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• Plastic Deformation
– Deformation beyond the point of yielding that is not strongly time

dependent (Assumption: Always-present time-dependent (creep)
deformations are relatively small)

• Significance of Plastic Deformation (12.1.1)
– Cause the “residual stress”

– Fatigue analysis (S-N curve & mean stress effects)
 Traditional method: Stress-based approach (Chapter 10)

– Based on Elastic analysis
– Hence, it involves rough empirical adjustments for plastic deformation
– Needed adjustments are especially large at short lives and at high stresses

12.1 Introduction

2015-08-09
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• Unloading – Bauschinger effect (12.1.2)
– Bauschinger effect

 Yielding on unloading generally occurs prior to 
the stress reaching the yield strength 𝜎𝜎𝑂𝑂𝑂𝑂 for 
monotonic compression, as at point A

– Significance of the unloading stress-strain 
paths
 Need to be described for use in predicting 

behavior after unloading from a severe load, 
as in estimating residual stresses

12.1 Introduction

2015-08-09

<Fig. 12.1> Unloading stress-strain curve 
with Bauschinger effect
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• Cyclic loading (12.1.2)
– Complexity of cyclic loading

 The behavior is observed to gradually
change with the number of applied
cycles

– Demand for “Rheological models”
 For the strain-based approach to fatigue

(Chapter 14), at least approximate
modeling of the cyclic loading behavior is
needed

 Rheological models (Chapter 5) are
found to be useful for this purpose

12.1 Introduction

2015-08-09

<Fig. 12.2> Stress-strain response in 2024-T4 
aluminum for 20 cycles of completely 

reversed strain at 𝜀𝜀𝑎𝑎 = 0.01
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• Additional comments (12.1.3)
– Deformation theory

 Also called the total strain theory of plasticity
 We consider the deformation theory rather

than the more advanced incremental theory

– Kinematic hardening
 The rheological models used are consistent

with the behavior called Kinematic hardening
which predicts a Bauschinger effect as
observed in real materials

 The alternative choice of isotropic hardening
is not employed, as it is a poor model for real
materials

12.1 Introduction

2015-08-09

<Fig. 12.3> Differing unloading behavior for 
kinematic and isotropic hardening
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12.1 Introduction

• Objectives
– Become familiar with basic forms of stress-strain relationships, including

fitting data to these and representing them with spring and slider
rheological models.
(Chapter 12.2)

– Employ deformation plasticity theory to explore the effects of multiaxial
states of stress on stress-strain behavior
(Chapter 12.3)

– Analyze unloading and cyclic loading behavior for both rheological models
and for real materials, including cyclic stress-strain curves, irregular variation
of strain with time, and transient behavior such as mean stress relaxation
(Chapter 12.4-12.5)
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12.2 Stress-Strain Curves

• Elastic, Perfectly Plastic Relationship (12.2.1)
– Equations

 𝜎𝜎 = 𝐸𝐸𝐸𝐸, 𝜎𝜎 ≤ 𝜎𝜎0
 𝜎𝜎 = 𝜎𝜎0, 𝜀𝜀 ≥ 𝜎𝜎0/𝐸𝐸
 𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑝𝑝 = 𝜎𝜎/𝐸𝐸 + 𝜀𝜀𝑝𝑝, 𝜀𝜀 ≥ 𝜎𝜎0/𝐸𝐸

– Application
 For the initial yielding behavior or certain

metals and other materials
 Used as a simple idealization to make rough

estimates, even where the stress-strain curve
has a more complex shape

2015-08-09

<Fig. 12.4> (a) Stress-strain curves and 
rheological models for elastic, perfectly 

plastic behavior
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12.2 Stress-Strain Curves

• Elastic, Linear-Hardening Relationship (12.2.2)
– Equations

 𝜎𝜎 = 𝐸𝐸𝐸𝐸, 𝜎𝜎 ≤ 𝜎𝜎0
 𝜎𝜎 = 1 − 𝛿𝛿 𝜎𝜎0 + 𝛿𝛿𝛿𝛿𝛿𝛿, 𝜎𝜎 ≥ 𝜎𝜎0
 𝜀𝜀 = 𝜎𝜎0/𝐸𝐸 + 𝜎𝜎 − 𝜎𝜎0 / 𝛿𝛿𝛿𝛿 , 𝜎𝜎 ≥ 𝜎𝜎0
 𝛿𝛿𝛿𝛿 = 𝜎𝜎 − 𝜎𝜎0 / 𝜀𝜀 − 𝜀𝜀0

where 𝛿𝛿 is reduction factor

– Rheological model
 𝜀𝜀 = 𝜎𝜎/𝐸𝐸1 + 𝜎𝜎 − 𝜎𝜎0 /𝐸𝐸2, 𝜎𝜎 ≥ 𝜎𝜎0
 Hence, 𝐸𝐸 = 𝐸𝐸1, 𝛿𝛿𝛿𝛿 = 𝐸𝐸1𝐸𝐸2/ 𝐸𝐸1 + 𝐸𝐸2

2015-08-09

<Fig. 12.4> (b) Stress-strain curves and 
rheological models for elastic, linear-

hardening behavior
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12.2 Stress-Strain Curves

• Elastic, Power-Hardening Relationship (12.2.3)
– Equations

 𝜎𝜎 = 𝐸𝐸𝐸𝐸, 𝜎𝜎 ≤ 𝜎𝜎0
 𝜎𝜎 = 𝐻𝐻1𝜀𝜀𝑛𝑛1 , 𝜎𝜎 ≥ 𝜎𝜎0
 𝜀𝜀 = 𝜎𝜎/𝐻𝐻1 1/𝑛𝑛1 , 𝜎𝜎 ≥ 𝜎𝜎0

– Characteristics
 Strain hardening exponent 𝑛𝑛1

– Typically in the range 0.05 to 0.4 for metals
 Additional constant 𝐻𝐻1

– The value of 𝜎𝜎 at 𝜀𝜀 = 1
 𝜎𝜎0,𝐻𝐻1,𝑛𝑛1 are dependent each other
 𝜎𝜎0 = 𝐸𝐸 𝐻𝐻1/𝐸𝐸 1/ 1−𝑛𝑛1

2015-08-09

<Fig. 12.5> (a) Stress-strain curves on 
linear and logarithmic coordinates for an 

elastic, power-hardening relationship
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12.2 Stress-Strain Curves

• Ramberg-Osgood Relationship (12.2.4)
– Equations

 𝜎𝜎 = 𝐸𝐸𝐸𝐸, 𝜎𝜎 ≤ 𝜎𝜎0
 𝜎𝜎 = 𝐻𝐻𝜀𝜀𝑝𝑝𝑛𝑛, 𝜎𝜎 ≥ 𝜎𝜎0
 𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑝𝑝 = 𝜎𝜎/𝐸𝐸 + 𝜎𝜎/𝐻𝐻 1/𝑛𝑛, 𝜎𝜎 ≥ 𝜎𝜎0

– Characteristics
 Strain hardening exponent 𝑛𝑛

– Defined differently than the previous 𝑛𝑛1
 Additional constant 𝐻𝐻

– The value of 𝜎𝜎 at 𝜀𝜀𝑝𝑝 = 1
 Smooth curve for all values of 𝜎𝜎

– No distinct yield point
– Thus, a yield strength is defined as the stress 

corresponding to a given plastic strain offset, 
such as 𝜀𝜀𝑝𝑝𝑝 = 0.002
 𝜎𝜎0 = 𝐻𝐻 0.002 𝑛𝑛

 Ramberg-Osgood form is often applied to true 
stresses and strains for tension tests

2015-08-09

<Fig. 12.5> (b) Stress-strain curves on 
linear and logarithmic coordinates for the 

Ramberg-Osgood relationship
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12.2 Stress-Strain Curves

• Rheological Modeling of Nonlinear Hardening (12.2.5)
– Idea

 Series of straight line segments  Approximate the nonlinear hardening
 The first segments ends

– at the yield strength for the elastic, power-hardening case
– at a low stress where the 𝜀𝜀𝑝𝑝 is small for the Ramberg-Osgood case

 Equations
– 𝜎𝜎 = 𝜎𝜎0𝑖𝑖 + 𝐸𝐸𝑖𝑖𝜀𝜀𝑖𝑖 , 𝜎𝜎 > 𝜎𝜎0𝑖𝑖
– 𝜀𝜀 = 𝜀𝜀1 + 𝜀𝜀2 + ⋯+ 𝜀𝜀𝑗𝑗
– 𝜀𝜀 = 𝜎𝜎/𝐸𝐸1 + 𝜎𝜎 − 𝜎𝜎02 /𝐸𝐸2 + ⋯ 𝜎𝜎 − 𝜎𝜎0𝑗𝑗 /𝐸𝐸𝑗𝑗

– 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑗𝑗𝐸𝐸 = 1
1/𝐸𝐸1+1/𝐸𝐸2+⋯+1/𝐸𝐸𝑗𝑗

2015-08-09

<Fig. 12.6> Multistage spring and slider model for nonlinear-hardening stress–strain curves
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12.3 Three-dimensional Stress-Strain 
Relationships (optional)

• Need
– Stress components in more than one direction affects

 Both a material’s elastic stiffness and its yield strength

– The state of stress continues to affect the behavior during the plastic deform.
• Generalized Hooke’s law

– Only the elastic portion of the strain

– 𝜀𝜀𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑥𝑥 − 𝜈𝜈 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸
– 𝜀𝜀𝑒𝑒𝑦𝑦 = 𝜎𝜎𝑦𝑦 − 𝜈𝜈 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑧𝑧 /𝐸𝐸
– 𝜀𝜀𝑒𝑒𝑧𝑧 = 𝜎𝜎𝑧𝑧 − 𝜈𝜈 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦 /𝐸𝐸
– 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜏𝜏𝑥𝑥𝑥𝑥/𝐺𝐺,    𝛾𝛾𝑒𝑒𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑦𝑦𝑦𝑦/𝐺𝐺, 𝛾𝛾𝑒𝑒𝑧𝑧𝑧𝑧 = 𝜏𝜏𝑧𝑧𝑧𝑧/𝐺𝐺, 
– cf.  𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑒𝑒𝑥𝑥 + 𝜀𝜀𝑝𝑝𝑥𝑥, 𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝

• Effective stress and strain (12.3.1)
– Effective stress �𝜎𝜎 = 1/ 2 × 𝜎𝜎1 − 𝜎𝜎2 2 + 𝜎𝜎2 − 𝜎𝜎3 2 + 𝜎𝜎3 − 𝜎𝜎1 2

– Effective plastic strain ̅𝜀𝜀𝑝𝑝 = 2/3 × 𝜀𝜀𝑝𝑝𝑝 − 𝜀𝜀𝑝𝑝2
2

+ 𝜀𝜀𝑝𝑝2 − 𝜀𝜀𝑝𝑝3
2

+ 𝜀𝜀𝑝𝑝3 − 𝜀𝜀𝑝𝑝1
2

– Effective total strain 𝜀𝜀 = �𝜎𝜎/𝐸𝐸 + ̅𝜀𝜀𝑝𝑝
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12.3 Three-dimensional Stress-Strain 
Relationships (optional)

• Equations for plastic strains (12.3.1)
– Plastic modulus 𝐸𝐸𝑝𝑝 = �𝜎𝜎/ ̅𝜀𝜀𝑝𝑝
– 𝜀𝜀𝑝𝑝𝑝𝑝 = 𝜎𝜎𝑥𝑥 − 0.5 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑝𝑝
– 𝜀𝜀𝑝𝑝𝑦𝑦 = 𝜎𝜎𝑦𝑦 − 0.5 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑝𝑝
– 𝜀𝜀𝑝𝑝𝑧𝑧 = 𝜎𝜎𝑧𝑧 − 0.5 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦 /𝐸𝐸𝑝𝑝
– 𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝 = 3𝜏𝜏𝑥𝑥𝑥𝑥/𝐸𝐸𝑝𝑝,    𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝 = 3𝜏𝜏𝑦𝑦𝑦𝑦/𝐸𝐸𝑝𝑝,     𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝 = 3𝜏𝜏𝑧𝑧𝑧𝑧/𝐸𝐸𝑝𝑝

• Equations for total strains (12.3.2)
– 𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑒𝑒𝑥𝑥 + 𝜀𝜀𝑝𝑝𝑥𝑥 = 𝜎𝜎𝑥𝑥 − 𝜈𝜈 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸 + 𝜎𝜎𝑥𝑥 − 0.5 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑝𝑝

= 𝜎𝜎𝑥𝑥 − 𝜈̅𝜈 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑡𝑡
– 𝜀𝜀𝑦𝑦 = 𝜎𝜎𝑦𝑦 − 𝜈̅𝜈 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑡𝑡
– 𝜀𝜀𝑧𝑧 = 𝜎𝜎𝑧𝑧 − 𝜈̅𝜈 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦 /𝐸𝐸𝑡𝑡
– where 𝐸𝐸𝑡𝑡 = �𝜎𝜎/ ̅𝜀𝜀 ,     𝜈̅𝜈 = 𝜈𝜈 × �𝜎𝜎/𝐸𝐸 + 0.5 × ̅𝜀𝜀𝑝𝑝 / ̅𝜀𝜀
– Generalized Poisson’s ratio 𝜈̅𝜈

 At small strain, 𝜈̅𝜈 → 𝜈𝜈
 At large strain, 𝜈̅𝜈 → 0.5

2015-08-09

<Fig. 12.8> Definition of the 
plastic modulus as the secant 

modulus to a point on the 
effective stress versus 

effective plastic strain curve
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12.3 Three-dimensional Stress-Strain 
Relationships

• The Effective Stress-Strain Curve (12.3.3)
– For deformation plasticity theory, the curve relating effective stress and 

effective strain is the same as the uniaxial one
– 𝜀𝜀1 = 𝑓𝑓 𝜎𝜎1 (𝜎𝜎2 = 𝜎𝜎3 = 0)
– ̅𝜀𝜀 = 𝑓𝑓 �𝜎𝜎

• Application to Plane Stress (12.3.4)
– Plane stress

 𝜎𝜎𝑥𝑥 = 𝜎𝜎1,    𝜎𝜎𝑦𝑦 = 𝜎𝜎2 = 𝜆𝜆𝜎𝜎1,    𝜎𝜎𝑧𝑧 = 𝜎𝜎3 = 0

– Effective stress �𝜎𝜎 = 𝜎𝜎1 1 − 𝜆𝜆 + 𝜆𝜆2

– Total strain 𝜀𝜀1 = 𝜀𝜀𝑒𝑒𝑒 + 𝜀𝜀𝑝𝑝𝑝
– Elastic strain 𝜀𝜀𝑒𝑒𝑒 = 𝜎𝜎1/𝐸𝐸 1 − 𝜈𝜈𝜈𝜈
– Plastic strain 𝜀𝜀𝑝𝑝1 = 𝜎𝜎1/𝐸𝐸𝑝𝑝 1 − 0.5𝜆𝜆 = 𝜎𝜎1 ̅𝜀𝜀𝑝𝑝/ �𝜎𝜎 1 − 0.5𝜆𝜆
– ̅𝜀𝜀𝑝𝑝 = ̅𝜀𝜀 − �𝜎𝜎/𝐸𝐸 = 𝑓𝑓 �𝜎𝜎 − �𝜎𝜎/𝐸𝐸
– Hence

𝜀𝜀1 =
1 − 𝜈𝜈𝜈𝜈
𝐸𝐸 𝜎𝜎1 +

1 − 0.5𝜆𝜆
�𝜎𝜎 𝜎𝜎1 𝑓𝑓 �𝜎𝜎 −

�𝜎𝜎
𝐸𝐸 = 𝑓𝑓 𝜎𝜎1
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12.3 Three-dimensional Stress-Strain 
Relationships (optional)

• Application to Plane Stress (12.3.4) – continued 
– Key feature of deformation theory

 It predicts a single curve relating �𝜎𝜎 and ̅𝜀𝜀
for all state of stress

2015-08-09

<Fig. 12.9> Estimated effect of biaxial 
stress on a Ramberg–Osgood stress–

strain curve. (The constants correspond 
to a fictitious aluminum alloy.)

<Fig. 12.7> Correlation of true stresses and true plastic strains from 
combined axial and pressure loading of thin-walled copper tubes in terms 

of (a) octahedral shear stress and strain, and (b) maximum shear stress and 
strain. (Adapted from [Davis 43]; used with permission of ASME.)

- 16/ 36 -



Seoul National University

12.3 Three-dimensional Stress-Strain 
Relationships

• Application to Plane Stress (12.3.4) – continued 
– For an elastic, perfectly plastic material,

 ̅𝜀𝜀 = 𝑓𝑓 �𝜎𝜎 can be defined beyond yielding
 𝜎𝜎1 = 𝐸𝐸𝜀𝜀1/ 1 − 𝜈𝜈𝜈𝜈 ,       �𝜎𝜎 ≤ 𝜎𝜎0
 𝜎𝜎1 = 𝜎𝜎0/ 1 − 𝜆𝜆 + 𝜆𝜆2,   ̅𝜀𝜀 ≥ 𝜎𝜎0/𝐸𝐸

– Example: Ramberg-Osgood
 ̅𝜀𝜀 = 𝑓𝑓 �𝜎𝜎 = �𝜎𝜎/𝐸𝐸 + �𝜎𝜎/𝐻𝐻 1/𝑛𝑛

 Using 𝜀𝜀1 = 1−𝜈𝜈𝜈𝜈
𝐸𝐸

𝜎𝜎1 + 1−0.5𝜆𝜆
�𝜎𝜎

𝜎𝜎1 𝑓𝑓 �𝜎𝜎 − �𝜎𝜎
𝐸𝐸

,

𝜀𝜀1 = 1 − 𝜈𝜈𝜈𝜈
𝜎𝜎1
𝐸𝐸

+ 1 − 0.5𝜆𝜆 1 − 𝜆𝜆 + 𝜆𝜆2 1−𝑛𝑛 / 2𝑛𝑛 𝜎𝜎1
𝐻𝐻

1/𝑛𝑛
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12.3 Three-dimensional Stress-Strain 
Relationships (optional)

• Deformation versus Incremental Plasticity Theories (12.3.5)
– Loading paths

 The sequences of stressing correspond to variations in principal stresses

– Loading path dependence
 The situation of the plastic strains differing despite the final stresses being the 

same
 To analyze such behavior, an incremental plasticity theory is needed, which is 

applied by following the loading path in small steps

– Deformation versus Incremental
 If all stresses are applied so that their

magnitudes are proportional, and if no
unloading occurs, then incremental
plasticity theory gives the same result as
deformation theory

 If proportionality is preserved, but 
unloading does occur, as in cyclic
loading, deformation theory can still
be used

2015-08-09

<Fig. 12.10> Three possible paths for combined axial and 
torsional loading of a thin-walled tube
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Some features of the behavior of rheological models

2015-08-09

<Fig. 12.11>Unloading and reloading behavior for two rheological models. The first strain history causes only 
elastic deformation during unloading, but the second one is sufficiently large to cause compressive yielding. The 

third history is completely reversed and causes a hysteresis loop that is symmetrical about the origin.

Memory effect
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Some features of the behavior of rheological models – continued
– Features

 If the direction of loading is reversed, the behavior may be elastic until yielding 
again occurs on reloading

 Reversed yielding occurs when the stress change since unloading reaches 
∆𝜎𝜎 = 2𝜎𝜎0

– Memory effect
 Reversed yielding occurs, causing a small loop to be formed, following which the 

stress-strain path rejoins the original path, then proceeding just as if the small 
loop had never occurred

2015-08-09

<Strain input> <𝜎𝜎-𝜀𝜀 behavior>
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Unloading Behavior (12.4.1)
– The ith stage of a multistage parallel spring-slider model

 𝜎𝜎′ = +𝜎𝜎𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑖𝑖𝜀𝜀𝑖𝑖′

 𝜎𝜎′′ = −𝜎𝜎𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑖𝑖𝜀𝜀𝑖𝑖′

– 𝜀𝜀𝑖𝑖′ is locked until the resistance of the slider 
is overcome, that is, at the point of reversed yielding

 The change in stress causing reversed yielding in the ith stage
∆𝜎𝜎′′ = 𝜎𝜎′ − 𝜎𝜎′′ = 2𝜎𝜎𝑜𝑜𝑜𝑜

 The contribution of the ith stage to the
change in strain

∆𝜀𝜀𝑖𝑖 = ∆𝜎𝜎 − 2𝜎𝜎𝑜𝑜𝑜𝑜 /𝐸𝐸𝑖𝑖
 Hence, the total change in strain

∆𝜀𝜀 = ∆𝜎𝜎
𝐸𝐸1

+ ∆𝜎𝜎−2𝜎𝜎𝑜𝑜𝑜
𝐸𝐸2

+ ⋯+
∆𝜎𝜎−2𝜎𝜎𝑜𝑜𝑜𝑜

𝐸𝐸𝑗𝑗

 Then, with 𝜎𝜎 = 𝜎𝜎′ − ∆𝜎𝜎,  𝜀𝜀 = 𝜀𝜀′ − ∆𝜀𝜀,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

1
𝐸𝐸1

+ 1
𝐸𝐸2

+ ⋯ 1
𝐸𝐸𝑗𝑗

– Same as for the monotonic one

2015-08-09

<Fig. 12.12> (a) Unloading behavior of spring
and slider rheological models showing doubling
of segment lengths with the slope unchanged
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Unloading Behavior (12.4.1) – continued
– The ith stage of a multistage parallel spring-slider model – continued

 Unloading curve has the same shape as the monotonic curve, 
differing in that it is expanded by a scale factor of two
– If the monotonic reponse is 𝜀𝜀 = 𝑓𝑓 𝜎𝜎

∆𝜀𝜀
2

= 𝑓𝑓
∆𝜎𝜎
2

 The initial loading in compression
𝜀𝜀 = −𝑓𝑓(−𝜎𝜎)

2015-08-09

<Fig. 12.12> (a) Unloading behavior of spring
and slider rheological models showing doubling
of segment lengths with the slope unchanged
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12.4 Unloading and Cycling loading Behavior
from Rheological Models (optional)

• Discussion of Unloading (12.4.2)

2015-08-09

<Fig. 12.13> Monotonic tension followed by loading into compression for (a) aluminum
alloy 2024-T4 and (b) quenched and tempered AISI 4340 steel. Unloading curves
estimated from a factor-of-two expansion of the monotonic curve are also shown.

(Rheological Model)

① If yields abruptly on 
monotonic loading

②Unloading behavior 
≠ Monotonic behavior
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Cyclic Loading Behavior (12.4.3)
– Hysteresis loop

 The stress-strain loop during constant amplitude cycling
 Unloading branch: 𝜀𝜀 = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 − 2𝑓𝑓 (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎)/2
 Reloading branch: 𝜀𝜀 = 𝜀𝜀𝑚𝑚𝑖𝑖𝑖𝑖 + 2𝑓𝑓 (𝜎𝜎 − 𝜎𝜎𝑚𝑚𝑖𝑖𝑖𝑖)/2

2015-08-09

<Fig. 12.14> Stress–strain unloading and reloading behavior consistent with a spring and
slider rheological model. The example curves plotted correspond to a Ramberg–Osgood
stress–strain curve with constants as in Fig. 12.9.
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12.4 Unloading and Cycling loading Behavior
from Rheological Models

• Application to Irregular Strain versus Time Histories (12.4.4)
– The rules for the behavior of a multistage spring and slider model

 (1) Initially, and after each reversal of strain direction, segments are used in order,
starting with the first

 (2) Each segment may be used once in either direction with its original length.
Thereafter, the length is twice the monotonic value and the segment retains the
same slope

 (3) An exception to rule (1) is that a segment (or portion thereof) must be
skipped if its most recent use was not in the opposite direction of its impending
use

2015-08-09

<Fig. 12.15> Behavior of a multistage spring–slider rheological model for an irregular strain history. A model
having the monotonic stress–strain curve (a) is subjected to strain history (b), resulting in stress–strain response
(c). (Adapted from [Dowling 79b]; used with permission of Elsevier Science Publishers.)
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• Cyclic Stress-Strain Tests and Behavior (12.5.1)
– Cyclic-dependent hardening and Cyclic-dependent softening

 The stresses that are needed to enforce the strain limits usually change as the
test progresses

 Cyclic hardening or softening is usually rapid at first and decreases with
increasing numbers of cycles to be stable

12.5 Cyclic Stress-Strain Behavior 
of Real Materials

2015-08-09

<Fig. 12.16> Completely reversed controlled strain test and two possible stress responses, cycle-
dependent hardening and softening. (From [Landgraf 70]; copyright © ASTM; reprinted with permission.)

Cyclic-dependent 
hardening

Cyclic-dependent 
softening
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• Cyclic Stress-Strain Tests and Behavior (12.5.1)
– Closed hysteresis loop (Stable behavior)

 The stable hysteresis loops are nearly symmetrical with respect to tension and 
compression in most engineering metals
– One exception is gray cast iron (asymmetric behavior)

 Ductile polymers and their composites  asymmetric behavior

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.17> Stable stress–strain hysteresis loop
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• Cyclic Stress-Strain Curves and Trends (12.5.2)
– Stable behavior: The hysteresis loops from near the fatigue life(conventional)
– Cyclic stress-strain curves

 A line from the origin that passes through the tips of the loops (O-A-B-C below)
 Always deviate smoothly from linearity  Ramberg-Osgood commonly used

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.19> Cyclic stress–strain curve defined as the locus of tips of hysteresis loops. Three loops are shown, A-D, 
B-E, and C-F. The tensile branch of the cyclic stress–strain curve is O-A-B-C, and the compressive branch is O-D-E-F.
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• Cyclic Stress-Strain Curves and Trends (12.5.2) –continued
– Cyclic stress-strain curves –continued

 Ramberg-Osgood form: 𝜀𝜀𝑎𝑎 = 𝜎𝜎𝑎𝑎/𝐸𝐸 + 𝜎𝜎𝑎𝑎/𝐻𝐻′ 1/𝑛𝑛′

– For engineering metals, 𝑛𝑛′ often ranges 0.1 to 0.2

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.20> Cyclic and monotonic stress–strain curves for several engineering metals. (From [Landgraf 69]; 
copyright © ASTM; reprinted with permission.)

Cyclically harden

Cyclically soften
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• Cyclic Stress-Strain Curves and Trends (12.5.2) –continued
– The effects of alloy composition and processing of engineering metlas

 The effects on the cyclic stress-strain behavior is different with that on the 
monotonic tension properties

 In medium-carbon steels that are hardened by heat treatment, some of the 
effect usually is  lost if cyclic loading occurs (shown below)

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.21> Average property trends for SAE 1045 steel and other medium-carbon steels as a function of hardness, 
including the true fracture strength, the monotonic and cyclic yield strengths, and the threshold stress amplitude 

for relaxation of mean stress. (Adapted from [Landgraf 88]; copyright © ASTM; reprinted with permission.)
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• Cyclic Stress-Strain Curves and Trends (12.5.2) –continued
– Ductile polymers

 It has monotonic yield strengths that are typically 20% to 30% higher in 
compression than in tension

 This ratio is maintained in the cyclic stress-strain curves (shown below)

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.22> Monotonic (left) and cyclic (right) stress–strain curves for polycarbonate for both tension (T) and 
compression (C). (Adapted from [Beardmore 75]; used with permission.)
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• Hysteresis Loop Curve Shapes (12.5.3)
– Hysteresis loop should have the same shape as the cyclic stress-strain curve,

except for expansion by a scale factor of two
– Ramberg-Osgood form using ∆𝜀𝜀/2 = 𝑓𝑓 ∆𝜎𝜎/2

∆𝜀𝜀 =
∆𝜎𝜎
𝐸𝐸

+ 2
∆𝜎𝜎
2𝐻𝐻′

1/𝑛𝑛′

12.5 Cyclic Stress-Strain Behavior 
of Real Materials

2015-08-09

<Fig. 12.24> Stable stress–strain response of AISI 4340 steel (σu = 1158 MPa) subjected to a repeatedly 
applied irregular strain history (a). The predicted response is shown in (b) and actual test data in (c). 

(Adapted from [Dowling 79b]; used with permission of Elsevier Science Publishers.)
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• Transient Behavior; Mean stress Relaxation (12.5.4)
– Limitation of the Rheological model

 Only stable behavior for cyclic loading
 The transient behavior(cycle-dependent hardening or softening) is not predicted
 Still exhibit ‘stable’ behavior even if the mean stress is not zero

– Cycle-dependent relaxation
 Real material behavior with the biased strain limits
 With enough plasticity, the resulting mean stress 

gradually shift toward zero as increasing numbers 
of cycles

 Sometimes a stable nonzero value is reached, or if
the degree of plasticity is large, the mean stress may
shift essentially to zero

 Enhanced by cyclic softening occurring at the same time

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.25> Cycle-dependent relaxation of mean stress for an AISI 1045 
steel. (From [Landgraf 70]; copyright © ASTM; reprinted with permission.)
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• Transient Behavior; Mean stress Relaxation (12.5.4)
– Limitation of the Rheological model

 Only stable behavior for cyclic loading
 The transient behavior(cycle-dependent hardening or softening) is not predicted
 Still exhibit ‘stable’ behavior even if the mean stress is not zero

– Cycle-dependent creep or ratchetting
 Real material with the biased stress limits
 The mean strain increases with cycles 
 The mean strain shift may decrease its rate

and stop, it may establish and constant rate,
or it may accelerate and lead to a failure
somewhat similar to that in a tension test

12.5 Cyclic Stress-Strain Behavior 
of Real Materials (optional)

2015-08-09

<Fig. 12.25> Cycle-dependent creep for an AISI 1045 steel. The specimen 
was previously yielded, so that the monotonic curve does not appear. 
(From [Landgraf 70]; copyright © ASTM; reprinted with permission.)
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• Stress-strain relationships
– ① Elastic, perfectly plastic,② Elastic, linear-hardening,③ Power-hardening,
④ Ramberg-Osgood

• Three-dimensional states of stress
– Elastic portion: Hooke’s law 𝜀𝜀𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑥𝑥 − 𝜈𝜈 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸
– Plastic portion: Deform. plasticity theory 𝜀𝜀𝑝𝑝𝑥𝑥 = 𝜎𝜎𝑥𝑥 − 0.5 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧 /𝐸𝐸𝑝𝑝

• A key feature of deformation plasticity theory
– A single �𝜎𝜎 vs. ̅𝜀𝜀𝑝𝑝 curve which is independent from the state of stress.

• Unloading Behavior
– Follow a path that is given by a factor-of-two expansion of the monotonic

stress-strain curve
∆𝜀𝜀/2 = 𝑓𝑓 ∆𝜎𝜎/2

• Cyclic loading Behavior
– Replace the monotonic curve with a special cyclic stress-strain curve, with

the Ramberg-Osgood form often being used
𝜀𝜀𝑎𝑎 = 𝜎𝜎𝑎𝑎/𝐸𝐸 + 𝜎𝜎𝑎𝑎/𝐻𝐻′ 1/𝑛𝑛′

12.6 Summary
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