases heapLock, child lock

– The child is percolated up the tree

– It locks the parent and the child

– If parent is Available and child is owned by
the caller, has high priority, then swap

A: removeMin()

B: add(2)

A: percolates down(10)

B: looking for 2 to move up

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Skiplist–based unbounded P-Q

• No rebalancing is required !

• PrioritySkipList
– sorted by priority, highest in the front

– removing is done lazily, findAndMarkMin()

• remove()
– Physical remove

– Logarithmic time

• add()

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Skiplist–based unbounded P-Q

Art of Multiprocessor

Programming© Herlihy Shavit

2007

Skiplist–based unbounded P-Q

• Quiescently consistent, Not linearizable

• Lock-free

• A thread can fail repeatedly if other
threads repeatedly succeed

• Contention
– Multiple threads traverse together

– Physical removing (neighbors, probably)

• Usually performs better than heap-
based priority queue

