
Transactional Memory

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

From the New York Times …

SAN FRANCISCO, May 7. 2004 - Intel said

on Friday that it was scrapping its development

of two microprocessors, a move that is a shift

in the company's business strategy….

Art of Multiprocessor
Programming

3

Moore’s Law

(hat tip: Simon Peyton-Jones)

Clock speed
flattening

sharply

Transistor
count still

rising

Art of Multiprocessor
Programming

4

Multicore Architetures

• “Learn how the multi-core processor
architecture plays a central role in
Intel's platform approach. ….”

• “AMD is leading the industry to multi-
core technology for the x86 based
computing market …”

• “Sun's multicore strategy centers
around multi-threaded software. ... “

Art of Multiprocessor
Programming

5

Why do we care?

• Time no longer cures software bloat

• When you double your path length
– You can’t just wait 6 months

– Your software must somehow exploit
twice as much concurrency

Art of Multiprocessor
Programming

6

The Problem

• Cannot exploit cheap threads

• Today’s Software
– Non-scalable methodologies

• Today’s Hardware
– Poor support for scalable

synchronization

Art of Multiprocessor
Programming

7

Locking

Art of Multiprocessor
Programming

8

Coarse-Grained Locking

Easily made correct …
But not scalable.

Art of Multiprocessor
Programming

9

Fine-Grained Locking

Here comes trouble …

Art of Multiprocessor
Programming

10

Why Locking Doesn’t Scale

• Not Robust

• Relies on conventions

• Hard to Use
– Conservative

– Deadlocks

– Lost wake-ups

• Not Composable

Art of Multiprocessor
Programming

11

Locks are not Robust

If a thread holding
a lock is delayed …

No one else can
make progress

Art of Multiprocessor
Programming

12

Why Locking Doesn’t Scale

• Not Robust

• Relies on conventions

• Hard to Use
– Conservative

– Deadlocks

– Lost wake-ups

• Not Composable

Art of Multiprocessor
Programming

13

Locking Relies on Conventions

• Relation between
– Lock bit and object bits

– Exists only in programmer’s mind

/*

 * When a locked buffer is visible to the I/O layer

 * BH_Launder is set. This means before unlocking

 * we must clear BH_Launder,mb() on alpha and then

 * clear BH_Lock, so no reader can see BH_Launder set

 * on an unlocked buffer and then risk to deadlock.

 */

Actual comment
from Linux Kernel

(hat tip: Bradley Kuszmaul)

Art of Multiprocessor
Programming

14

Why Locking Doesn’t Scale

• Not Robust

• Relies on conventions

• Hard to Use
– Conservative

– Deadlocks

– Lost wake-ups

• Not Composable

Art of Multiprocessor
Programming

15

Sadistic Homework

enq(x) enq(y) Double-ended queue

No interference if
ends “far enough”

apart

Art of Multiprocessor
Programming

16

Sadistic Homework

enq(x) enq(y) Double-ended queue

Interference OK if
ends “close enough”

together

Art of Multiprocessor
Programming

17

Sadistic Homework

deq() deq() Double-ended queue

Make sure
suspended

dequeuers awake as
needed

Art of Multiprocessor
Programming

18

You Try It …

• One lock?
– Too Conservative

• Locks at each end?
– Deadlock, too complicated, etc

• Waking blocked dequeuers?
– Harder than it looks

Art of Multiprocessor
Programming

19

Actual Solution

• Clean solution would be a publishable
result

• [Michael & Scott, PODC 96]

• What good is a methodology where
solutions to such elementary problems
are hard enough to be publishable?

Art of Multiprocessor
Programming

20

In Search of the Lost Wake-Up

• Waiting thread doesn’t realize when
to wake up

• It’s a real problem in big systems
– “Calling pthread_cond_signal() or

pthread_cond_broadcast() when the thread
does not hold the mutex lock associated with
the condition can lead to lost wake-up bugs.”

 from Google™ search for “lost wake-up”

Art of Multiprocessor
Programming

21

Why Locking Doesn’t Scale

• Not Robust

• Relies on conventions

• Hard to Use
– Conservative

– Deadlocks

– Lost wake-ups

• Not Composable

Art of Multiprocessor
Programming

22

Locks do not compose

add(T1, item)

delete(T1, item)

add(T2, item) item item

Move from T1 to T2

Must lock T2

before deleting

from T1

lock T2 lock T2
lock T1 lock T1

lock T1 lock T1

item

Exposing lock internals breaks abstraction

Hash Table Must lock T1

before adding

item

Art of Multiprocessor
Programming

23

Monitor Wait and Signal

zzz

If buffer is empty,
 wait for item to show up

Empty

buffer Yes!

Art of Multiprocessor
Programming

24

Wait and Signal do not Compose

empty

empty zzz…

Wait for either?

Art of Multiprocessor
Programming

25

The Transactional Manifesto

• What we do now is inadequate to
meet the multicore challenge

• Research Agenda
– Replace locking with a transactional API

– Design languages to support this model

– Implement the run-time to be fast
enough

Art of Multiprocessor
Programming

26

Transactions

• Atomic
– Commit: takes effect

– Abort: effects rolled back
• Usually retried

• Linearizable
– Appear to happen in one-at-a-time order

Art of Multiprocessor
Programming

27

Public void LeftEnq(item x) {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
}

Sadistic Homework Revisited

(1)

Write sequential Code

Art of Multiprocessor
Programming

28

Public void LeftEnq(item x) {
 atomic {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
 }
}

Sadistic Homework Revisited

(1)

Art of Multiprocessor
Programming

29

Public void LeftEnq(item x) {
 atomic {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
 }
}

Sadistic Homework Revisited

(1)

Enclose in atomic block

Art of Multiprocessor
Programming

30

Warning

• Not always this simple
– Conditional waits

– Enhanced concurrency

– Overlapping locks

• But often it is
– Works for sadistic homework

Art of Multiprocessor
Programming

31

Public void Transfer(Queue q1, q2)
{
 atomic {
 Item x = q1.deq();
 q2.enq(x);
 }
}

Composition

(1)

Trivial or what?

Art of Multiprocessor
Programming

32

Public item LeftDeq() {
 atomic {
 if (this.left == null)
 retry;
 …

 }
}

Wake-ups: lost and found

(1)

Roll back transaction and restart
when something changes

Art of Multiprocessor
Programming

33

OrElse Composition

atomic {
 x = q1.deq();
} orElse {
 x = q2.deq();
}

Run 1st method. If it retries …
Run 2nd method. If it retries …

Entire statement retries

Art of Multiprocessor
Programming

34

Related Work: Hardware

• First wave
– Herlihy&Moss 93, Stone et al. 93

• Second wave
– Rajwar&Goodman 02, Martinez&Torellas

02, Oplinger&Lam 02, TCC 04, VTM 05,

• Third wave
– IBM’s BlueGene/Q, Z-series

– Intel’s RTM(restricted transactional
memory)

Art of Multiprocessor
Programming

35

Hardware Overview

• Exploit Cache coherence protocols

• Already do almost what we need
– Invalidation

– Consistency checking

• Exploit Speculative execution
– Branch prediction = optimistic synch!

Art of Multiprocessor
Programming

36

HW Transactional Memory

Interconnect

caches

memory

read active

T

Art of Multiprocessor
Programming

37

Transactional Memory

caches

memory

read

active
T T

active

Art of Multiprocessor
Programming

38

Transactional Memory

caches

memory

active
T T

active committed

Art of Multiprocessor
Programming

39

Transactional Memory

caches

memory

write

active

committed

T
D

Art of Multiprocessor
Programming

40

Rewind

caches

memory

active
T T

active
write aborted

D

Art of Multiprocessor
Programming

41

Transaction Commit

• At commit point
– If no cache conflicts, we win.

• Mark transactional entries
– Read-only: valid

– Modified: dirty (eventually written back)

• That’s all, folks!
– Except for a few details …

Art of Multiprocessor
Programming

42

Not all Skittles and Beer

• Limits to
– Transactional cache size

– Scheduling quantum

• Transaction cannot commit if it is
– Too big

– Too slow

– Actual limits platform-dependent

Art of Multiprocessor
Programming

43

Some Approaches

• Trap to software if hardware fails
– “Hybrid” approach

• Use locks if speculation fails
– Lock elision

• “Virtualize” transactional memory
– VTM, UTM, etc…

Art of Multiprocessor
Programming

44

Related Work: Software

• DSTM [PODC 03]

– Sun Microsystems, Java library

• FSTM, OSTM [OOPSLA 03]

– Cambridge University, Java extension

• STM Haskell [PPoPP 05]

– Microsoft Research

• SXM [TBA]

– Microsoft Research, C# library

Art of Multiprocessor
Programming

45

Hardware versus Software

• Do we need hardware at all?
– Like virtual memory, probably need HW

for performance

• Do we need software?
– Policy issues don’t make sense for

hardware

Art of Multiprocessor
Programming

46

We Don’t have Language
Support (Yet)

• Review a typical STM library

Art of Multiprocessor
Programming

47

Goals of DSTM2 Project

• World Domination
– Decent API

– Encourage experimentation
• No one agrees on anything yet

– Capture mind-share
• For example, ScM projects

• Released under BSD-style license

• See Sun download page

Art of Multiprocessor
Programming

48

Why It’s Hard

• Not just a collection of useful
objects and methods

• Effect of transactional
synchronization is pervasive
– How classes are defined

– Control flow: commit & abort

– Exception handling, etc

Art of Multiprocessor
Programming

49

Rules

• Provide Java Library
– Usable by anyone

– No language/compiler extensions

• Users don’t need to master
complicated 3rd-party tools
– Weavers, etc.

– OK to use such tools internally

Art of Multiprocessor
Programming

50

This Talk

• How to Implement an STM

• Review: DSTM

• DSTM2 API

• DSTM2 engine room

• Reflections on life …

Art of Multiprocessor
Programming

51

We Got Issues, Right Here in
River City …

• Consistent versus inconsistent views

• Visible versus invisible reads

• Blocking versus non-blocking progress

• Engine-room issues …

Art of Multiprocessor
Programming

52

Do Orphan (Zombie)
Transactions Always See

Consistent States?
• Yes!

– Invariants observed (no surprises)

– Expensive (maybe)

• No!
– Who cares about surprises?

• Divide by zero, infinite loops, et cetera …

• Use exception/interrupt handlers?

– More efficient (maybe)

Art of Multiprocessor
Programming

53

Read Synchronization

• Visible (mark objects)
– Consistent views

– Strong contention management

– Quick validation

– Slower overall (maybe)

Art of Multiprocessor
Programming

54

Read Synchronization

• Invisible (no footprint)
– Inconsistent views

– Weaker contention management

– Slow validation

– Faster overall (maybe)

Art of Multiprocessor
Programming

55

Recovery

• Undo logs
– Update in place
– Reads are fast
– Rolling back wedged transaction complex

• Redo logs
– Apply changes on commit
– Reads require look-aside
– Rolling back wedged transaction easy

Art of Multiprocessor
Programming

56

Other Sectarian Differences

• Levels of indirection

• Compatibility with HTM

• Contention management policies

• There’s lots more …

Art of Multiprocessor
Programming

57

What is to be done?

• Need an agnostic STM

• Allow users to install (almost) any
STM algorithm or policy

• Contenders on common platform

• Low barrier-to-entry for people who
want to do STM research

Art of Multiprocessor
Programming

58

I, for one, Welcome our new
Multicore Overlords …

• Multicore architectures force us to
rethink how we do synchronization

• Standard locking model won’t work

• Transactional model might
– Software

– Hardware

• A full-employment act!

Art of Multiprocessor
Programming

59

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that

suggests that the authors endorse you or your use of the

work).

– Share Alike. If you alter, transform, or build upon this work,

you may distribute the resulting work only under the same,

similar or a compatible license.

• For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission

from the copyright holder.

• Nothing in this license impairs or restricts the author's moral

rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

