

Chapter1. Introduction

Mechanical Strengths and Behavior of Solids

Contents

Introduction

1

Types of Material Failure

- **Design and Materials Selection**
- 4
- **Technological Challenge**

Economic Importance of Fracture

Objectives

• To gain an overview of the types of material failure that affect mechanical and structural design

```
Failure: G(load) > G_c(strength)
```

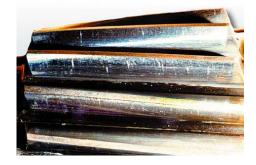
- To understand in general how the limitation on strength and ductility of materials are dealt with in engineering design
- To develop an appreciation of how the development of new technology requires new materials and new methods of evaluating the mechanical behavior of materials
- To learn of the surprisingly large costs of fracture to the economy

1.1 Introduction

• Mechanical behavior of materials

- Study of deformation and fracture in material
- Excessive deformation, crack, and fracture should be avoided in design
- Topics
 - Physical testing of samples of materials (Ch4)
 - Designing a structure to satisfy the stress fall behind the strength (Ch5-7)
 - Effect of material's flaw on strength (Ch 8,10)
 - Stress that applied for long periods of time (Ch 9,11)
 - Plastic deformation behavior (Ch12-14)
 - Creep and Damping (Ch 15)

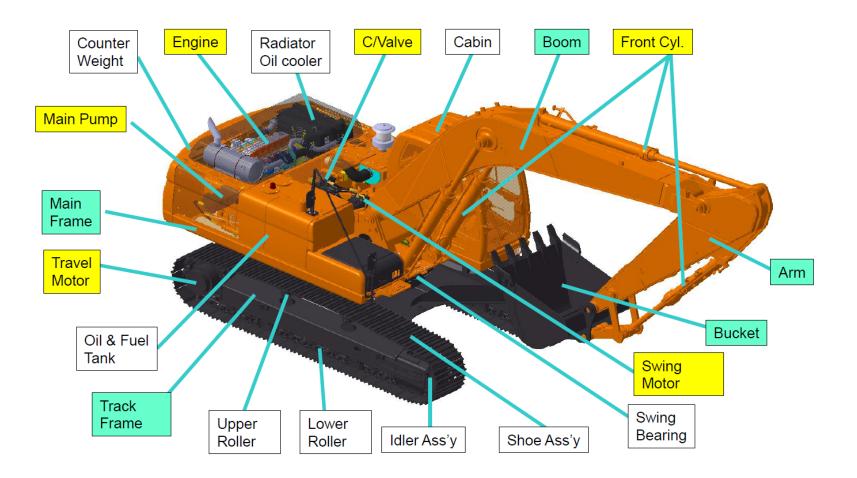
1.2 Types of material failures



- Deformation failure
 - Change of physical dimension which is sufficient for its function to be lost
- Fracture
 - Crack to the extent that a component is separated more than two pieces
- Corrosion
 - Loss of material due to chemical action
- Wear(or Erosion)
 - Surface removal due to sticking between solid-solid (or solid-fluid) surface

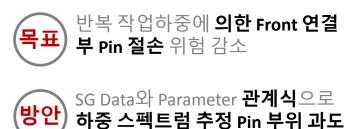
Fracture of tensile test specimen

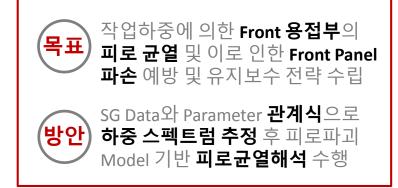
Corrosion on exposed metal bolt


Wear out of gear tooth

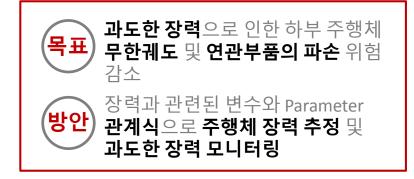
Excavator and Its Main Components

주요 구성 부품(Crawler)

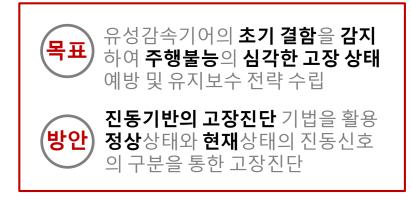

[구조체] 와 [구동체] 고장


<u>Front 연결부 Pin 절손</u>

조저



하중을 모니터링


<u>Front 용접부 균열</u>

<u>하부 주행체 Track 장력</u>

<u>감속기어 고장진단</u>

1.2 Types of material failures

- Deformation failure
 - Change of physical dimension which is sufficient for its function to be lost
- Fracture
 - Crack to the extent that a component is separated more than two pieces

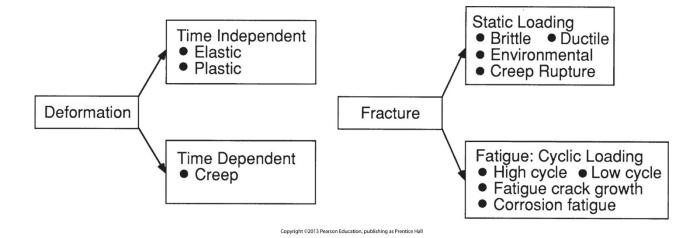
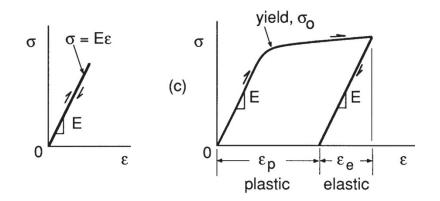
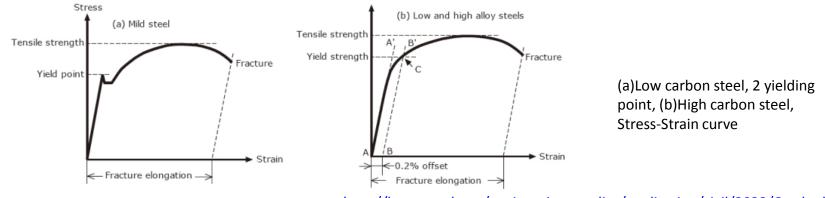


Figure 1.1 Basic types of deformation and fracture.

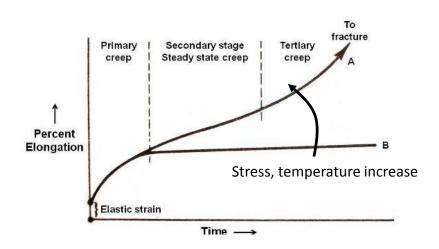
- Deformation(e.g. bend, twist, stretch) is cumulative effect of strain
 - Excessive elongation of spring, sway of tall building, unbalanced shaft
- Elastic deformation: recovered upon unloading
 - Elastic modulus
- Plastic deformation: NOT recovered upon unloading
 - Yielding, yield strength

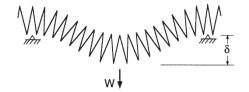


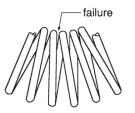

Figure 1.2 Stress-Strain curve with elastic deformation, and elastic + plastic deformation

1.2.1 Elastic and Plastic Deformation

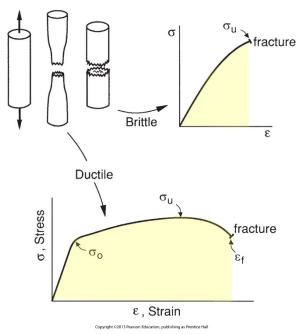
- Ductile behavior: sustaining large amount of plastic deformation
 - Low-strength steel, copper, lead, plastics, and polyethylene
- Brittle behavior: fracture without much plastic deformation
 - Glass, stone, acrylic plastic, high-strength steel
- Low carbon steel
 - 0.05~0.3% carbon, Ultimate=750MPa, Young's modulus=200GPa
 - Cheap, good machinability(welding), structural steel, plate, pipe, bolt, nut
- High carbon steel
 - 0.9~2% carbon, Ultimate=1000MPa, Young's modulus=200GPa
 - High tensile strength, tool steel, crank shaft, wheel, rail, spring

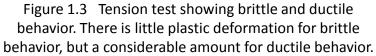

http://hsc.csu.edu.au/engineering_studies/application/civil/3032/Crack_theory.html

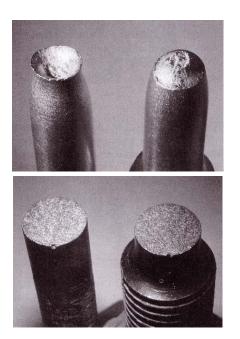



1.2.2 Creep Deformation

- Creep: accumulated deformation with time
 - Result of long term exposure to stress
 - Severe where high temperature is encountered, near melting point
 - e.g. gas-turbine engines blade, concrete, solder(low-melting temp metal), tungsten light bulb filament
- Creep strength: stress level that make strain rate zero


Typical creep curve, strain as a function of time with constant stress


Figure 1.4 A tungsten lightbulb filament sagging under its own weight. The deflection increases with time due to creep



1.2.3 Fracture under Static Loading

- Ductile fracture/Brittle fracture
- Ultimate tensile strength(σ_u), Strain at fracture(ε_f)
- Toughness: energy absorption before fracture

Fracture surface of (a) ductile(aluminum) with cupcone and necking (b) brittle(Mild steel) material

- Fracture mechanics: study of cracks in solid, stress concentration
 - Griffith(1921): Explain difference between <u>theoretical atomic force</u> and <u>experimental fracture strength</u> in <u>brittle material</u>
 - Fracture toughness(K): ability of resisting brittle fracture in the presence of crack or flaw
 - Irwin(1957): Explain fracture mechanics in ductile material with plastic deformation
 - Higher yield(ultimate) strength, lower fracture toughness

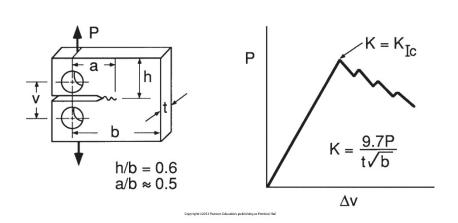
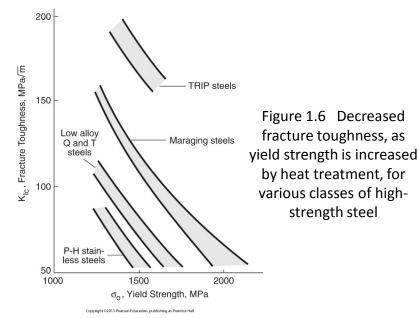



Figure 1.5 Fracture toughness test. K is a measure of the severity of the combination of crack size, geometry, and load. K_{lc} is the particular value, called the fracture toughness, where the material fails.

1.2.4 Fracture under Cyclic Loading

- Fatigue: failure due to repeated loading (wiki: fatigue)
 - Tiny cracks start in the material, and grow until complete failure occurs
 - Vehicle weight over bridge, bicycle pedals, heat/cooling, rotary machines
 - High-cycle fatigue: >10⁶ cycles, small elastic deformation
 - Low-cycle fatigue: <10³ cycle, significant plastic deformation
 - Fatigue Crack Growth(FCG): estimate crack size, used to schedule inspection and repair of aircraft, and etc.

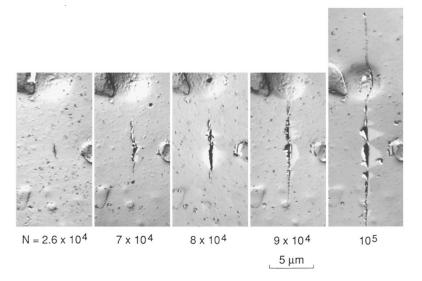
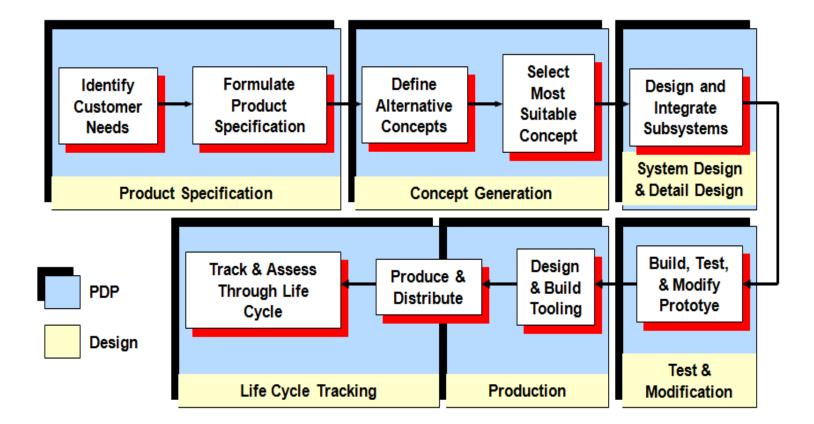


Figure 1.11 Fuselage failure in a passenger jet that occurred in 1988.


Figure 1.8 Development of a fatigue crack during rotating bending of a precipitation-hardened aluminum alloy. Photographs at various numbers of cycles are shown for a test requiring 400,000 cycles for failure

1.3 Design and Material Selection:

Product Development Process (PDP)

1.3 Design and Material Selection

START

Functional requirements

Trial

design

Analysis for

stresses,

fatique, etc.

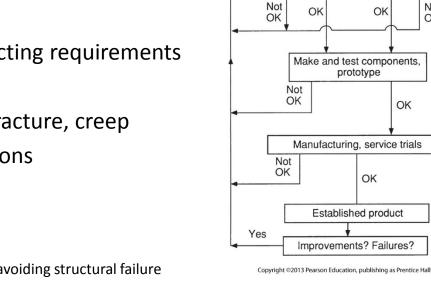
Changes

Experience

Codes, standards Other factors

Materials

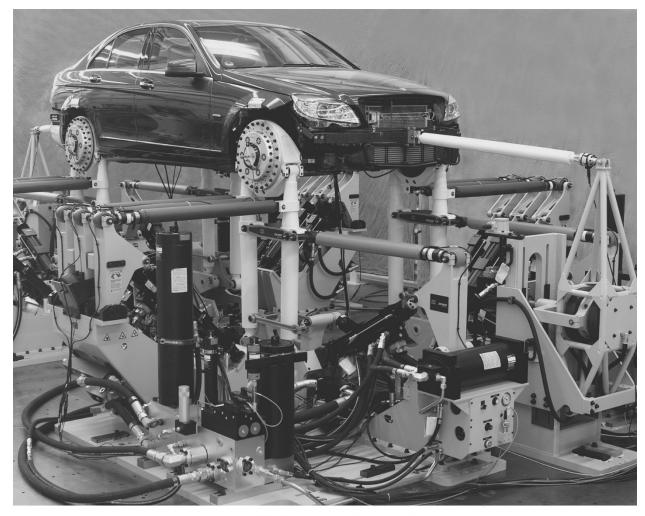
selection


Not

OK

- Design is process of choosing the geometric shape, materials, manufacturing method
 - Assure that an item meets functional, economical, manufactural aspects
 - When involving safety and durability, the concept of safety factor is often used.

 $S.F. = \frac{stress causing failure}{stress in service}$


- Compromise between conflicting requirements
- Estimation of applied load
- Yield stress, fatigue, brittle fracture, creep
- Prototype to verify assumptions
- Service experience

1.3 Design and Material Selection

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure 1.13 Road simulation test of an automobile, with loads applied at all four wheels and the bumper mounts

1.4 Technological Challenge

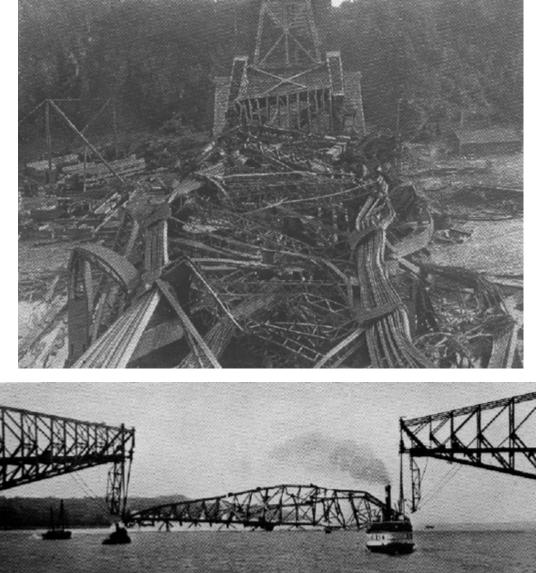


Table 1.1Some Major Technological Advances from 1500 A.D., the Parallel Developments inMaterials and Materials Testing, and Failures Related to Behavior of Materials

Years	Technological Advance	New Materials Introduced	Materials Testing Advances	Failures
1500's 1600's	Dikes Canals Pumps Telescope	(Stone, brick, wood, copper, bronze, and cast and wrought iron in use)	Tension (L. da Vinci) Tension, bending (Galileo) Pressure burst (Mariotte) Elasticity (Hooke)	
1700's	Steam engine Cast iron bridge	Malleable cast iron	Shear, torsion (Coulomb)	
1800's	Railroad industry Suspension bridge Internal combustion engine	Portland cement Vulcanized rubber Bessemer steel	Fatigue (Wöhler) Plasticity (Tresca) Universal testing machines	Steam boilers Railroad axles Iron bridges
1900's 1910's	Electric power Powered flight Vacuum tube	Alloy steels Aluminum alloys Synthetic plastics	Hardness (Brinell) Impact (Izod, Charpy) Creep (Andrade)	Quebec bridge Boston molasses tank

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Quebec bridge

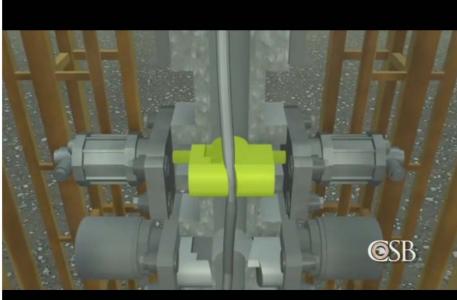
1907.8.29 1st collapse

1916.9.11 2nd collapse

1.4 Technological Challenge

Years	Technological Advance	New Materials Introduced	Materials Testing Advances	Failures
1920's 1930's	Gas-turbine engine Strain gage	Stainless steel Tungsten carbide	Fracture (Griffith)	Railroad wheels, rails Automotive parts
1940's 1950's	Controlled fission Jet aircraft Transistor; computer Sputnik	Ni-base alloys Ti-base alloys Fiberglass	Electronic testing machine Low-cycle fatigue (Coffin, Manson) Fracture mechanics (Irwin)	Liberty ships Comet airliner Turbine generators
1960's 1970's	Laser Microprocessor Moon landing	HSLA steels High-performance composites	Closed-loop testing machine Fatigue crack growth (Paris) Computer control	F-111 aircraft DC-10 aircraft Highway bridges
1980's 1990's	Space station Magnetic levitation	Tough ceramics Al-Li alloys	Multiaxial testing Direct digital control	Alex. Kielland rig Surgical implants
2000's 2010's	Sustainable energy Extreme fossil fuel extraction	Nanomaterials Bio-inspired materials	User-friendly test software	Space Shuttle tiles Deepwater Horizon offshore oil rig

Table 1.1Some Major Technological Advances from 1500 A.D., the Parallel Developments inMaterials and Materials Testing, and Failures Related to Behavior of Materials



Gulf of Mexico Deepwater horizon oil spill -2010.4.20

Failure of blowout preventer

<u>Homework:</u> http://www.youtube.com/watch?v=FCVCOWejlag#t=160

- Fracture of material cause \$119 billion (4% of GNP) loss in the U.S.(1982)
- Total cost for material durability would increase up to 10% of GNP
 - Extra cost for design/manufacture/analysis and testing
 - Repair, maintenance, and replacement
 - Recall, litigation, insurance
- 2/3 of cost can be eliminate through better technology

Chernobyl disaster, April 26 1986 due to **Operational Uncertainty** Consequence: **4K deaths & 600K contaminated**, hundreds of billion dollar

I-35 Bridge Failure, August 2007 Adverse events due to **Design Error and Maintenance Fault** Consequence: 13 deaths, 145 injured, **\$2 Billion** annual loss

CNG Bus Explosion, Aug. 9 2010 Adverse events due to Maintenance Fault (a defect in the gas tank) Consequence: 18 injured (riders and pedestrians)

> SHRM Lab., Seoul National University Seoul National University

Power transformer failure, July 6, 2002 Adverse events due to **faulty bushing** Consequence: **\$5 million** property & business loss

UPS Flight 1307 fire, Feb. 7, 2006, Adverse events possibly due to **faulty Lithium-ion battery** Consequence: 3 injured, loss of **whole airplane**

Wind turbine failure, Feb. 22 2008 Adverse events due to **Maintenance error (brake failure)** Consequence: Collapse of **whole wind turbine**

8100TEU containership sinking, June 17, 2013 Due to **Buckling** of shell plating & **Fatigue** in welded structure Consequence: about **\$500 million** property & business loss

LNG plant explosion, Jan. 19, 2004 Due to LNG Leak in Pipe Consequence: 27 killed, 72 injured, \$100 million loss

Consequence:

U.S. solely spends \$250 billion/year on reliability and maintenance in 2012