Transactional Memory

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

From the New York Times ...

SAN FRANCISCO, May 7. 2004 - Intel said
on Friday that it was scrapping its development
of two microprocessors, a move that is a shift
in the company's business strategy....

Y

BROWN Art of Multiprocessor 2
qs Programming

Moore's Law
|

Transistor
count still

rising

T\
(Clock speed

1’-\\ sharply

flattening

1000000
1=}
=
100000
- .
10000
1000
o
=
100
LBl
10
- : - > -
- =
- -
L + Clock Speed (MHz) [~
> -
= Transistors [000)
0.1 | | | I
1971 1975 1973 1933 19387 1991 1995 1993 2003 2007
m BROWN Art ot Mulfiprocessor

Programming

(hat tip: Simon Peyton-Jones)

Multicore Architetures

* "Learn how the multi-core processor
architecture plays a central role in
Intel's platform approach."

* "AMD is leading the industry to multi-
core technology for the x86 based
computing market .."

» "Sun's multicore strategy centers
around multi-threaded software. ... "

e
L

Y

BROWN Art of Multiprocessor 4
qs Programming

Why do we care?

» Time no longer cures software bloat
* When you double your path length

- You can't just wait 6 months

- Your software must somehow exploit
twice as much concurrency

e
L

BROWN Art of Multiprocessor
qs Programming

The Problem

» Cannot exploit cheap threads

» Today's Software
- Non-scalable methodologies

» Today's Hardware

- Poor support for scalable
synchronization

e
L

BROWN Art of Multiprocessor
qs Programming

Locking

BROWN Art of Multiprocessor
qs Programming

Coarse-Grained Locking

& O

Easily made correct ...
But not scalable.

e
L

BROWN Art of Multiprocessor
qs Programming

Fine-Grained Locking

& O

Here comes trouble ... : 0
6=

BROWN Art of Multiprocessor
qs Programming

]

-,

Why Locking Doesn't Scale

- Not Robust

- Relies on conventions

* Hard to Use
- Conservative
- Deadlocks
- Lost wake-ups

* Not Composable

e
L

Y

BROWN Art of Multiprocessor
qs Programming

Locks are not Robust

570

If a thread holding
a lock is delayed ...

No one else can
make progress

BROWN Art of Multiprocessor 11
qs Programming

Why Locking Doesn't Scale

- Not Robust

- Relies on conventions

* Hard to Use
- Conservative
- Deadlocks
- Lost wake-ups

* Not Composable

e
L

Y

BROWN Art of Multiprocessor
qs Programming

Locking Relies on Conventions

- Relation between

- Lock bit and object bits | Actual comment
from Linux Kernel

- EXISTS Only In progr'ammer" (hat tip: Bradley Kuszmaul)

* When a locked buffer is visible to the I/O layer

* BH Launder is set. This means before unlocking

* we must clear BH Launder,mb() on alpha and then

* clear BH Lock, so no reader can see BH Launder set
* on an unlocked buffer and then risk to deadlock.

e

2
=

BROWN Art of Multiprocessor 13
qs Programming

Why Locking Doesn't Scale

- Not Robust

- Relies on conventions

* Hard to Use
- Conservative
- Deadlocks
- Lost wake-ups

* Not Composable

e
L

Y

BROWN Art of Multiprocessor
qs Programming

Sadistic Homework

4-l-bou_l:,ll:il--encl-ellczl> :eu;

|
@) l '®)
(o]
o % % (o)
No interference if X

ends “"far enough”
apart

e
L

Y

BROWN Art of Multiprocessor 15
qs Programming

Sadistic Homework

Double-ended queue

O 1 | @)

o

4 A
Interference OK if ..
ends “close enough”

together

e
L

Y

BROWN Art of Multiprocessor 16
@Y Programming

Sadistic Homework

Double-ended queue

Make sure
suspended
dequeuers awake as
needed

e
L

Y

BROWN Art of Multiprocessor
qs Programming

You Try It ..

- One lock?
- Too Conservative

- Locks at each end?
- Deadlock, too complicated, etc

* Waking blocked dequeuers?
- Harder than it looks

BROWN Art of Multiprocessor
qs Programming

18

Actual Solution

» Clean solution would be a publishable
result

 [Michael & Scott, PODC 96]

* What good is a methodology where
solutions to such elementary problems
are hard enough to be publishable?

o
e

BROWN Art of Multiprocessor 19
@Y Programming

In Search of the Lost Wake-Up

* Waiting thread doesn't realize when
to wake up

» It's a real problem in big systems

- "Calling pthread_cond_signal() or
pthread_cond_broadcast() when the thread
does not hold the mutex lock associated with
the condition can lead to lost wake-up bugs.”

from Google™ search for “lost wake-up”

BROWN Art of Multiprocessor 20
qs Programming

Why Locking Doesn't Scale

- Not Robust

- Relies on conventions

* Hard to Use
- Conservative
- Deadlocks
- Lost wake-ups

* Not Composable

e
L

Y

BROWN Art of Multiprocessor
qs Programming

Locks do not compose

Hash Table
add(T,, item)

Move from T;to T,

delete(T,, item)
add(T,, item)

lock T,

item

lock T,

item

Must lock T,
before adding

item

lock T,

item

Must lock T,
before deleting
from T,

Exposing lock internals breaks abstraction

eI
o
[

BROWN
e[z

Art of Multiprocessor
Programming

22

Monitor Wait and Signal

Empty
.@‘ buffer
\v,j.')‘
Y If buffer is empty,
wait for item to show up

BROWN Art of Multiprocessor 23
qs Programming

Wait and Signal do not Compose

4)

()
Iz
W y

Y

BROWN Art of Multiprocessor 24
qs Programming

i,

The Transactional Manifesto

* What we do now is inadequate to
meet the multicore challenge

* Research Agenda
- Replace locking with a transactional APT
- Design languages to support this model

- Implement the run-time to be fast
enough

e
L

BROWN Art of Multiprocessor 25
qs Programming

Transactions

- Atomic
- Commit: takes effect

- Abort: effects rolled back
» Usually retried

* Linearizable
- Appear to happen in one-at-a-time order

e
L

BROWN Art of Multiprocessor 26
qs Programming

Sadistic Homework Revisited

/Public void LeftEnq(item x) £)
Qnode g = new Qnode(X);
g.left = this.left;
this.left.right = q;
this.left = q;

Y V_/

Write sequential Code

BROWN (1) Art of Multiprocessor
qs Programming

27

Sadistic Homework Revisited

Public void LeftEnq(item x) {
atomic {
Qnode g = new Qnode(x);
gq.left = this.left;
this.left.right = q;
this.left = q;

}
}

e
L

BROWN (1) Art of Multiprocessor
qs Programming

28

Sadistic Homework Revisited

[atomic {

=\

Enclose in atomic block

e
e

BROWN (1) Art of Multiprocessor
qs Programming

Warning

* Not always this simple
- Conditional waits
- Enhanced concurrency
- Overlapping locks

» But often it is
- Works for sadistic homework

BROWN Art of Multiprocessor
qs Programming

30

Composition

Public void Transfer(Queue ql, q2)

{

atomic {
Item X = gql.deqQ);

q2.enq(x);

\

\}
}

Trivial or what?

BROWN (1) Art of Multiprocessor
qs Programming

Wake-ups: lost and found

Public item LeftDeq() {
atomic {

1f (this.left == null)
retry;

}
}
Roll back transaction and restart

when something changes

e
e

BROWN (1) Art of Multiprocessor
qs Programming

32

OrElse Composition

Run 1s* metRhod. If it retries ..
Run 2" metPod. If it retries ..

Entire statement retries

BROWN Art of Multiprocessor
qs Programming

33

Related Work: Hardware

* First wave
- Herlihy&Moss 93, Stone et al. 93

- Second wave

- Rajwar&Goodman 02, Martinez&Torellas
02, Oplinger&lLam 02, TCC 04, VTM 05,

+ Third wave
- IBM's BlueGene/Q, Z-series

- Intel's RTM(restricted transactional
memory)

BROWN Art of Multiprocessor 34
qs Programming

Hardware Overview

+ Exploit Cache coherence protocols

* Already do almost what we need
- Invalidation
- Consistency checking

+ Exploit Speculative execution
- Branch prediction = optimistic synchl!

e
L

Y

BROWN Art of Multiprocessor 35
qs Programming

Transac’nonal Memory

active
! ?: caches
InTerconnecT
I | I | I memory
BROWN Art of Multiprocessor 36

Programming

Transactional Memor

active w

&

T

active

caches

| | | | | memory
BROWN Art of Multiprocessor 37

Programming

Transactional Memory

committed

active
T
< | ~ Sches
==
| | | | | memory
BROWN Art of Multiprocessor 38

Programming

<

BROWN Art of Multiprocessor 39
@Y Programming

Rewind

eI
.

BROWN

Art of Multiprocessor
Programming

Transaction Commit

- At commit point
- If no cache conflicts, we win.

* Mark transactional entries
- Read-only: valid
- Modified: dirty (eventually written back)

+ That's all, folks!
- Except for a few details ...

e
L

Y

BROWN Art of Multiprocessor 41
qs Programming

Not all Skittles and Beer

- Limits to
- Transactional cache size
- Scheduling quantum

+ Transaction cannot commit if it is
- Too big
- Too slow
- Actual limits platform-dependent

e
L

BROWN Art of Multiprocessor
qs Programming

42

Some Approaches

* Trap to software if hardware fails
- "Hybrid" approach

» Use locks if speculation fails
- Lock elision

» "Virtualize" transactional memory
- VTM, UTM, etc...

e
L

Y

BROWN Art of Multiprocessor 43
qs Programming

Related Work: Software

* DSTM rpobc 03]
- Sun Microsystems, Java library

- FSTM, OSTM [00psLA 03]
- Cambridge University, Java extension

- STM Haskell ppopp 05
- Microsoft Research

* SXM [TBA]
- Microsoft Research, C# library

e
L

Y

BROWN Art of Multiprocessor 44
qs Programming

Hardware versus Software

- Do we need hardware at all?

- Like virtual memory, probably need HW
for performance

- Do we need software?

- Policy issues don't make sense for
hardware

e
L

Y

BROWN Art of Multiprocessor 45
qs Programming

We Don't have Language
Support (Yet)

* Review a typical STM library

e
Ll

BROWN Art of Multiprocessor
qs Programming

46

Goals of DSTM2 Project

- World Domination
- Decent API

- Encourage experimentation
* No one agrees on anything yet

- Capture mind-share
* For example, ScM projects
* Released under BSD-style license
» See Sun download page

BROWN Art of Multiprocessor
qs Programming

Why It's Hard

* Not just a collection of useful
objects and methods

- Effect of transactional
synchronization is pervasive
- How classes are defined
- Control flow: commit & abort
- Exception handling, etc

e
L

Y

BROWN Art of Multiprocessor 48
qs Programming

Rules

* Provide Java Library
- Usable by anyone
- No language/compiler extensions

+ Users don't need to master
complicated 3rd-party tools
- Weavers, etc.
- OK to use such tools internally

BROWN Art of Multiprocessor 49
@Y Programming

This Talk

* How to Implement an STM
* Review: DSTM

- DSTM2 API

+ DSTMZ2 engine room

» Reflections on life ...

e
L

Y

BROWN Art of Multiprocessor
qs Programming

50

We Got Issues, Right Here in
River City ...

« Consistent versus inconsistent views
- Visible versus invisible reads

» Blocking versus non-blocking progress
* Engine-room issues ...

e
L

Y

BROWN Art of Multiprocessor 51
qs Programming

Do Orphan (Zombie)
Transactions Always See

Consistent States?
* Yes|
- Invariants observed (no surprises)
- Expensive (maybe)
* Nol

- Who cares about surprises?

* Divide by zero, infinite loops, et cetera ...

+ Use exception/interrupt handlers?
- More efficient (maybe)

e
L

BROWN Art of Multiprocessor
qs Programming

52

Read Synchronization

» Visible (mark objects)
- Consistent views
- Strong contention management
- Quick validation
- Slower overall (maybe)

e
L

BROWN Art of Multiprocessor
qs Programming

53

Read Synchronization

» Invisible (no footprint)
- Inconsistent views
- Weaker contention management
- Slow validation
- Faster overall (maybe)

e
L

BROWN Art of Multiprocessor
qs Programming

54

Recovery

* Undo logs
- Update in place
- Reads are fast
- Rolling back wedged transaction complex

* Redo logs
- Apply changes on commit
- Reads require look-aside
- Rolling back wedged transaction easy

e
L

Y

BROWN Art of Multiprocessor 55
qs Programming

Other Sectarian Differences

* Levels of indirection

» Compatibility with HTM

» Contention management policies
* There's lots more ...

e
L

Y

BROWN Art of Multiprocessor
qs Programming

What is to be done?

* Need an agnostic STM

» Allow users to install (almost) any
STM algorithm or policy

» Contenders on common platform

* Low barrier-to-entry for people who
want to do STM research

e
L

Y

BROWN Art of Multiprocessor
qs Programming

I, for one, Welcome our new
Multicore Overlords ...

* Multicore architectures force us to
rethink how we do synchronization

» Standard locking model won't work

* Transactional model might
- Software
- Hardware

» A full-employment act!

e
L

Y

BROWN Art of Multiprocessor 58
qs Programming

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sugﬁests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

- http://creativecommons.org/licenses/by-sa/3.0/.
Any of the above conditions can be waived if you get permission
from the copyright holder.

I_Io'hhing in this license impairs or restricts the author's moral
rights.

BROWN Art of Multiprocessor 59
@Y Programming

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

